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Abstract 

Autoimmune diseases (ADs) are a group of more than 80 heterogeneous disorders that occur when 

there is a failure in the self-tolerance mechanisms triggering self-attacking autoantibodies. Most 

autoimmune disorders are polygenic and associated with genes in the human leukocyte antigen 

(HLA) region. However, additional non-HLA genes are also found to be associated with different 

ADs, and often these are also implicated in more than one disorder. Previous studies have observed 

associations between various health-related and lifestyle phenotypes and ADs. Polygenic risk 

scores (PRS) allow the calculation of an individual’s genetic liability to a phenotype and are 

estimated as the sum of the risk alleles weighted by their effect sizes in a genome-wide association 

study (GWAS). Here, for the first time, we conducted a comparative PRS-PheWAS analysis for 

11 different ADs (Celiac Disease, Juvenile Idiopathic Arthritis, Multiple Sclerosis, Myasthenia 

Gravis, Primary Sclerosing Cholangitis, Psoriasis, Rheumatoid Arthritis, Systemic Lupus 

Erythematosus, Type 1 Diabetes, Vitiligo Early Onset, Vitiligo Late Onset) and 3,281 outcomes 

available in the UK Biobank that cover a wide range of lifestyle, socio-demographic and health-

related phenotypes. We also explored the genetic relationships of the studied ADs, estimating their 

genetic correlation and performing cross-disorder GWAS meta-analyses for the identified AD 

clusters. In total, we observed 554 outcomes significantly associated with at least one disorder 

PRS, and 300 outcomes were significant after variants in the HLA region were excluded from the 

PRS calculations. Based on the genetic correlation and genetic factor analysis, we observed five 

genetic factors among studied ADs. Cross-disorder meta-analyses in each factor revealed genome-

wide significant loci that are pleiotropic across multiple ADs. Overall, our analyses confirm the 
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association of different factors with genetic risk for ADs and reveal novel observations that warrant 

further exploration. 
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1. Introduction 

Autoimmune diseases (ADs) are a group of more than 80 (1) heterogeneous disorders that occur 

when there is a failure in the self-tolerance mechanisms triggering self-attacking autoantibodies(2). 

The estimated overall prevalence is 3% in the United States (3), and recent studies are reporting 

an increasing trend (4–6). Additionally, ADs are often comorbid and cluster within families (7,8). 

Most autoimmune disorders are polygenic and associated with genes in the human leukocyte 

antigen (HLA) region (9,10). However, many additional non-HLA genes are also found to be 

associated with different ADs, and many times they are implicated in more than one disorder (10). 

The genetic correlation across multiple ADs has not been fully explored (11,12). So far, cross-

disorder GWAS meta-analyses have only focused on a few ADs, usually three to seven at a time 

(12–15), while others have only focused on pairwise meta-analyses (16,17). Given the wide 

comorbidities observed in epidemiological studies and the evidence for sharing of common genetic 

background across multiple ADs, a systematic large scale analysis is warranted. 

In ADs, like other complex disorders, environmental factors are also involved in disease 

development along with genetic predisposition. Multiple studies have reported associations 

between viral infections and specific autoimmune diseases (18). For instance,  a recent study (19) 

is suggesting that Epstein-Barr virus infection could be the leading cause of Multiple Sclerosis. 

Additional associations between ADs and environmental factors such as smoking and UV 

exposure have also been reported (20,21). Epidemiological studies have reported a high 

comorbidity across different ADs (8) as well as links to other traits, including psychotic disorders 

(22), allergies (23), and obesity (24).  

Given the complex genetic background of ADs, Polygenic Risk Scores (PRS), allowing the 

calculation of an individual’s genetic liability to a phenotype, are an important tool to help 

understand disease correlations. They are usually estimated as the sum of the risk alleles weighted 

by their effect sizes in a genome-wide association study (GWAS) (25). This genetic risk can then 

become the basis of a Phenome-wide association study (PheWAS), with a goal to explore whether 

risk variants identified by a GWAS or disease PRS, are associated with a wide variety of 

phenotypes (26). Biobanks that combine genetic data with Electronic Health Records (EHR) are 

essential for the PheWAS approach, as they are the source of the phenotypes used in the 
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analysis(27). Since the PheWAS is a hypothesis-free analysis, it can be used to generate new 

hypotheses about novel associations that might have not been uncovered through hypothesis-

driven approaches.  

Here, for the first time, we conducted a comparative PRS-PheWAS analysis for 11 different ADs 

and 3,281 outcomes available in the UK Biobank that cover a wide range of lifestyle, socio-

demographic and health related phenotypes. Additionally, we explored the genetic relationships 

of the studied ADs, estimating their genetic correlation and performing cross-disorder GWAS 

meta-analyses for the identified AD sub-groups. Our findings provide an overview of the genetic 

and phenotypic architecture and relationships of ADs. 

2. Methods 

2.1. Study population 

The UK Biobank is a large-scale, population-based, prospective cohort that recruited between 

2006 and 2010 over 500,000 participants from the UK aged 40–69 years old. The participants 

provided blood, urine, and saliva samples for biochemical tests and genotyping, as well as self-

reported information which was then linked to their health-related records. The phenotypic and 

genetic data we used in this study were obtained from UK Biobank under application number 

#61553. 

The initial UK Biobank dataset included 488,377 individuals genotyped on the Affymetrix UK 

BiLEVE Axiom array or the Affymetrix UK Biobank Axiom array. We performed standard quality 

control on individuals and genetic markers (info>=0.9, maf>=0.01, geno<=0.02, hwe >= 10-6) with 

PLINK 1.9 (28). Initially, participants with withdrawn consent, sex mismatch, sex aneuploidy, 

self-reported non-white British ancestry, and with kinship coefficient <0.0625 (third-degree 

relatedness(29)) were excluded. Additional Principal Component Analysis (PCA) with 1000 

Genomes data as reference was performed using TeraPCA (30) to exclude individuals with non-

European ancestry. The final dataset included 330,841 individuals and 7,634,371 SNPs. 53.98% 

of the selected participants are females, the average age is 56.8 (sd=8) years. Table S1 provides a 

breakdown of the participants’ age and the percentage of the selected autoimmune diagnoses 

present in the UK Biobank. 
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2.2. PRS-pheWAS 

2.2.1. Polygenic Risk Scores 

Publicly available and in-house GWAS summary statistics for 11 ADs performed on datasets of 

European ancestry and no UK Biobank participants were collected. For the PRS calculations we 

used PRSice2 (31). The independent SNPs with p-values<10-5, after clumping using a window of 

500kb and an r2 threshold of 0.1, were included in the PRS calculations and the score was yielded 

as the weighted, standardized sum of the effect (score-std option). We repeated the PRS 

calculations excluding the extended HLA region (hg19, chr6 25-33 Mb). Table 1 shows the studied 

autoimmune datasets and the number of SNPs included in the PRS calculations. 

2.3. Phenotypes 

We included 3,281 phenotypes from UK Biobank that were assigned to seven broad categories: 

Biomarkers, Cognition and Mental Health, Disease Diagnoses, Health and Medical History, 

Physical Measures, Lifestyle, and Sociodemographics. Specifically for the Disease Diagnoses 

category, we included only the ICD10 codes and used the R PheWAS tool (32) to map similar 

diagnoses into one phecode. The breakdown of data fields in each category is shown in the 

Supplementary Materials (Figures S1-2). 

2.4. PheWAS 

For the PheWAS analyses, we used the tool PHESANT (33) to test the association of each disease 

PRS with each UK Biobank outcome. Age, sex, the first 10 principal components, and the 

genotyping batch were included as covariates in all regression models. To account for multiple 

testing, we used the R function p.adjust to calculate the FDR adjusted p-values and set the 

significance threshold at pFDR<0.05. 

2.5. Cross-Disorder GWAS Meta-analysis 

Pairwise genetic correlation analyses were performed for all 11 ADs after removing the extended 

HLA region (hg19, chr6 25-33 Mb) using LDSC(34). Only SNPs present in the HapMap3 

reference panel were included in analyses and we used precalculated LD scores from 1000 

Genomes European data. Datasets with less than 200,000 SNPs overlap with the LDSC reference 
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data or heritability z-score <1.5 (as defined in (35)), were excluded from downstream analyses, 

namely CEL, PSO, and JIA datasets were removed.  

To further explore the architecture and correlations of the studied disorders, we performed 

exploratory factor analysis (EFA) on the genetic correlation matrix using the R tool GenomicSEM 

(36). We further used a confirmatory factor analysis (CFA) to validate our model. For groups of 

disorders within each of the factors, we performed a cross-disorder GWAS meta-analysis with 

ReACt (37) and corrected for sample overlap between the datasets. In order to identify potentially 

pleiotropic SNPs, in each meta-analysis we estimated the posterior probability (m-value) using 

METASOFT (38) to identify SNPs with high m-values (m-value>0.9) for all studies in the meta-

analysis. Then, using the pleiotropic SNPs, we identified the LD independent regions (r2<0.1) from 

the index SNPs with p<5×10-8. We used the default LD clumping window (250kb) and mapped 

into the regions the genes located no more than 20kb away. As reference for the LD estimation, 

we used the European samples from 1000 Genomes. Additionally, we merged into one overlapping 

genomic regions using bedtools (39). All genes that mapped to the identified LD independent 

regions for each meta-analysis after clumping, were submitted to g:Profiler(40) to perform 

functional enrichment analysis for Gene Ontology terms (GO:BP, GO:CC, GO:MF, released 2021-

12-15), Reactome (REAC, released 2022-1-3) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG FTP, released 2021-12-27). For all experiments we performed the recommended multiple 

hypothesis correction (g:SCS) method with the significance threshold of p = 0.05. We repeated the 

analysis after excluding the electronic GO annotations (Inferred from Electronic Annotation 

[IEA]) to have higher confidence in the enrichment analysis. 

3. Results 

3.1. Individual disorder phewas 

First, we investigated the potential association of AD genetic risk to other phenotypes, including 

socioeconomic factors, lifestyle, biomarkers, disease diagnoses, health history and mental health, 

performing PRS-pheWAS. We used the LD-independent SNPs with p<10-5 to calculate PRS for 

each of the studied ADs in each individual, and tested the association of the autoimmune PRS, 

with 3,281 phenotypes in 330,841 UK Biobank samples (Table S1). Analysis was adjusted for age, 

sex, the first 10 principal components, and genotyping batch. We found a large number of 
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associations with each disorder which differed depending on whether the HLA region was included 

in the analysis (Figure 1, Tables 2, Figure S3 and Table S2-S3). For SLE PRS with HLA region 

included in the analysis, we found the highest number of associations to different phenotypes 

(n=274). On the other hand, analysis for SLE PRS without the HLA region included, was 

associated with only 42 phenotypes. Interestingly, for CEL, and RA, more PRS associations to 

phenotypes were actually found when the HLA region was excluded from the calculations. For 

Psoriasis,  genetic risk was found associated with other phenotypes only when HLA was included 

in the genetic risk calculations (significant association with 86 phenotypes).  

In the following, we describe in detail patterns that emerge across all studied disorders and 

highlight significant results for phenotype associations to genetic risk with at least three ADs.  

3.1.1. Disease Diagnoses 

For six of the studied ADs (CEL, RA, MS, SLE, T1D, VITE), we observed a significant positive 

association of PRS to the same disease diagnosis (Table S3).  These results indicate a good 

predictive power of the respective PRS. We should note that for PSC, the disease diagnosis 

phenotype was not available in the dataset.  

Celiac disease was found significantly associated with genetic risk for all 11 ADs that we studied. 

We observed that higher PRS for RA, VITE, VITL, JIA and PSO is associated with lower risk for 

the “Celiac disease” diagnosis phenotype. On the other hand, higher PRS for MS, MG, PSC, SLE, 

T1D and CEL was associated with higher risk with the “Celiac disease” diagnosis in the UK 

Biobank. The association with CEL, T1D, PSC, RA and JIA remained significant even after 

excluding the HLA, although with an opposite effect direction for the last two (Figure 2, Table 

S2). 

“Ulcerative colitis” diagnosis was the second digestive phenotype most commonly found 

associated with the autoimmune PRS, and high MS, RA(no-HLA), JIA(HLA), PSC(no-HLA), and CEL(no-

HLA) PRS were associated with higher risk for the diagnosis (Figure 2, Table S2). 
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In the endocrine diagnoses, most autoimmune PRS were associated with “Hypothyroidism” 

followed by “Type 1 diabetes”. RA, VITE, PSC, SLE, T1D and MG were  associated with higher 

risk of “Hypothyroidism”, even after HLA was excluded. JIA, VITL, MS and CEL association 

with Hypothyroidism was significant only after HLA was excluded (Figure 2, Table S2). 

In dermatologic diagnoses, the autoimmune “Sicca syndrome” was the most associated phenotype 

with the autoimmune PRS. We observed a positive association of the “Sicca syndrome” diagnosis 

with SLE, CEL, RA(no-HLA), MS(HLA), PSC(HLA), and MG(HLA) PRS, whereas there was a negative 

association with PRS VITE, PSO, and VITL (Figure 2, Table S2). 

In the neoplasms category, high PRS for VITL and VITE was associated with lower risk for skin 

cancer outcomes, including Non-Hodgkins lymphoma, other non-epithelial cancer of skin and 

melanomas of skin (Figure 2, Table S2). 

3.1.2. Cognition and mental health 

For PSC and SLE PRS, we found the largest overlap (n=20) of traits associated in the same 

direction. These associations included lower risk for phenotypes such as addictions, depression, 

and “low/worse” mental health, while they were positively associated with phenotypes describing 

higher cognitive function (Figure 3, Table S2). For PRS of MS, and MG, we also found an 

association with lower risk for phenotypes describing poor mental health (Figure 3, Table S2). On 

the contrary, higher PRS for VITL was associated with phenotypes describing poor mental health 

and depression (n=10), and had a negative association with phenotypes describing cognitive 

function (n=4) (Figure 3, Table S2). PSO and VITE associated with higher risk with phenotypes 

describing poor mental health and anxiety (Figure 3, Table S2).  

3.1.3. Lifestyle 

In this category the trait “Never eat eggs, dairy, wheat, sugar: Wheat products” was associated 

with PRS for ten ADs when HLA was included in analysis, suggesting susceptibility to food 

allergies; VITL, VITE, PSO, JIA, RA are negatively associated with the phenotype, while PSC, 
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SLE, MG, CEL (irrespectively of HLA) and T1D were positively associated with the phenotype 

(Figure 4, Table S2). 

Again, same as for the previous category of traits, PSC and SLE PRS had the largest overlap of 

associated phenotypes (n=23) in  the same effect direction. They were negatively associated with 

phenotypes related to dietary habits (higher intake of dried fruit, salad/ raw vegetable, non-oily 

fish), cannabis usage, exercise, smoking status (Figure 4, Table S2). 

Additionally, VITL and VITE PRS ( irrespectively of HLA) were positively associated with darker 

skin color, and negatively associated with higher risk of “ease of skin tanning”, “childhood 

sunburn occasions”, “use of sun/uv protection” and “facial aging” (Figure 4, Table S2). We 

observed the opposite associations between PSC and SLE PRS and these sun exposure phenotypes, 

except for the “childhood sunburn occasions” (Figure 4, Table S2). 

3.1.4. Health and medical history 

In this category the self-reported phenotype “Diagnosed with coeliac disease or gluten sensitivity” 

was significantly associated with 11 autoimmune PRS (Figure S4, Table S2). We observed a 

positive association with PSC, SLE, T1D, CEL, MG, and a negative association with RA, JIA, 

VITL, VITE, PSO, these results are consistent with similar phenotypes, such as the “Celiac 

disease” diagnosis and the “Never eat eggs, dairy, wheat, sugar: Wheat products” phenotype in the 

Lifestyle category. 

Additionally, high PRS T1D, VITL, and VITE were associated with lower risk for “Basal cell 

carcinoma” phenotype under the Cancer register sub-category. Specifically for VITE and VITL 

we observed a negative association with self-reported basal cell carcinoma (Figure S4, Table S2).  

3.1.5. Sociodemographics 

In this category, we observed a positive association of PSO(HLA) PRS  with Indices of Multiple 

Deprivation, such as Health, Employment, Income, and Education scores, as well as the Index of 

Multiple Deprivation (Figure S5, Table S2). RA(no-HLA) PRS was also positively associated with 

Health and Employment Deprivation Indices. These results indicate that the participants with 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.16.22281127doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.16.22281127
http://creativecommons.org/licenses/by-nd/4.0/


 

10 

higher PSO and RA PRS had a higher deprivation index and lower levels of education, health, 

income and employment. Whereas VITE was associated with lower risk for Health, Employment, 

and Education, Deprivation scores, as well as the Index of Multiple Deprivation. Only when the 

HLA was excluded from the VITE PRS calculation, we observed a negative association with the 

Income Deprivation score. VITL(no-HLA) PRS was negatively associated with Health, Employment, 

Income, and Education, Deprivation scores, as well as the Index of Multiple Deprivation, which 

indicates the participants with higher VITE and VITL PRS, had higher levels education, health, 

income and employment. 

We also observed significant associations of autoimmune PRS with phenotypes in the Biomarkers 

(Figure S6-S8) and Physical Measures (Figure S9) categories, without any patterns emerging 

across disorders. Results are shown in supplement. 

3.2. Cross-Disorder GWAS Meta-analysis 

Driven by the known comorbidity across AD (based on epidemiological studies (8) and the overlap 

in phenotypic associations with autoimmune PRS that we described above, we proceeded to 

perform cross-disorder genetic correlation and GWAS summary statistics meta-analyses to explore 

the genetic relationship and genetic architecture of ADs and identify potentially pleiotropic loci. 

Such pleiotropic loci would drive pathophysiology across multiple ADs. 

Initially, we performed analysis for all 11 ADs (Figure S10), however, given the limited SNP 

overlap of our datasets for CEL, PSO and JIA we excluded them from further analyses. After 

correction for multiple testing, we observed significant positive correlations of RA with T1D (rgno-

HLA:0.52), SLE (rgno-HLA:0.51), and MG (rgno-HLA:0.47). VITL and VITE were also significantly 

correlated (rgno-HLA:0.64). Additional autoimmune correlations with p<0.05 are shown in Figure 

5A-B, including the pairwise correlations after excluding HLA. 

Based on the fact that the pairwise genetic correlation analysis showed a complicated correlation 

pattern among the studied disorders, we performed exploratory factor analysis (EFA) followed by 

a confirmatory factor analysis (CFA) to dissect the AD relationships. We used the four-factor 

model identified in EFA and included the disorders with loadings greater than |0.3| in each factor. 

The CFA analysis in GenomicSEM showed a good fit of the model to the data (χ2(12) =16.1; AIC 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.16.22281127doi: medRxiv preprint 

https://paperpile.com/c/HClqcf/1E5D
https://doi.org/10.1101/2022.10.16.22281127
http://creativecommons.org/licenses/by-nd/4.0/


 

11 

=64.1; CFI = 0.98; SRMR = 0.07). The first factor included VITE, VITL and MG. MG, RA and 

SLE were included in the second factor, while the third factor consisted of T1D, PSC and MG 

(with a negative loading). Lastly, factor four consisted of PSC and MS (Figure 5C).  

In the cross-disorder meta-analysis on the first factor, that includes VITL, VITE and MG, we 

identified nine significant pleiotropic (m-value>0.9 in all studies) LD independent regions (Table 

3); two of them mapping on the Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4) - 

Inducible T Cell Costimulator (ICOS) and Fli-1 Proto-Oncogene, ETS Transcription Factor (FLI1) 

genes, were not significant in the individual GWAS studies included here. However in the GWAS 

catalog (41) FLI1 has a significant association with Vitiligo, when the onset age is not taken into 

account (42), and CTLA4 is found associated with different GWASs (not studied here) for both 

Myasthenia gravis (43) and Vitiligo (42). CTLA4 was also significant in the gene-based analysis 

(44) of the data we used in this meta-analysis. The gene set enrichment analysis including the 

genes in the significant and pleiotropic regions identified four significantly enriched GO:BP terms; 

bone cell development, immune system development, myeloid cell development, and immune 

system process (Figure 6A, Table S4). 

When we performed the meta-analysis of MG, RA and SLE, we identified 17 genomewide 

significant pleiotropic loci. Three of these loci mapping to Protein Tyrosine Phosphatase Receptor 

Type C (PTPRC), Interleukin 12 Receptor Subunit Beta 2 (IL12RB2) and LINC00824 were not 

genome-wide significant in the GWAS studies we analyzed (focusing on European ancestry), 

however, they were reported as significant associations in GWAS of higher power that were multi-

ethnic (Table S5). The gene set enrichment analysis of genomewide significant and pleiotropic 

regions identified 22 significantly enriched terms. Among them, six (DN2 thymocyte 

differentiation, regulation of MAP kinase activity, stress granule assembly, B cell proliferation, 

side of membrane, GRB7 events in ERBB2 signaling) were significant even after excluding the 

IEA GO terms (see methods) (Figure 6B, Table S6). 

In the meta-analysis of MG, T1D and PSC, we observed seven pleiotropic and genome wide 

significant loci. One of them, found on chr4:10,709,726-10,726,520 (closest gene Cytokine 

Dependent Hematopoietic Cell Linker (CLNK), 23Kb downstream) has not been previously found 

to be associated with either of the three disorders (Table S7). The gene-set enrichment analysis 
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identified six significantly enriched terms after multiple testing correction, with “RUNX1 and 

FOXP3 control the development of regulatory T lymphocytes (Tregs)” and “T cell receptor 

signaling pathway” as the two top terms (Table S8). These two were the only significant terms 

when we repeated the analysis after excluding the IEA GO terms (see methods)(Figure 6C, Table 

S8). 

Finally, for the cross-disorder meta-analysis of PSC and MS, we identified two genome-wide 

significant and pleiotropic loci, mapping to the previously associated Interleukin 2 Receptor 

Subunit Alpha (IL2RA) and BTB Domain And CNC Homolog 2 (BACH2) genes (Table S9). The 

gene-set enrichment analysis identified three significant terms, primary adaptive immune 

response, primary adaptive immune response involving T cells and B cells, and interleukin-2 

receptor complex. All of them remained significant even after we excluded the IEA GO terms 

(Table S10). 

4. Discussion 

We report results on the first  PRS-PheWAS analysis exploring the association of genetic risk for 

11 autoimmune disorders and 3,281 phenotypes on 330,841 individuals of European ancestry from 

the UK Biobank. Additionally, we explored the genetic relationship between the studied ADs 

seeking to dissect the genetic architecture of these highly correlated and often comorbid 

phenotypes. 

We were able to recover previously identified associations between ADs based on epidemiological 

or genetic studies. For instance, a study in a Taiwanese population showed higher risk of first-

degree relatives with Sicca to develop other autoimmune disorders including SLE, MS, MG, and 

RA (45); and we also observed here a positive association between the PRS of these four ADs and 

Sicca syndrome outcome. Other autoimmune-related diagnosis outcomes associated with higher 

risk for the studied ADs, included hypothyroidism and Graves disease. A link between those 

disorders and RA, Vitiligo, SLE, T1D, CEL, and MG, is also supported by the literature (46–50). 

Additionally, as reported in previous studies (51–53), we also observed a negative association 

between Vitiligo risk and skin cancer. 
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Interestingly, we observed many associations with environmental and lifestyle factors. Diet and 

specifically the consumption of non-wheat products was the outcome that we found to be 

associated with the risk for most of the studied ADs pointing to gluten intolerance and food 

allergies. We observed a significant positive association between PSC, SLE, CEL, MG, T1D, and 

RA (when HLA was excluded from PRS calculations) and not consuming wheat, while the 

association was negative for VITE, VITL, PSO, JIA and RA. We also observed the same pattern 

of AD associations with the Celiac disease diagnosis phenotype, which could be indicative of the 

connection between gluten intolerance and Celiac disease. There is prior evidence suggesting that 

a gluten-free diet could be beneficial not only for patients with Celiac disease but also for T1D, 

RA, MS, autoimmune hepatitis, and PSO (54).   

 

Smoking was another factor that we found significantly associated with SLE and PSC genetic risk. 

Indeed, it has been previously suggested that smoking is associated with higher risk for double-

stranded DNA seropositivity, a marker used for SLE diagnosis, in SLE patients (55), while for 

PSC, there is some evidence to suggest that smoking is associated with lower risk for developing 

the disease (56,57), although not always consistently supported (58). Interestingly, a previous 

study found that severe sunburn incidents and higher tanning ability in women are associated with 

higher risk of developing Vitiligo (59), however, we actually observed the opposite association for 

Vitiligo genetic risk, perhaps indicating different behavior towards sun exposure based on genetic 

risk. We also observed a negative association between CEL genetic risk and the weight of the first 

child. Previous studies have shown that women with undiagnosed or untreated celiac disease have 

higher risk to deliver a baby with reduced birthweight (60). 

 

The link between autoimmune disorders and mental health has been previously described. For 

instance, exposure to stress-related disorders was found to be associated with higher risk for ADs 

(61), and both positive and negative associations of ADs with psychotic disorders have been 

summarized elsewhere (22). In our study, we observed that risk for VITL and PSO was positively 

associated with self-reported outcomes describing poor mental health, which is in line with 

previous works (22,61–63). We also observed that risk for SLE and PSC was associated with better 

mental health outcomes. Epidemiological studies have reported higher psychological distress in 

patients with SLE and PSC (61,64–67). However, in a study exploring the genetic correlation 
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between immune and psychiatric related phenotypes using GWAS summary statistics, SLE was 

found to be significantly positively correlated only with Schizophrenia and no other psychiatric 

phenotypes (68). Additionally, a study using Mendelian Randomization between SLE and 

depression showed SLE genetic variants mildly reduce the odds of depression, suggesting that the 

observed association between SLE and depression might not be attributed to genetic factors (69). 

Thus, further analyses could be useful to explore the gap between the associations between SLE 

and mental health phenotypes observed in epidemiological studies, but not when using genetic 

data. 

It is well demonstrated that ADs are often comorbid and share both HLA and non-HLA genetic 

loci (8–10,15). In a recent study (11), where the genetic correlation between 13 (7 of them are also 

studied here) autoimmune and inflammatory disorders was also explored, the authors observed 

correlations across ADs and similar patterns to what we also found. Furthermore, we also provide 

here a more detailed analysis to understand the genetic architecture of ADs including EFA to reveal 

subgroups of disorders and cross-disorder GWAS to reveal pleiotropic loci that could underlie 

multiple disorders and drive comorbidities. Indeed, in line with the existing notion of shared 

genetic background across ADs, we detected numerous genome-wide significant and pleiotropic 

loci in each meta-analysis. All except one had already been previously associated with at least one 

of the ADs included in the meta-analysis, or were associated with the traits in studies of different 

ancestries or larger sample GWAS which we could not analyze here because summary statistics 

data were not available. Importantly, we identify one novel genome-wide significant and 

pleiotropic locus in the meta-analysis of T1D-MG-PSC. This is a previously unknown locus that 

could play a role in the etiology of all three disorders and is found  23Kb downstream of CLNK 

gene that encodes Clnk, an adapter of the SLP76 family, is involved in the regulation of 

immunoreceptor signaling (70).  

This study comes with both strengths and limitations. The PheWAS analysis allowed us to detect 

significant associations between AD risk and multiple phenotypes, even after excluding the HLA 

region. Additionally, we were able to detect pleiotropic loci in the autoimmune subgroups that are 

involved in immune-related processes as the gene-set enrichment analysis revealed. However, 

there are limitations in this study that should be taken into account when interpreting the results. 

For the PRS calculations, although we used the largest AD summary statistics data available, there 
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were differences in power regarding their sample size and number of SNPs. Also, as the number 

of UK Biobank participants with AD diagnoses is limited, we were not able to calculate the optimal 

p-value threshold for SNPs to be included in PRS calculations, but rather set as threshold the p-

value 10-5.  

In conclusion, in this study we observed ADs PRS to be associated with multiple health-related 

and environmental factors, even after excluding the HLA region, and explored the genetic 

relationships of the selected ADs by estimating their genetic correlation and identifying pleiotropic 

genetic regions that underlie genetic risk across multiple ADs. Overall, our analyses indicate 

potential factors associated with genetic risk for ADs, some of which have been reported 

previously, and also novel observations that need to be further explored. These results are 

suggesting that the assessment of additional exposures related to lifestyle, mental and physical 

health risks by clinicians, could be beneficial for individuals with higher risk for autoimmune 

disorders.  
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Tables 

Table 1: Autoimmune Disease datasets used in this study.  

The number of SNPs in the PRS calculations corresponds to the independent SNPs with p<10-5. 

 

Autoimmune Disorder Abbreviation Cases Controls SNPs in 

sumstats 

SNPs 

in PRS 

SNPs in 

PRS (no 

HLA) 

PMID 

Rheumatoid Arthritis RA 14,361 43,923 8,747,962 309 132 24390342 

Systemic Lupus 

Erythematosus 

SLE 4,036 6,959 7,915,251 200 144 26502338 

Vitiligo Late Onset VITL 1,467 19,156 7,552,975 77 49 30674883 

Vitiligo Early Onset VITE 704 9,031 8,020,475 84 60 30674883 

Type 1 Diabetes T1D 9,358 15,705 6,621,966 236 198 32005708 

Primary Sclerosing 

Cholangitis 

PSC 2,871 12,019 7,891,602 157 50 27992413 

Psoriasis PSO 2,997 9,183 161,173 191 121 23143594 

Multiple Sclerosis MS 9,772 17,376 472,086 147 86 21833088 

Celiac Disease* CEL 12,041 12,228 139,553 122 100 22057235 

Juvenile Idiopathic Arthritis JIA 2,816 13,056 122,330 45 5 23603761 

Myasthenia Gravis** MG 1,401 3,508 5,755,778 21 14 34400559 

*We included the summary statistics only from the European ancestry individuals in this study. 

** For the PRS calculations we used the summary statistics after excluding the UK Biobank 

samples, while for the rest of the analyses we included the full dataset described in the study. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.16.22281127doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.16.22281127
http://creativecommons.org/licenses/by-nd/4.0/


 

22 

Table 2: The most significant associations (pFDR<0.05) of each AD PRS and the UK Biobank phenotypes.  

The table shows the strongest associated phenotypes with each AD PRS with and without HLA, the beta, the 95% CI and the FDR 

adjusted p-value. 

 

 HLA included HLA excluded 

Autoimmune 

Disorder 
Top phenotype β 95% Interval Pfrd Top phenotype β 95% Interval Pfdr 

Celiac Disease Celiac disease 0.651 [0.618 — 0.684] <10-300 Celiac disease 0.539 [0.497 — 0.581] 7.13E-136 

Juvenile Idiopathic 

Arthritis 
Celiac disease -0.362 [-0.406 — -0.319] 1.26E-56 

Hypothyroidism 

NOS 
0.125 [0.110 — 0.139] 8.85E-57 

Multiple Sclerosis Multiple sclerosis 0.498 [0.452 — 0.544] 1.49E-97 Multiple sclerosis 0.406 [0.353 — 0.460] 2.85E-46 

Myasthenia Gravis 
White blood cell 

(leukocyte) count 
-0.03 [-0.033 — -0.026] 1.67E-59 

Hypothyroidism 

NOS 
0.036 [0.021 — 0.051] 9.22E-03 

Primary Sclerosing 

Cholangitis 
Celiac disease 0.699 [0.667 — 0.731] <10-300 Eosinophill count 0.03 [0.027 — 0.034] 1.37E-62 

Psoriasis Psoriasis vulgaris 0.371 [0.336 — 0.407] 9.66E-90 no significant outcome 

Rheumatoid Arthritis 
Rheumatoid 

arthritis 
0.313 [0.289 — 0.338] 5.57E-132 

Hypothyroidism 

NOS 
0.204 [0.189 — 0.218] 1.69E-157 

Systemic Lupus 

Erythematosus 
Celiac disease 0.74 [0.707 — 0.772] <10-300 Cystatin C 0.021 [0.018 — 0.024] 3.71E-36 

Type 1 Diabetes Type 1 diabetes 0.324 [0.287 — 0.360] 1.31E-62 
Hypothyroidism 

NOS 
0.151 [0.136 — 0.166] 3.37E-82 

Vitiligo Early Onset Skin colour 0.173 [0.165 — 0.180] <10-300 Skin colour 0.257 [0.249 — 0.264] <10-300 

Vitiligo Early Onset 
Ease of skin 

tanning 
-0.14 [-0.146 — -0.133] <10-300 

Ease of skin 

tanning 
-0.217 [-0.223 — -0.211] <10-300 

Vitiligo Late Onset Skin colour 0.151 [0.143 — 0.159] <10-300 Skin colour 0.267 [0.259 — 0.274] <10-300 

Vitiligo Late Onset 
Ease of skin 

tanning 
-0.125 [-0.131 — -0.119] <10-300 

Ease of skin 

tanning 
-0.234 [-0.240 — -0.227] <10-300 
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Table 3 Genome-wide significant (p<5x10-8) LD independent loci from the VITL-VITE-MG meta-analysis. 

The column SNP contains the top SNP in each locus. The columns P, OR and SE correspond to the top SNP in each locus. The 

autoimmune disorder specific Top SNP column contains the top genome-wide significant SNP in the locus that was available in the 

input dataset. The autoimmune disorder specific P column contains the lowest p-value in the locus that was available in the input 

dataset. 

 

SNP Locus 

Nearest 

genes 

(<20kb) 

P-meta OR SE 
Top SNP 

VITE 
P-VITE 

Top SNP 

VITL 
P-VITL 

Top SNP 

MG 
P-MG 

rs9981704 chr21:43831955-43867059 
TMPRSS3 

UBASH3A 
6.09x10-19 1.31 0.03 - 4.30x10-4 rs12482396 4.06x10-20 - 3.60x10-3 

rs60946162 chr3:188084682-188133518 LPP 1.78x10-15 0.8 0.03 - 2.43x10-7 rs13098877 2.62x10-11 - 1.17x10-3 

rs7137828 chr12:111833788-112037526 
ATXN2 

SH2B3 
1.70x10-13 0.82 0.03 - 7.31x10-5 rs10774624 8.28x10-9 - 1.26x10-3 

rs8088891 chr18:60007263-60029292 TNFRSF11A 3.51x10-13 1.22 0.03 - 9.89x10-4 - 1.14x10-3 rs4369774 1.09x10-13 

rs1951459 chr6:167370353-167455629 

FGFR1OP 

MIR3939 

RNASET2 

3.61x10-13 0.81 0.03 rs2247315 3.48x10-9 rs366938 1.14x10-8 - 9.53x10-4 

rs64547 chr22:37575469-37595156 
C1QTNF6 

SSTR3 
8.14x10-13 0.82 0.03 rs229528 2.09x10-8 rs229527 1.55x10-12 - 7.33x10-3 

rs831071 chr3:71426419-71430389 FOXP1 1.01x10-10 1.2 0.03 - 2.11x10-3 rs60135207 3.14x10-9 - 3.40x10-6 

rs3116513 chr2:204694611-204792732 
CTLA4 

ICOS 
1.42x10-10 1.19 0.03 - 2.25x10-2 - 5.64x10-5 - 2.65x10-6 

rs644515 chr11:128589472-128617231 FLI1 1.44x10-9 1.17 0.03 - 2.89x10-5 - 2.89x10-5 - 1.24x10-2 
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Figures 

 

Figure 1: Distribution of phenotypes associated with autoimmune polygenic risk scores 

(p<10-5). 

The different colors represent general UK Biobank category. The “HLA excluded” bar shows the 

distribution of the significant associations with the phenotypes when HLA was excluded from 

the AD PRS calculations. The “HLA included” bar shows the distribution of the significant 

associations with the phenotypes when HLA was included in the AD PRS calculations. The 

“Shared” bar shows the distribution of the significant associations with the phenotypes for both 

HLA included or excluded AD PRSs.  

 

Figure 2: Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Disease Diagnoses UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. The two stars “☆☆” show 

the significant associations with both “HLA included or excluded” AD PRS with the same effect 

direction. The star and the upper facing triangle “☆▵” show the significant associations with 

both “HLA included or excluded” AD PRS but with opposite effect directions. The upper facing 

triangle “▵”  shows the significant associations only with “HLA excluded” AD PRS that the 

effect direction is the same as the color indicates. The down-facing triangle “▿” shows the 

significant associations only with “HLA excluded” AD PRS that the effect direction is the 

opposite of what the color indicates. For the grouping of the disease diagnoses phenotypes, we 

used the R PheWAS tool and collapse similar ICD-10 codes into one phecode. We used the 

hclust R function to perform the hierarchical clustering of the autoimmune disorders showing in 

the dendrogram using all standardized effect sizes for the disease diagnoses phenotypes. 

 

Figure 3: Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Cognition and Mental Health UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. The upper facing triangle 

“▵”  shows the significant associations only with “HLA excluded” AD PRS that the effect 

direction is the same as the color indicates. For the grouping of the phenotypes, we used the 

categories provided by the UK Biobank. We used the hclust R function to perform the 

hierarchical clustering of the autoimmune disorders showing in the dendrogram using all 

standardized effect sizes for the Cognition and Mental Health phenotypes. 
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Figure 4: Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Lifestyle UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. The two stars “☆☆” show 

the significant associations with both “HLA included or excluded” AD PRS with the same effect 

direction. The star and the upper facing triangle “☆▵” show the significant associations with 

both “HLA included or excluded” AD PRS but with opposite effect directions. The upper facing 

triangle “▵” shows the significant associations only with “HLA excluded” AD PRS that the 

effect direction is the same as the color indicates. For the grouping of the phenotypes, we used 

the categories provided by the UK Biobank. We used the hclust R function to perform the 

hierarchical clustering of the autoimmune disorders showing in the dendrogram using all 

standardized effect sizes for the Lifestyle category phenotypes. 

 

Figure 5: Genetic correlation and factor analysis for 8 autoimmune disorders. 

The figure shows the analyses of the 8 autoimmune disorders with enough overlap (>200.000 

SNPs) with HapMap3 data provided by LDSC after excluding the HLA locus (hg19, chr6 25-33 

Mb). A) Heatmap of the pairwise LDSC genome wide genetic correlations of the 8 autoimmune 

disorders after excluding the SNPs in the HLA region. The red color reflects more positive 

correlation coefficients while blue reflects more negative coefficients, and the numbers within 

each cell are the correlation coefficients. The correlations with p<0.05 are denoted with one 

asterisk (*), while the two asterisks show the correlations that are significant after the Bonferroni 

correction. B) Network representation of the genetic correlation between the autoimmune 

disorders with p<0.05. The numbers show the correlation coefficient and the stronger the line 

color shows a higher coefficient. C) Path graph of the confirmatory factor model estimated using 

the Genomic SEM.  Four factors were identified. The factor loadings for each trait are depicted 

by arrows between the trait and the factor, with the standardized loading value and the standard 

error in the parentheses. Correlation between factors is indicated by arrows between them. 

Residual variance for each trait is indicated by the two-headed arrow connecting the variable to 

itself.  

 

Figure 6: Network plots of the enrichment analysis for the cross-disorder meta-analyses.  

A) Results of the significantly enriched terms from the genes identified in the VITE-VITL-MG 

meta-analysis. Results are also shown in Supplementary Table 4. B) Results of the significantly 

enriched terms (after excluding the IEA terms) from the genes identified in the SLE-MG-RA 

meta-analysis. The full results are also shown in the Supplementary Table 6. C) Results of the 

significantly enriched terms from the genes identified in the T1D-MG-PSC meta-analysis. The 

full results are also shown in the Supplementary Table 8. Enriched gene sets that remained 

significant after excluding the IEA GO terms are shown in dark green.  
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Figure 2: Significant PRS-PheWAS for at least three AD PRS with phenotypes in the Disease 

Diagnoses UK Biobank category. 
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Figure 3: Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Cognition and Mental Health UK Biobank category. 

 

 

 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.16.22281127doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.16.22281127
http://creativecommons.org/licenses/by-nd/4.0/


 

29 

 
 

 

Figure 4: Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Lifestyle UK Biobank category. 
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Figure 5: Genetic correlation and factor analysis for 8 autoimmune disorders. 
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Figure 6: Network plots of the enrichment analysis for the cross-disorder meta-analyses. 
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Supporting Information 

 

Table S1 Demographic information of the 330,841 UK Biobank participants included in the 

analysis.  

The ICD10 Disease Diagnoses category includes the diagnoses for the autoimmune disorders 

that are included in this study and were present in the UK Biobank. 

 

Table S2 PRS-pheWAS results for association of genetic risk of 11 autoimmune disorders 

with 3,281 phenotypes in UK Biobank. 

Genetic risk scores were calculated as the weighted standardized sum of the effect of 

independent SNPs with p-values<10-5 for each disorder. The estimation of the genetic risk scores 

was repeated after excluding the extended HLA region (hg19, chr6 25-33 Mb). Estimates were 

generated by PHESANT.  

 

Table S3: Associations of AD PRS with disease diagnosis phenotype for  the same disorder.  

The table shows the associations of the disease diagnosis phenotypes and the same AD PRS with 

and without HLA, only for the ADs that the same diagnosis was available. For the Vitiligo early 

and late onset we used the general Vitiligo diagnosis phenotype that was available in the UK 

Biobank. 

 

Table S4 Significantly enriched gene sets genes identified in the VITL-VITE-MG meta-

analysis.  

The p.Val column is the adjusted p-value using the suggested g:SCS method by the g:Prolifer 

tool used for the analysis. The Genes column contains the provided genes that are in each 

identified gene set. 

 

Table S5 Genome-wide significant (p<5x10-8) LD independent loci from the SLE-RA-MG 

meta-analysis. 

The column SNP contains the top SNP in each locus. The columns P, OR and SE correspond to 

the top SNP in each locus. The autoimmune disorder specific Top SNP column contains the top 

genome-wide significant SNP in the locus that was available in the input dataset. The 

autoimmune disorder specific P column contains the lowest p-value in the locus that was 

available in the input dataset. 

 

Table S6 Significantly enriched gene sets genes identified in the SLE-MG-RA meta-

analysis.  

The p.Val column is the adjusted p-value using the suggested g:SCS method by the g:Prolifer 

tool used for the analysis. The Genes column contains the provided genes that are in each 

identified gene set. 
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Table S7 Genome-wide significant (p<5x10-8) LD independent loci from the T1D-MG-PSC 

meta-analysis. 

The column SNP contains the top SNP in each locus. The columns P, OR and SE correspond to 

the top SNP in each locus. The autoimmune disorder specific Top SNP column contains the top 

genome-wide significant SNP in the locus that was available in the input dataset. The 

autoimmune disorder specific P column contains the lowest p-value in the locus that was 

available in the input dataset. 

 

Table S8 Significantly enriched gene sets genes identified in the T1D-MG-PSC meta-

analysis.  

The p.Val column is the adjusted p-value using the suggested g:SCS method by the g:Prolifer 

tool used for the analysis. The Genes column contains the provided genes that are in each 

identified gene set. 

 

Table S9 Genome-wide significant (p<5x10-8) LD independent loci from the PSC-MS meta-

analysis. 

The column SNP contains the top SNP in each locus. The columns P, OR and SE correspond to 

the top SNP in each locus. The autoimmune disorder specific Top SNP column contains the top 

genome-wide significant SNP in the locus that was available in the input dataset. The 

autoimmune disorder specific P column contains the lowest p-value in the locus that was 

available in the input dataset. 

 

Table S10 Significantly enriched gene sets genes identified in the PSC-MS meta-analysis.  

The p.Val column is the adjusted p-value using the suggested g:SCS method by the g:Prolifer 

tool used for the analysis. The Genes column contains the provided genes that are in each 

identified gene set. 

 

 

Figure S1 Overview of the phenotypes included in the general UK Biobank categories.  

The number inside the circles shows the total number of phenotypes in each category. The 

numbers in each block show the percentage of phenotypes included in each sub-category. 

 

Figure S2 Overview of the phenotypes included in the general UK Biobank categories.  

The number inside the circles shows the total number of phenotypes in each category. The 

numbers in each block show the percentage of phenotypes included in each sub-category 

 

Figure S3 Volcano plot of all PheWAS results for each autoimmune disorder. 

Annotated are the top 3 significant results, and with red the outcomes with pFDR<0.05. 
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Figure S4 Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Health and Medical History UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. The two stars “☆☆” show 

the significant associations with both “HLA included or excluded”  AD PRS with the same effect 

direction. The star and the upper facing triangle “☆▵” show the significant associations with 

both “HLA included or excluded” AD PRS but with opposite effect directions. The upper facing 

triangle “▵” shows the significant associations only with “HLA excluded” AD PRS that the 

effect direction is the same as the color indicates. For the grouping of the phenotypes, we used 

the categories provided by the UK Biobank. We used the hclust R function to perform the 

hierarchical clustering of the autoimmune disorders showing in the dendrogram using all 

standardized effect sizes for the health and medical history category phenotypes. 

 

Figure S5 Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Sociodemographics UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. The two stars “☆☆” show 

the significant associations with both “HLA included or excluded”  AD PRS with the same effect 

direction. The star and the upper facing triangle “☆▵” show the significant associations with 

both “HLA included or excluded” AD PRS but with opposite effect directions. The upper facing 

triangle “▵”  shows the significant associations only with “HLA excluded” AD PRS that the 

effect direction is the same as the color indicates. For the grouping of the phenotypes, we used 

the categories provided by the UK Biobank. We used the hclust R function to perform the 

hierarchical clustering of the autoimmune disorders showing in the dendrogram using all 

standardized effect sizes for the Sociodemographics category phenotypes. 

 

Figure S6 Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Biomarkers (Blood Count) UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. The two stars “☆☆” show 

the significant associations with both “HLA included or excluded”  AD PRS with the same effect 

direction. The star and the upper facing triangle “☆▵” show the significant associations with 

both “HLA included or excluded” AD PRS but with opposite effect directions. The upper facing 
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triangle “▵”  shows the significant associations only with “HLA excluded” AD PRS that the 

effect direction is the same as the color indicates. For the grouping of the phenotypes, we used 

the categories provided by the UK Biobank. We used the hclust R function to perform the 

hierarchical clustering of the autoimmune disorders showing in the dendrogram using all 

standardized effect sizes for the Biomarkers category phenotypes. 

 

Figure S7 Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Biomarkers (Blood biochemistry) UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. The two stars “☆☆” show 

the significant associations with both “HLA included or excluded”  AD PRS with the same effect 

direction. The star and the upper facing triangle “☆▵” show the significant associations with 

both “HLA included or excluded” AD PRS but with opposite effect directions. The upper facing 

triangle “▵” shows the significant associations only with “HLA excluded” AD PRS that the 

effect direction is the same as the color indicates. For the grouping of the phenotypes, we used 

the categories provided by the UK Biobank. We used the hclust R function to perform the 

hierarchical clustering of the autoimmune disorders showing in the dendrogram using all 

standardized effect sizes for the Biomarkers category phenotypes. 

 

Figure S8 Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Biomarkers (Infectious Diseases) UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. For the grouping of the 

phenotypes, we used the categories provided by the UK Biobank. We used the hclust R function 

to perform the hierarchical clustering of the autoimmune disorders showing in the dendrogram 

using all standardized effect sizes for the Biomarkers category phenotypes. 

 

Figure S9 Significant PRS-PheWAS for at least three AD PRS with phenotypes in the 

Physical Measures UK Biobank category. 

The shown phenotypes were significantly associated, after FDR adjustment, with at least three 

AD PRS irrespectively of the HLA status. The colors of cells indicate the standardized effect 

sizes (β) for the regression between AD PRS with HLA and each phenotype. The one star “☆” 

shows the significant results only with the “HLA included” AD PRS. The two stars “☆☆” show 

the significant associations with both “HLA included or excluded”  AD PRS with the same effect 

direction. The star and the upper facing triangle “☆▵” show the significant associations with 
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both “HLA included or excluded” AD PRS but with opposite effect directions. The upper facing 

triangle “▵”  shows the significant associations only with “HLA excluded” AD PRS that the 

effect direction is the same as the color indicates. For the grouping of the phenotypes, we used 

the categories provided by the UK Biobank. We used the hclust R function to perform the 

hierarchical clustering of the autoimmune disorders showing in the dendrogram using all 

standardized effect sizes for the Physical Measures category phenotypes. 

 

Figure S10 Genetic correlation of the 11 autoimmune disorders  

The figure shows the genetic correlation for all 11 autoimmune disorders included in the 

analysis. A) After excluding the SNPs in the HLA region (hg19, chr6 25-33 Mb). B) Without 

excluding the SNPs in the HLA region. The red color in the cells reflects more positive 

correlation coefficients while blue reflects more negative coefficients, and the numbers within 

each cell are the correlation coefficients. The correlations with p<0.05 are denoted with one 

asterisk (*), while the two asterisks show the correlations that are significant after the Bonferroni 

correction. 
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