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Abstract. Impressive progress is being made in bionic limbs design and control. Yet, 

controlling the numerous joints of a prosthetic arm necessary to place the hand at a correct 

position and orientation to grasp objects remains challenging. Here, we designed an intuitive, 

movement-based prosthesis control that leverages natural arm coordination to predict distal 

joints missing to people with transhumeral limb loss based on proximal residual limb motion 

and knowledge of the movement goal. This control was validated on 29 participants, 

including 7 with above-elbow limb loss, who picked and placed bottles in a wide range of 

locations in virtual reality, with median success rates over 99% and movement times identical 

to those of natural movements. This control also enabled 15 participants, including 3 with 

limb difference, to reach and grasp real objects with a robotic arm operated according to the 

same principle. Remarkably, this was achieved without any prior training, indicating that this 

control is intuitive and instantaneously usable. It could be used for phantom limb pain 

management in virtual reality, or to augment reaching capabilities of invasive neural 

interfaces usually more focused on hand and grasp control. 

 

 

Introduction 
 

The field of bionic limbs has seen great progress over the last few years, including Targeted 

Muscle Reinnervation (TMR)1, osseointegration2, chronically implanted sensors and 

stimulators for bidirectional communication with the nervous system3–7, and advanced signal 

processing to encode and decode sensorimotor signals8–10. Yet, simultaneous control of the 

multiple Degrees of Freedom (DoFs) of a prosthetic arm remains challenging, especially to 

bring a prosthetic hand to the correct location and orientation to efficiently grasp objects. 

Indeed, although simultaneous and proportional real-time myoelectric control has been 

achieved for two to three DoFs11–17, difficulties appear13 and performance deteriorates as the 

number of DoFs increases (e.g., success rate dropped from 96 to 37% from one to three DoFs 

in17). Furthermore, this was achieved in lab settings, mostly on participants with valid arms, 

sometimes including few participants with limb difference at transradial level (either 

amputation or congenital limb difference)12–14,18, using native muscles remaining that 

normally actuate the DoFs under myoelectric control (forearm, wrist, hand). 

 

In the case of an amputation at humeral level, none of the forearm wrist and hand muscles 

would remain, and the important additional DoF of the elbow would need to be controlled. 

Although TMR could be used to recover valid control signals by transferring residual arm 

nerves controlling missing distal muscles and joints to compartments of remaining 

muscles1,19, this is usually geared toward recovering forearm supination-pronation and hand 

opening-closing3,20, arguably more important and available in commercial prosthesis, rather 
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than wrist DoFs (flexion-extension and radial-ulnar deviation) which are nevertheless critical 

to orient the hand in space21,22. In the end, no myoelectric solution exists to simultaneously 

and intuitively control the four arm DoFs (from elbow to wrist included) that are necessary to 

people with transhumeral limb loss in order to correctly position and orient their prosthetic 

hand to grasp objects in a large reachable space. 

 

Here, we provide a solution with an alternative movement-based approach which leverages 

natural coordination between arm segments and knowledge of the movement goal. Control 

strategies exploiting natural synergies in arm coordination23,24 have already been used to 

predict distal joints from the motion of proximal ones25–29. However, these have been mostly 

confined to the control of one DoF (i.e., either the elbow25,27,28 or the wrist supination-

pronation29, reconstructed from shoulder movement), or relying on additional unnatural 

movements to increase functionality26. Here, we unleash this movement-based approach by 

adding knowledge of movement goals, which could be made available through computer 

vision30,31 combined with gaze information32–34. We showed recently that adding target 

position and orientation to an Artificial Neural Network (ANN) trained to predict four arm 

distal DoFs (elbow to wrist) from proximal (shoulder) motion greatly improves these 

predictions, as well as human-in-the-loop control using them35. Yet, performance remained 

lower than natural movements, with increased compensatory movements from trunk and 

shoulder, a limited workspace, and a control design not directly applicable to people with 

transhumeral limb loss35. Critical changes were brought about here to overcome all those 

limitations, and enabled 29 participants (including 7 with transhumeral limb loss) to perform 

as well as natural, without any prior training, at picking and placing a bottle in a wide 

reachable space in virtual reality. A physical proof of concept is also provided whereby 15 

participants, including 3 with limb deference, were able to reach and grasp real objects at 

different positions and orientations with a robotic arm operated according to the same control 

principle. 

 

 

Results 
 

Natural arm movement in virtual reality. After linking movement trackers placed on 

participants to that of a virtual arm, subjects were engaged in repeatedly picking a bottle 

standing on a platform and placing it on another platform (see Fig. 1b, Methods, Virtual Arm 

Calibration, and Task). To maximize the workspace of this task, 300 “plausible” target 

locations (i.e., position and orientation) were determined randomly within the full range of 

motion established individually for each joint of each participant (see Fig. 1a, Methods). 

Natural arm movements recorded to pick and place bottles at those 300 targets were then used 

to train the ANN involved in our movement-based control (Fig. 1c, cf next section), but also 

to establish a new set of 200 “possible” targets within the workspace actually covered by the 

participants’ arm during the initial acquisition (Fig. 1d). Although “plausible” targets are all 

supposed to be reachable, in practice, anatomical joints’ limits are interdependent in a way 

that makes it uncomfortable or impossible to produce arm configurations with maximal 

excursion simultaneously at multiple joints. To circumvent this, we used an unsupervised self-

organizing neural network36 to identify 200 nodes that best represent the arm postures actually 

produced by participants, and used forward kinematics to turn these nodes into target 

locations, thereby obtaining a set of 200 possible targets guaranteed to be reachable with 

natural arm movements (Fig. 1d, see Methods). While “plausible” targets were used in the 

initial acquisition to collect natural arm movements from which the movement-based 
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prosthesis control was designed, “possible” targets were used in all experimental test phases 

involved to compare the different controls. To illustrate the wide resulting workspace, Fig. 2a  

 
 

Fig. 1 Overview of the task and control strategy. a. Wide initial workspace. Three hundred 

7-DoF arm configurations (grey dots, only 3 angles displayed for convenience) within the 

joint operating range of a given participant (materialized by the parallelepiped) are 

transformed into 300 plausible target locations (grey arrows) using forward kinematics. b. 

Natural arm movements are recorded while participants equipped with movement trackers on 

arm and torso are involved in picking and placing a bottle at the 300 target locations in virtual 

reality. c. The ANN is trained on recorded natural arm movement to reconstruct distal DoFs 

(orange) from proximal ones (green) plus target information (position and orientation). d. 

Wide space covered during recorded natural arm movements. Two hundred nodes (red dots) 

that best represent the arm angular configurations actually produced (grey circles) by a 

participant during her/his recorded natural arm movements were identified using an 

unsupervised self-organizing neural network, and transformed into a set of 200 possible 

targets (red arrows) using forward kinematics. e. Movement-based prosthesis control. The 

participant performs the pick and place task at the 200 possible targets using a hybrid arm 
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reproducing in real-time her/his own shoulder movements (green angles), and using the ANN 

predictions for the 5 remaining distal DoFs (orange angles).  

 

shows the sets of plausible and possible targets of a representative participant, and Fig. 2b the 

sets of possible targets for all subjects of Exp1 and Exp3. SupplementaryVideo1 illustrates a 

participant completing the task at a comfortable yet sustained pace, representative of the 

overall performance observed in our experiments (i.e., with typical movement times of 

approximately 1.3 seconds between pick and place). 

 

 
 

Fig. 2 Wide workspace covered in experiments. a. All targets used for a representative 

participant of Exp1 are displayed, together with 5 arm postures (4 at extended positions and 1 

flexed in the middle) to provide perspectives. Grey arrows represent plausible targets (n=300), 

and red arrows represent possible targets (n=200). b. Possible targets of all participants of 

Exp. 1 (n=2000, red arrows) and Exp. 3 (n=1400, in blue arrows), remapped for an average 

arm, and regrouped on the same graph. Note that for Exp3, possible targets corresponding to 

participants with left sided limb loss were mirrored to be represented in relation to a right arm. 

This figure illustrates the comparably large workspaces obtained for the 10 participants with 

intact limbs of Exp1 (used for the Generic ANN) and the 7 participants with transhumeral 

limb loss of Exp3 (using the Generic ANN). 

 

 

Intuitive movement-based prosthesis control. From natural movements recorded in the 

initial acquisition, the control was developed based on an ANN trained to reconstruct distal 

joint angles from shoulder kinematics plus contextual target information. An initial version of 

this control was proposed and tested in35, and critical changes were designed here to improve 

its quality and applicability to people with transhumeral limb loss. After being trained to 

reconstruct five distal arm angles from proximal shoulder kinematics plus target location (3D 

position and 2D orientation, see Methods), the ANN illustrated in Fig. 1c was used to control 

a Hybrid Arm emulating the behavior of a residual upper arm fitted with a transhumeral 

prosthesis (Fig. 1e). To this end, shoulder flexion-extension and abduction-adduction of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2023. ; https://doi.org/10.1101/2022.10.15.22281053doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.15.22281053
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hybrid Arm were operated from real shoulder movements produced by the operator, whereas 

the five remaining joint angles were driven by predictions from the ANN. Importantly, the 

ANN could be trained either solely from the operator’s own natural movements (Own ANN, 

see Methods) or from those of multiple other participants (Generic ANN). Fig. 3a summarizes 

the protocols of the three experiments gradually leading to a functional control solution for 

prosthesis users. SupplementaryVideo2 to 4 illustrates the ultimate goal reached in this study, 

that is, to enable participants with transhumeral limb loss to pick and place objects with 

movement time and performance similar to that with a natural arm. 

 

 
 

Fig. 3. Protocols and results. a. Protocols of the three experiments. Each box contains a 

phase name and the name of the control used. Fam. stand for Familiarization phase, and Initial 

Acq. for Initial Acquisition phase. The order of test phases conducted with the Own and the 

Generic ANNs were counterbalanced in Exp2. b-d. Results for success rate (b), movement 

time (c) and shoulder volume (d). Each grey line corresponds to a participant. In Exp2, 

dashed lines indicate participants who began by the control with the Generic ANN and plain 

lines those who began by the control with the Own ANN. Boxes limits show first and third 

quartiles whereas inside line shows the median value. Whiskers show min and max values. 

Own, Gen, Nat represent phases in which the control was performed with the Own ANN, the 

Generic ANN, and the Natural Virtual Arm, respectively. In Exp3, Gen1 and Gen2 refer to 

the first and second block performed with the Generic ANN. Stars represent significant 

differences, with * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. The dashed red line 

represents a volume of 1 dm3 ( = 1 L).  
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Specific control based on participants’ own movements. The first experiment aimed at (i) 

emulating a prosthesis control as intuitive as possible in a wide workspace for participants 

based on their own natural movements, and (ii) collecting natural movements from several 

subjects to build a generic model for prosthesis control to be tested on other participants with 

intact limbs or with limb difference (in Exp2 and 3, respectively). After an initial acquisition 

in which they picked-and-placed 300 plausible targets with their right arm in a wide 

workspace, 10 right-handed subjects were tested on 200 possible target locations with our 

intuitive prosthesis control trained on their own movements (Exp1, TestOwn, Fig. 3a) before 

being tested again on the same targets with their natural arm movements (TestNat). 

 

Results indicate high success rates for both conditions (median success rate of 100% and 

99.7% for TestNat and TestOwn, respectively), with a minor (<1%) albeit significant 

difference between them (TestOwn vs TestNat; n = 1886; McNemar test, p = 0.023, df = 1; 

Fig. 3b). Regarding movement times (i.e., time taken to reach and validate each target from 

the previous one), results were also closely similar and not significantly different between 

conditions (TestOwn vs TestNat; n = 10; medians of 1.25 s vs 1.17 s respectively; two-tailed 

paired t-test, p = 0.378, t = -0.927, df = 9). Visual inspection of individual distributions of 

movement times provided supplementary Fig. 2 indicates that despite slight differences 

observed for some participants, no specific pattern emerges, and distributions looks very 

similar between conditions when data from all participants are pooled together. The volume 

spread by the shoulder’s trajectory throughout a phase, which includes compensatory 

movements of the body that might be elicited to compensate for imperfect control (see35), was 

also comparable and not significantly different between conditions (TestOwn vs TestNat; n = 

10; medians of 0.22 dm3 vs 0.18 dm3 respectively; two-tailed paired t-test, p = 0.058, t = -

2.168, df = 9).  

 

Overall, our movement-based control trained on the own natural movements of each 

participant enabled almost perfect success rate (99.7%), and movement times similar to that 

with their natural arm to pick and place the bottle in the wide workspace tested. Yet, this 

control is inapplicable “as is” to individuals with limb difference, for whom recording natural 

movements is obviously not possible from their missing arm. The next step was therefore to 

establish an equivalent control from data collected on the multiple participants of Exp1, and to 

be used on new naive participants in Exp2. 

 

Generic control based on movements from other participants. After building a generic 

model from data recorded in Exp1 (cf Methods), the second experiment aimed at (i) assessing 

performance with this generic model (as compared to that with natural movements or with a 

control based on each participant’s own natural movements) and (ii) validating the use of this 

generic model on left-handed participants using their dominant arm. As the relationship 

between hand locations and arm configurations depends on segments dimensions that differ 

between participants, a critical step toward building an efficient generic model for a new user 

was to remap hand position data from previous participants to the arm dimensions of that new 

user (Supplementary Fig. 1b). This was done using forward kinematics to remap data from all 

participants of Exp1 before using them to train the generic ANN to be used for intuitive 

control in TestGeneric by each participant of Exp2 (see Methods). After an initial acquisition 

phase equivalent to that of Exp1, 12 participants (6 left-handed) were tested on our 

movement-based control using either the generic model (TestGeneric) or the model based on 

their own movements (TestOwn). The order between TestGeneric and TestOwn was 

counterbalanced amongst subjects, with 3 left-handed participants in each group (see Fig. 3a). 
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The protocol ended with each participant being tested again with their natural arm movements 

(TestNat). 

 

Participants achieved high success rates in all conditions (median success rates of 99% or 

higher, cf Fig. 3b), although minor differences between conditions (<1%) were found 

significant (TestOwn vs TestGeneric vs TestNat; n = 2268; medians of 99.50 % vs 99.24 % vs 

100 % respectively, Cochran’s Q test, p = 5.19.10-12, Q = 51.97, df = 2; post-hoc McNemar 

test with Bonferroni adjustment; TestOwn vs TestGeneric, p = 6.42.10-5, chi.sq = 18.1, df = 

1; TestOwn vs TestNat, p = 8.58.10-3, chi.sq = 8.89, df = 1; TestGeneric vs TestNat, p = 

3.24.10-10, chi.sq = 41.7, df = 1). Median movement times remained below 1.4s in all 

conditions (Fig. 3c), with no significant difference found between conditions (TestOwn vs 

TestGeneric vs TestNat; n = 12; RM ANOVA test, p = 0.181, DFn = 2, DFd = 22, F = 1.848). 

Visual inspection of individual distributions of movement times provided Supplementary Fig. 

3 indicates that despite slight differences observed for some participants, no specific pattern 

emerges, and distributions looks very similar between conditions when data from all 

participants are pooled together. With respect to the volume spread by the shoulder during the 

Test phases (Fig. 3d), the statistical analysis revealed a significant effect of condition, 

(TestOwn vs TestGeneric vs TestNat; medians of 0.23dm3 vs 0.43 dm3 vs 0.14 dm3 

respectively, n = 12; RM ANOVA test, p = 0.003, DFn = 2, DFd = 22, F = 7.806), with post-

hoc tests indicating a higher volume for TestGeneric than for Test Nat (Tukey test with 

Bonferroni correction; TestOwn vs TestNat, p = 0.385; TestGeneric vs TestNat, p = 0.025; 

TestOwn vs TestGeneric, p = 0.347). Despite this difference, the spread volumes remained 

contained, never exceeding 1 liter (Fig. 3d), which appears reasonable given the high 

compensations that could have occurred with less efficient controls over the wide workspace 

spanned by the targets. 

 

Overall, our control based on a generic model trained on data from other participants enabled 

therefore new participants to reach almost all targets (>99%) as well as with their natural arm 

(or an intuitive control trained on their own natural movements) regardless of handedness, 

with a moderate increase in compensatory movements. The only remaining step was then to 

validate this control directly on individuals with limb difference. 

 

Successful validation on individuals with limb loss. As we now have an intuitive control 

applicable to participants with an arm amputation on either side of their body, we tested it on 

7 participants with unilateral transhumeral limb loss, 3 of them disabled on their left side. As 

no initial acquisition phase was conducted on these participants, the set of 200 possible targets 

was determined for each of them using a self-organizing map to extract representative 

postures from a large number of postures generated by movements produced by all 

participants of Exp1 filtered to the range of motion of their residual limb (see Methods). 

Given the lack of initial acquisition, participants had much less practice of the task before 

they were tested. Therefore, two blocks of intuitive control with the Generic ANN were 

conducted on their amputated side (TestGeneric 1 and 2, Fig. 3), before they were tested on 

the same mirrored targets with their valid arm (TestNat). 

 

As for other experiments, success rates were very high (all medians above 99%), and did not 

differ between conditions (TestGeneric1 vs TestGeneric2 vs TestNat; medians of 99.24 % vs 

99.50 % vs 99.50 % respectively, n = 1128; Cochran’s Q test, p = 0.1146, Q = 4.33, df = 2). 

Movement times with our movement-based control were also in the same range as in previous 

experiments, and were even smaller by the second block of intuitive control (TestGeneric2) 

than with their valid arm (TestGeneric1 vs TestGeneric2 vs TestNat; medians of 1.27 s vs 
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1.16 s vs 1.40 s; n = 7; Friedman test, p = 0.002, chi-squared = 12.286, df = 2; post-hoc 

Conover test; TestGeneric1 vs TestNat, p = 0.619; TestGeneric2 vs TestNat, p = 0.014; 

TestGeneric1 vs TestGeneric2, p = 0.161). Visual inspection of individual distributions of 

movement times provided Supplementary Fig. 4 confirms that despite slight difference 

between participants, movement times tend to be smaller for TestGeneric phases (and even 

more so for TestGeneric2) than for TestNat. The volumes spread by the shoulder were 

comparable to that measured with the generic model on Exp2 (median 0.43 dm3) and did not 

differ between conditions (TestGeneric1 vs TestGeneric2 vs TestNat; medians of 0.36 dm3 vs 

0.37 dm3 vs 0.33 dm3; n = 7; Friedman test, p = 0.867, chi-squared = 0.28571, df = 2).  

 

Overall, without any prior experience at the task nor with the apparatus, our intuitive control 

allowed disabled participants to achieve performance as good as with their valid arm, and to 

achieve comparable levels of performance as for other subjects in all conditions tested (see 

Fig. 3b-d). Furthermore, beyond objective performance measures, our intuitive control 

elicited high enthusiasm from participants with limb loss. This is particularly well illustrated 

by the following feedback they provided during or after the experiment: “X years since I was 

able to do that, this is moving”; “doing a real movement, this is enjoyable”; “a prosthesis that 

would be controlled like that? I take it straight away”. See SupplementaryNote1 for more 

feedback from participants with limb loss. 

 

Physical Proof of Concept on a tele-operated robotic platform. To demonstrate the 

feasibility of our approach in the physical world, we conducted a Proof of Concept (POC) 

whereby 15 participants, including 2 with acquired and 1 with congenital transhumeral limb 

difference, were involved in reaching and grasping real objects in various positions and 

orientations with our novel control applied on a humanoid robotic platform specifically 

designed to explore human-robot control strategies37. As with the Hybrid Arm used to 

emulate the behavior of an upper arm fitted with a tranhumeral prosthesis in virtual reality 

(Fig. 1e), the shoulder flexion-extension and abduction-adduction of the robotic arm were 

operated from real shoulder movement produced by the operator, whereas the five remaining 

distal joint angles were driven by prediction from the generic ANN (Fig. 4). In contrast to 

virtual reality, however, the torso of the humanoid robotic platform was fixed and 

independent of the operator, such that compensatory movements from the trunk and from 

shoulder translations were not transmitted to the device. This is important because this implies 

that the task could only be achieved with the designed control. As in virtual reality, our novel 

control solution (TestGeneric) was tested against a control based on natural arm movements 

(TestNat), whereby all joints of the robotic arm were operated directly from arm movements 

produced by intact-limbs participants (POC protocols Fig. 4c). 

 

Despite the functionality of compensatory movement being withdrawn by design, high 

success rates were achieved by all participants in both conditions (Fig. 4d). A significant 

difference was nevertheless found between the proportion of validated targets using our 

movement-base control and natural control (TestGeneric vs TestNat; medians 93% vs 100% 

respectively; n = 180; McNemar test, p = 0.0003, chi.sq = 13.1, df = 1; Fig. 4d). The 

congenital limb different participant was able to reach and grasp 93.3% of the targets (i.e., 

14/15), and the two participants with transhumeral limb loss were both able to grasp 80% of 

the first five targets which means that only one target was failed. Furthermore, the validated 

targets were reached and grasped with movement times similar to those obtained using natural 

control applied to the robotic arm (POCa-b TestGeneric vs TestNat; medians 6.08s vs 5.98s 

respectively; two-tailed paired t-test, p = 0.7026, t = -0.39198, df = 11; Fig. 4e). Although no 

statistical analysis was conducted, the movement times recorded for the congenital limb 
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different participant and for the 2 participants with transhumeral limb loss were similar to 

those obtained by the intact-limbs participants with the natural control (Medians: Congenital 

= 5.95s; Amp1 = 5.81s; Amp2= 4.23s). 
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Fig. 4 Physical Proof of Concept on a tele-operated robotic platform. a. Task and setup. 

The participant stands still setback from the humanoid robotic platform that faces a board on 

which 5 sponges are placed at different positions and orientations. The participant tele-

operates the robotic arm so as to reach and grasp each of the 5 sponges of a block, one trial 

after another, according to order indicated by numbers written on sponges. b. Three types of 

blocks define three spatial arrangements of sponges on the board. c Protocols of the Proof of 

Concept (POC) experiments. Each box contains a phase name and the name of the control 

used, either based on natural arm movements (TestNat) or on predictions from the Generic 

ANN (TestGeneric). Fam. stand for Familiarization phase. The order of test phases was 

counterbalanced in POCa and POCb. d-e. Results for success rate (d) and movement time (e). 

Each grey line corresponds to a participant. In POCa-b, dashed lines indicate participants who 

began by TestGeneric and plain lines those who began by TestNat. Boxes limits show first 

and third quartiles whereas inside line shows the median value. Whiskers show min and max 

values. Stars represent significant differences, with * for p < 0.05, ** for p < 0.01, and *** for 

p < 0.001. Triangles represent performances obtained for the Block 1 by the two participants 

with transhumeral limb loss whereas the square represents performances of the congenital 

limb different participant on all 3 Blocks.  
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Discussion 

 

Stunning progress has been made in the field of bionic limbs to restore important hand 

grasping and object manipulation functions, with invasive surgery1,2 and implants enabling 

bidirectional communication with the nervous system3–6. Yet, controlling the numerous joints 

of a prosthetic arm necessary to place the hand at a correct position and orientation to grasp 

objects remains challenging, and is essentially unresolved. Here we provide a non-invasive, 

movement-based solution to this problem, and a clear demonstration of its effectiveness on 

individuals with limb difference. Indeed, 29 participants including 7 with above-elbow limb 

loss were able to pick and place bottles in a wide workspace with almost perfect scores 

(median success rates above 99%) and movement times identical to those of natural 

movements, while five distal joints of their arm were controlled with our novel solution. The 

same control principles applied on a robotic platform37 also enabled 15 participants, including 

3 with limb difference, to reach and grasp real objects at different positions and orientations, 

with good success rates and movement times similar to those obtained when the robot was 

controlled with natural arm movements. This is ahead of other control solutions that have 

been proposed so far to solve this problem, and whose performances are rarely compared to 

that of natural movements (as unfavorable as this comparison would be to them). We now 

place this in perspective of recent related works, discussing critical features that enabled such 

performance, as well as remaining gaps and perspectives for daily-life applications.  

 

Critical features that unleashed movement-based prosthesis control. The first feature that 

enabled our movement-based control to work so well compared to previous attempts was to 

introduce movement goal as an input to the trained ANN. Without it, the ANN would predict 

the most likely configuration of the distal joints for a given proximal (shoulder) posture, but 

irrespective of the location of the object to reach. Although this was found to provide an 

average distal configuration which was nevertheless suitable to reach in a limited workspace, 

at the expanse of compensatory movements from the trunk and shoulder35, we also showed 

that adding movement goal as an input greatly improves the performance of this control 

strategy35. Indeed, this enabled to control simultaneously four distal DOFs from elbow to 

wrist with close to natural coordination35, where previous attempts were only able to control 

one DOF (either the elbow25,27,28 or the wrist supination-pronation29), or rested upon 

additional unnatural movements to increase functionality26. Yet, performance levels were still 

lower than natural movements, with increased movement times and compensatory movements 

despite the somewhat limited workspace used, and a control design that was not directly 

applicable on people with limb loss35. Here, we overcame those three limitations.  

 

First, we greatly expanded the applicable workspace of this control. This was achieved by 

starting from the widest possible workspace, limited by the maximal range of motion of 

participants, and subsequently using a self-organizing network36 to best represent the space 

covered by participants while producing natural arm movements within this space. Second, 

we substantially increased the amount of relevant training data, by using the entire trajectories 

of the recorded natural arm movements, instead of using only arm postures placing the hand 

sufficiently close to the target35. Critically, the use of the entire trajectories was made efficient 

by artificially placing the target in the hand (see Methods), such that the ANN trained on 

those data performs a form of natural inverse kinematic solving, i.e., one that provides a 

solution that is representative of natural arm postures rather than a mere optimization for an 

arbitrary cost function. Third, we made the control applicable to people with limb loss. 

Indeed, this was not the case in35 as we used the forearm sensor (not available in people with 

limb loss) to better assess humeral rotation, which could not be reliably measured from the 
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sole upper arm sensor due to muscles and soft tissues around the humerus. Here, the humeral 

rotation was transferred as an output of the ANN, being a predicted output rather than a 

necessary input for the control system. In addition, instead of training the control on natural 

arm movements specifically produced by the intended user (also not applicable in people with 

limb loss), we designed a generic control based on natural movements from multiple other 

individuals, but specifically tuned to the morphology of the user (see Methods). This specific 

tuning was essential, since a given target position and orientation could call for markedly 

different arm postures depending on the particular arm morphology of an intended user. 

Finally, mirror symmetry with respect to the medial plane was applied to accommodate for 

either side of an amputation. Taken together, all those features enabled our participants, 

including those with an above-elbow amputation, to reach as well as with their natural arm 

with our movement-based distal joint prosthesis control.  

 

Perspectives for daily-life applications. Despite the clear benefits mentioned above, 

including movement goal as an input of the control system could be seen as a weakness, as it 

might be difficult to determine in real life settings. Yet, impressive progress in artificial 

intelligence and computer vision is such that what would have been difficult to imagine a 

decade ago appears now well within grasp38. For instance, we showed recently that deep 

learning combined with gaze information enables identifying an object that is about to be 

grasped from an egocentric view on glasses33, and this even in complex cluttered natural 

environments34. Six-dimensional object pose estimation is also a very active area of computer 

vision30,31, and prosthesis control strategies based on computer vision combined with gaze 

and/or myoelectric control for movement intention detection are quickly developing39–44, 

illustrating the promises of this approach. It remains that generalizing our approach to 

multiple tasks including more constrained reaches will require future work. For instance, once 

an intended object has been successfully reached or grasped, what to do with it will still 

require more than computer vision and gaze information to be efficiently controlled. One 

approach is to complement the control scheme with subsidiary movements, such as shoulder 

elevation to bring the hand closer to the body or sternoclavicular protraction to control hand 

closing26, or even movement of a different limb (e.g., a foot45). Another approach is to control 

the prosthesis with body movements naturally occurring when compensating for an 

improperly controlled prosthesis configuration46. In both cases, particular attention should be 

paid to ensure that subsidiary movements do not contaminate natural arm coordination, which 

is essential to the current movement-based control.  

 

Although our approach enabled participants to converge to the correct position and orientation 

to grasp simple objects with movement times similar to those of natural movements, it is 

important to note that further developments are needed to produce natural trajectories 

compatible with real-world applications. As easily visible on supplementary videos 2 to 4, the 

distal joints predicted by the ANN are realized instantaneously such that a discontinuity 

occurs at each target change, whereby the distal part of the arm jumps to the novel prediction 

associated with the new target location. We circumvented problems associated with this 

discontinuity on our physical proof of concept by introducing a period before the beginning of 

each trial for the robotic arm to smoothly reach the first prediction from the ANN. This issue, 

however, needs to be better handled for real-life scenarios where a user will perform 

sequences of movements toward different objects. 

 

Another requirement for our control to be functional on prosthesis is to have actuated wrist 

joints available, as those are essential to orient the hand in space21,22. This is not the case for 

most commercial prostheses, which sometimes include wrist flexion-extension (mostly 
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passive), and very rarely wrist radial-ulnar deviation47. Notable exceptions includes the 

LUKE/DEKA arm48 and the RIC arm49, which both include those two degrees of freedom as 

actuated joints, but with a fixed linear relationship between them. Hopefully, the type of 

control proposed here will highlight the need for, and foster mechatronic developments of, a 

suitable actuated wrist with human-like motion capabilities47,50.  

 

As already mentioned, the solution proposed here is suitable to control distal arm joints to 

place the hand at a correct position and orientation to grasp objects in a wide workspace, but 

not for fine hand and grasp control involved in object manipulations, which relies heavily on 

tactile and somatosensory feedback information51,52. In this context, our movement-based 

approach appears complementary to more invasive ones, which specifically target those latter 

functions through bi-directional interactions with the nervous system for both motor control 

and sensory processing3–7. Combining those with osseointegration at humeral level3,4 would 

be particularly relevant as this would also restore amplitude and control over shoulder 

movements, which are essential for our control but greatly affected with conventional residual 

limb fitting harness and sockets. Yet, testing with a physical prosthesis will need to ensure 

that the full desired workspace can be obtained with the weight of the attached device, and if 

not, a procedure to scale inputs will need to be refined. Finally, our movement-based 

approach could also be combined with semi-autonomous grasp control to accommodate for 

multiple grasp functions39,42,44.  

 

Besides developments needed for application to a real-life setting, the control proposed here 

could be used as is in virtual reality for the management of Phantom-Limb Pain (PLP), a 

painful sensation perceived in the missing limb that often occurs after an amputation. 

Although the precise mechanisms behind PLP and its proposed treatments are still debated 

and unresolved53,54, reduction of pain has been repeatedly reported using mirror therapy, 

whereby the intact hand is moved while the patient views it through a mirror at the place of 

his/her missing limb55. Yet, mirror therapy was found ineffective on patients with distorted 

(telescoped) phantom limb56, and is not applicable to people with bilateral limb loss. Those 

two limitations can easily be overcome in virtual reality57, and our novel movement-based 

control provides a solution immediately available to control virtual (missing) limbs with 

natural coordination solely from residual limb motion.  

 

Importantly, self-reported feedback from amputated participants indicates that overall, they 

found our prosthesis control solution intuitive and natural, and would use it should it be 

available on their prosthesis (see SupplementaryNote1). Given the rich perspectives 

associated with this movement-based control alternative, its complementarity with other 

quickly developing approaches, and the demonstration provided here of its effectiveness on 

people with limb loss, we believe that this alternative is going to positively impact the field of 

bionic limbs and prosthesis control.  
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Methods  

 

Participants. All participants had normal or corrected-to-normal vision and none suffered 

from motor disorder that could have affected their ability to perform the task (except limb 

difference in Exp3 and in the physical proof of concept POC). The intact-limbs participants’ 

handedness was assessed using the Edinburgh Handedness Inventory (EHI)58. For Exp1 and 

2, EHI scores over 50 (below -50) corresponded to right-handed (left-handed) participants. 

For POCa-b, intact-limbs participants with positive EHI scores were included. Exp1 was 

conducted on 10 naive, intact-limbs, right-handed participants (5 males, EHI mean 84.0; SD 

18.4), aged 24 to 43 years (mean 27.3; SD 6.0). Exp2 was conducted on 12 naive, intact-limbs 

participants (8 males), aged 20 to 35 years (mean 24.1; SD 4.4). Six of them were right-

handed (EHI mean 96.7; SD 5.2), and the other 6 were left-handed (EHI mean -85.4; SD 

13.0). Exp3 was conducted on 7 naive participants having undergone transhumeral 

amputation (7 males), aged 25-48 (mean 40.4; SD 8.4). Information related to each 

participant’s amputation are provided in Table 1. POCa-b were conducted on 12 naive, intact-

limbs participants (6 males, EHI mean 87.1; SD 22.8), aged 19 to 69 years (mean 33.3; SD 

16.6). POCc was conducted on 1 congenital limb different participant, with forearm 

malformation on the right side, male, aged 22, naive about the task. POCd was conducted on 

2 male participants having undergone transhumeral amputation on the right side, aged 34 and 

39 years. Both were also included in the Exp3 (see Table 1 lines 4 and 5). They completed 

Exp3 before POCd. All participants gave their informed consent and research presented here 

has been conducted in accordance with the Declaration of Helsinki and with local ethics 

committee (CCP Est II: n°2019-A02890-57). 

 

Apparatus. During an experimental session, participants remained seated on a chair located 

at the center of the experimental room. They wore a virtual reality headset (Vive™ Pro, HTC 

Corporation) that was adjusted by the experimenter to fit the head firmly and comfortably. 

When movements of the dominant arm for intact-limbs participants or the valid arm 

(contralateral to the amputated side) for people with transhumeral limb loss were recorded, 

four motion trackers (Vive™ Tracker HTC Corporation) were attached to the body using 

elastic straps. Each segment of the arm (upper arm, forearm and hand) as well as the trunk had 

a dedicated tracker attached to it. The fingers were immobilized with hand wraps so that the 

hand tracker would move with wrist movements only. For people with transhumeral limb loss, 

when motion of the amputated side was recorded, only two trackers were attached: one on the 

trunk and one on the residual limb. A push-button was placed under the participant’s 

contralateral hand or under the participant’s dominant foot. 

 

The infrared beacons and virtual environment were calibrated so that the workspace was 

centered on the chair, its ground plane at the same height as the room’s floor and its scale 

identical to real-world dimensions. For each VR device (headset and trackers), the tracking 

setup measured the 3D position and orientation relative to a fixed reference frame within the 

virtual environment, using SteamVR (Valve Corporation) as middleware. These 

measurements were recorded at 90 Hz and the virtual environment was displayed 

synchronously to the participant at a 90 Hz refresh rate through the headset’s stereoscopic 

display. The Unity engine (Unity Technologies) was used to run the simulation of the virtual 

scene’s contents and interaction with the participant. 

 

Virtual Arm Calibration. The scene displayed a virtual arm whose skeleton consisted of 

three rigid segments (upper arm, forearm and hand) linked to each other by spherical joints. 
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After the participant was equipped with the VR devices, a procedure was carried out to make 

this virtual arm mimic the participant’s actual arm motion. This procedure included five steps: 

 

1. During a ten-second recording, motion data were collected while the participant was 

asked to perform slow movements using all of the arm’s degrees of freedom (DoFs): 

shoulder flexion-extension (θS-FE), shoulder abduction-adduction (θS-AA) and humeral 

rotation (θH-R), elbow flexion-extension (θE-FE), forearm pronation-supination (θF-PS), 

wrist flexion-extension (θW-FE) and radial-ulnar deviation (θW-RU) (see Supplementary 

Fig. 1a). For participants with arm amputation, when residual limb movements were 

recorded, only the first two DoFs were taken into account. 

2. The method described in59 was applied to estimate the joint centers’ locations relative 

to a parent tracker. The upper arm’s tracker worked as the parent for the virtual 

shoulder and elbow, whereas the forearm’s tracker worked as the virtual wrist’s 

parent. At the end of this step, the estimated joint centers were displayed as yellow 

spheres linked by grey lines and the trackers’ silhouettes were outlined in the virtual 

scene. For people with transhumeral limb loss, when residual limb movements were 

considered, only the shoulder’s center was estimated, with the upper arm’s tracker 

working as parent. Based on the tracker’s orientation, a grey line drawn in the virtual 

scene indicated the estimated actual arm’s humeral axis. The line’s length was 

estimated based on the participant’s height (see 3). A yellow sphere representing a 

hypothetical elbow center was placed according to these estimations of the humerus’s 

orientation and length as well as the shoulder center. 

3. The virtual arm’s segment dimensions were adjusted to match those of the 

participant’s arm. These dimensions were measured as the distances between 

estimated joint centers. When residual limb movements were used on people with 

transhumeral limb loss, these dimensions were computed by scaling a standard set of 

segment lengths based on the participant’s height. 

4. Then, the virtual shoulder was attached to the participant’s estimated shoulder center, 

so that the root of the virtual arm would follow the actual shoulder at all times. 

5. The virtual arm was locked in a reference posture with the elbow flexed at 90° where 

its segment orientations and joint positions were clearly visible. The virtual arm’s 

segments were “linked” to the corresponding trackers one at a time, while the yellow 

spheres acted as anatomical landmarks. First, the participant was asked to move their 

arm so that the yellow sphere representing the estimated elbow center overlaid the 

virtual arm’s elbow. When the overlaying was deemed correct, the virtual upper arm 

became a child object of the corresponding tracker, so that its orientation followed that 

of the actual upper arm. Then, the same method was repeated to associate the virtual 

and actual forearms by overlaying the estimated wrist’s yellow sphere with the virtual 

arm’s wrist. Finally, the tracker’s silhouette was used as a landmark for the participant 

to orient the actual hand similarly to the virtual hand, aligned with the virtual forearm. 

The procedure ended with the virtual hand being made a child object of the hand 

tracker. For people with transhumeral limb loss, when residual limb movements were 

considered, only the virtual upper arm needed to be attached to the corresponding 

tracker. The hypothetical elbow sphere was used as a landmark for participants to 

align their residual limb with the virtual upper arm. 

 

As a final step, this virtual arm calibration was corrected for errors in humeral rotation, and 

reduced from a 9-DoF to a 7-DoF virtual arm. Indeed, soft tissues around the biceps and 

triceps are such that the sensor attached to the upper arm is not able to follow accurately the 

rotation of the humerus. To counter this, humeral rotation was computed based on the triangle 
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formed by the centers of the three joints (shoulder, elbow and wrist), estimated using both the 

upper arm and the forearm sensors. Furthermore, the procedure described above considers 

three rigid segments linked by spherical joints offering each three DoFs in rotation. Although 

the resulting nine DoFs allowed the arm’s segments to be placed at all times in orientations 

identical to those of the actual arm despite slight variations from an ideal 7-DoF arm, the 

reduction to seven DoFs was necessary to match anatomical arm description, and to emulate 

control over the relevant prosthesis joints. This was achieved by extracting seven joint angles 

from the 9-DoF kinematic chain’s segment orientations, following a kinematic model 

comprising three DoFs at shoulder level, one DoF at elbow level and three DoFs at wrist 

level. Then, the same model was used to compute the segment orientations corresponding to 

the posture described by these seven joint angles, and the resulting virtual arm was moved 

accordingly in the virtual scene. 

 

Hybrid Arm Control. The Hybrid Arm was designed to emulate the behavior of a residual 

upper arm fitted with a transhumeral prosthesis (Fig. 1e). In the case of an actual prosthesis, 

movements of the whole arm would combine the wearer’s residual limb motion with the 

prosthesis’s actuation of artificial joints, hence the term “Hybrid”. To emulate this behavior, 

the two most proximal DoFs (i.e., shoulder flexion-extension and shoulder adduction-

abduction) were taken from the participant’s natural shoulder motion derived from the Virtual 

Arm, whereas the five remaining joint angles were driven by predictions from an Artificial 

Neural Network (ANN) trained as indicated in the next section (Fig. 1c). Following the same 

7-DoF model as with the Virtual Arm, segment orientations were then computed from the 

whole set of seven joint angles, and the Hybrid Arm was moved accordingly in the virtual 

scene. 

 

Own and Generic ANN. In order to drive the Hybrid Arm’s five distal joints, an ANN was 

trained to predict the five corresponding joint angles from natural arm movements recorded 

using the Virtual Arm in the VR setup. This section presents the two ANNs used in this study: 

The Own ANN, trained on the data produced by the same participant as the one that is going 

to use the network to control the Hybrid Arm, and the Generic ANN, trained on data from 10 

other participants recorded in Exp1, and tuned to the arm size of the user. ANNs inputs and 

outputs are presented in Fig. 1c and in Supplementary Fig. 1a. The network structure includes 

two densely connected layers of 256 neurons each, a dropout layer with a drop fraction of 0.5 

and a dense layer of 64 neurons. The network was implemented and trained using TensorFlow 

in association with Keras as the programming interface. 

 

The Own ANN training data was taken from the recording of an Initial Acquisition phase 

performed with the Virtual Arm (cf. Experimental Phases). From this recording, 7 signals 

were extracted and fed to the ANN as inputs: the 2 most proximal angles of the Virtual Arm, 

and 5 goal-related contextual information (3 Cartesian coordinates and 2 spherical angles that 

define the position and orientation of the hand as if a hypothetical cylindrical target was 

placed in it at any time, see an explanation for this choice in the next paragraph). The error 

between the ANN outputs (i.e., predictions of the 5 distal DoFs) and the actual 5 distal joints 

of the Virtual Arm produced in the same recording session were used to train the ANN. The 

network was trained during a pause after the Initial Acquisition phase, and was therefore 

specific to the corresponding participant. 

 

In our experiments, the targets were sparse and scattered within a wide and continuous 

workspace. Mirroring this discrete distribution, the goal-related contextual information 

describing the target locations provided discontinuous and highly clustered signals, displaying 
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little variability within a trial and changing abruptly to express the new target location as soon 

as the next trial began. Preliminary testing revealed that training on such input signals resulted 

in the ANN being much more subject to overfitting and less efficient for control. To avoid this 

issue, the training data made use of hand locations instead of target locations to provide 

contextual information. For each sample, the recorded arm posture was therefore treated as if 

it brought the virtual hand at the exact location of a hypothetical target. Accordingly, the 

contextual information provided as input corresponded to the position and orientation of the 

virtual hand, such that the training data covered the workspace more homogeneously and 

continuously. Thirty epochs were done with a learning rate of 1e-4, similar to that used in35.  

 

In the case of a person with transhumeral limb loss, driving the prosthesis’s joints with an 

ANN trained on the wearer’s own motion tracking data would be impractical. To tackle this, 

we designed a method to create a Generic ANN, by transforming motion tracking data 

recorded from previous participants into a training dataset adapted to the current participant. 

Recordings produced in the Initial Acquisition phase of the 10 participants of Exp1 were 

concatenated into a single dataset. However, this dataset would not be appropriate “as is” to 

train a Generic ANN because the relationship between hand locations and postures depends 

on arm segment dimensions that differ between participants. Indeed, as illustrated 

Supplementary Fig. 1b, similar arm postures give rise to different hand locations depending 

on arm morphology, such that hand positions need to be “remapped” to the current 

participant’s arm before being fed as training data to a Generic ANN. This was achieved 

using forward kinematics solving with the 7-DoF model underlying the Virtual Arm 

calibrated for the current participant. The dataset adapted to the current participant contained 

the remapped hand locations as well as the original arm angular configurations from Exp1, 

and was used to train the Generic ANN to perform the same task as the Own ANN: predict 5 

distal DoFs from 2 proximal joint angles and 5 spatial parameters expressing the hand 

location. For the sake of fair comparison, this network’s structure (i.e., layer arrangement and 

number of neurons) was identical to that of the Own ANN. However, the training dataset 

included data from 10 participants instead of just 1, thus containing approximately 10 times 

more samples than data used to train an Own ANN. Given this, the epoch number was 

reduced to 10 to minimize computation time, and a momentum parameter was introduced to 

further prevent overfitting. An offline analysis indicated that a learning rate of 1.59e-7 

combined with a momentum of 0.95 constitutes a good compromise for the Generic ANN to 

perform well both when the target is considered in the hand (as for the training data used) and 

when moving toward it (as it is mostly the case during online experimental phases).  

 

Task. All experiments relied on a pick-and-place task with a virtual cylindrical bottle (Fig. 

1b). Participants were asked to perform the task with either the Virtual Arm or the Hybrid 

Arm, by moving their own arm (Fig. 1b) or residual limb. Even if they were instructed not to 

move their trunk and to keep their back against the chair depending on the phase and protocol, 

participants were not physically restrained. The goal was to reach and grasp the bottle with 

the virtual hand, then bring it at another location indicated by a cylindrical platform. A trial 

refers to only one part of this process: either the bottle-picking or the bottle-placing. In either 

case, participants completed the trial by pressing the button while the virtual hand was inside 

a target zone, corresponding to a region in the five-dimensional space of hand locations (3D 

position × 2D orientation) centered on the target’s location and delimited by a spatial and 

angular tolerance. A hard constraint was defined with a spatial tolerance of 2cm and an 

angular tolerance of 5°, whereas a relaxed constraint was defined with a spatial tolerance of 

4cm and an angular tolerance of 10°. A semi-transparent arrow was attached to the virtual 

hand to indicate the hand’s axis (arrow direction) and center (arrow base) to help participants 
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bring the hand inside the target zone. Whenever the hand was inside the target zone, the bottle 

turned red as a sign that it could be either grasped or released. The virtual hand was limited to 

two states: either open and empty, or closed and holding the bottle. Participants could only 

toggle the hand’s state while the hand was in the target zone, by pressing the button to 

complete the trial. During a bottle-picking trial, the target corresponded to the bottle itself: the 

target’s center was placed at the middle of the bottle’s height and its axis was the bottle’s 

revolution axis. During a bottle-placing task, the target corresponded to the cylindrical 

platform on which the bottle needed to be placed: the target’s axis was perpendicular to the 

platform’s surface and its center was placed so that a correct hand positioning would bring the 

bottom of the bottle against the platform. This was made so that the instruction to “place the 

bottle on the platform” would remain intuitive. 

 

Participants were given a short time (either 5 or 10s depending on the experimental phase) to 

complete each trial, and instructed to perform the task at a comfortable yet sustained pace. If 

the task was not completed within the allotted time, the current trial ended with a short audio 

cue and the hand’s state was automatically toggled. Each experiment involved four to five 

phases, within which trials were grouped in blocks of 50 trials (i.e., twenty-five repetitions of 

the pick-and-place process) interspersed with short pauses (usually < 1min, occasionally up to 

a few minutes if needed). 

 

Targets Sets Generation. Two sets of targets were generated for each participant: A set of 

Plausible Targets for the Initial Acquisition phase (Fig. 1a), based on the range of motion of 

joint angles, and a set of Possible Targets for the Test phases, based on movements previously 

produced in the Initial Acquisition (Fig. 1d). Each target was defined by 5 spatial parameters: 

3 Cartesian coordinates of its center (in the shoulder referential of the participant), and 2 

spherical coordinates describing its orientation relative to the vertical axis. Note that because 

both the bottle and platform are cylindrical, their rotation about their revolution axis is 

irrelevant to the task, such that a pair of spherical coordinates is sufficient to describe their 

orientation. 

 

Joint Angle Ranges of Motion. With the VR headset temporarily taken off, 

participants were asked to perform a few repetitions of an elementary movement for each arm 

DoF, travelling across its whole range of motion (Supplementary Fig. 1a). For each 

movement, the experimenter performed a demonstration that the participants were required to 

mimic with their own arm, and ranges of motion were estimated from extreme values reached 

with the Virtual Arm recorded. In addition, the range of motion of the elbow was artificially 

fixed at 85% of maximal extension in order to avoid postures in which the arm would be too 

straight. Indeed, the triangle used to compute humeral rotation (formed by the 3 joint centers, 

shoulder, elbow and wrist) would be too small, or even vanishing for a perfectly straight arm. 

For participants with transhumeral limb loss, only the first 2 elementary residual limb 

movements were performed and subject to range-of-motion extraction. 

 

Plausible Targets Set for Initial Acquisition Phase. Plausible targets were generated 

based on the estimated ranges of motion, as well as on restrictions applied on the workspace. 

Firstly, 7-DoF arm angular configurations were drawn at random within the ranges of motion 

following a multivariate uniform probability distribution. Then, forward kinematics was used 

to compute the target location that would be reached by the virtual hand for those postures. 

The resulting target locations were then filtered according to three criteria: 

 The angle between the target’s axis and the vertical axis did not exceed 80°, excluding 

targets pointing downwards or horizontally. 
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 The distance between the target’s center and the participant’s frontal plane exceeded a 

third of the participant’s arm length, ensuring that all targets were in front of the 

participants, and excluding targets too close to their trunk. 

 The distance between the target’s center and the horizontal plane passing through the 

participant’s shoulder did not exceed two thirds of the participant’s arm length, 

excluding targets too close to the legs. 

The remaining targets spanned a roughly hemispherical region centered on the shoulder (cf 

Plausible target set Fig. 1a and Fig. 2a). The random drawing went until 300 suitable targets 

were obtained, which were then shuffled (half of them treated as picking locations and the 

other half as placing locations) to form a sequence of alternating bottles and platforms. 

 

Possible Targets Set for Test Phases. A second targets set was generated to cover the 

participant’s reachable space more accurately. This was achieved by applying an 

unsupervised learning algorithm called Growing Neural Gas (GNG)36 to arm angular 

configurations previously recorded in the Initial Acquisition phase. A GNG is a type of self-

organizing map whose structure is based on a graph where each node is associated with a 

position in the feature space (in our case, the 7-dimensional space of joint angles describing 

an arm posture). It is trained through a growing process that fits the graph’s topological 

structure to the input data by incrementally moving existing nodes and adding new ones. This 

process allows the graph to “learn” the input data’s topology in terms of size and local 

density, and returns a set of nodes directly within the feature space by the end of the training 

(cf red dots Fig. 1d). 

 

In the present case, the input data corresponded to the Virtual Arm’s postures performed by 

the participant during the Initial Acquisition phase, downsampled by a factor 10 for the 

growing process to remain time-efficient. In this way, the neural gas grew inside the region of 

the configuration space effectively explored when the participant moved their arm to 

complete the task. The training parameters were tuned to return 200 nodes, and the 7-DoF 

postures associated with these nodes were transformed into a set of 200 Possible targets using 

forward kinematics solving (cf Possible target set Fig. 1d and Fig. 2a). The generated targets 

were then ordered in a sequence by randomly drawing targets from the set in a way that 

prevented two consecutive targets from being too close (< 20 cm) to each other. 

 

Because participants with arm amputation did not perform the Initial Acquisition phase, the 

GNG was applied on data recorded from previous participants of Exp1, following a similar 

reasoning as behind the Generic ANN. The data from the Initial Acquisition phases of the 10 

participants for Exp1 were then filtered as exposed previously for plausible targets (except 

that ranges of motion associated with residual limb motion were applied), and downsampled 

by a factor 100 to obtain an amount of input samples comparable to that used in Exp1 and 2 

(where data from a single recording session was downsampled by a factor of 10). The 

growing process and targets generation from the resulting postures followed the same method 

as explain previously, except that mirror symmetry with respect to the medial plane was 

applied as appropriate to accommodate the amputated side and the valid arm side used for 

participants in Exp3. 

 

Experimental Phases.  

Familiarization. The first phase was designed to allow participants to familiarize 

themselves with the apparatus, virtual scene and experimental task. During this phase, intact-

limbs participants drove the Virtual Arm to perform up to 3 blocks of 50 trials while target 

locations followed the first items of the Plausible Targets Set. Hard Constraints (2cm, 5°) 
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were applied to the target zone to ensure maximal use of the range of motion. The time limit 

was set at 5s, with the experimenter being able to manually skip a trial upon request in the 

event of a participant having issues completing this trial. The Familiarization phase ended 

when the participant was able to reach most targets comfortably. 

For participants with transhumeral limb loss, the 5s time limit was withdrawn so that they 

could freely explore the apparatus. Relaxed constraints (4cm, 10°) were applied to mimic the 

constraints applied during the following Test phases in Exp3. For the residual limb side, 

participants drove the Hybrid Arm using predictions from the Generic ANN to reach targets 

from the possible targets set. For the valid side, the Familiarization phase was done on the 

same targets after they were mirrored symmetric with respect to the medial plane, and the 

participant drove the Virtual Arm. 

 

Initial Acquisition. The aim of the Initial Acquisition phase was to record 

participants’ natural movements in order to train their Own ANN used in Exp1 and 2, and to 

train the Generic ANN used in Exp2 and 3. The participant controlled the Virtual Arm while 

the Plausible Targets Set was used to elicit 300 trials. As in the Familiarization phase, hard 

constraints (2cm, 5°) were applied with a 5s time limit. In order to promote arm movements 

only, participants were asked to keep their back against the chair and not to move their trunk.  

 

Test. The Test phases aimed at comparing performances achieved using the Hybrid 

Arm or the Virtual Arm. When using the Hybrid Arm, either the Own or the Generic ANN 

was interfaced so that at each time step, the ANN received 7 inputs and predicted 5 joint 

angles. As in the training data, 2 of these inputs were the proximal joint angles extracted from 

the actual shoulder’s motion and mimicked by the Hybrid Arm’s proximal DoFs. However, 

contextual information provided by the 5 remaining inputs was different from that of the 

training data. Indeed, instead of expressing the hand location, they expressed the target 

location (bottle or platform), thereby being congruent with the current goal of the task. The 

distal joint angles predicted by the ANN were then sent back to the simulation engine in order 

to update the Hybrid Arm’s posture. As in the Initial Acquisition phase, participants were 

required to perform the task by moving their own arm in order to bring the virtual hand on the 

target, with the help of the semi-transparent arrow. They were given no details regarding the 

operation of the Hybrid Arm, and instructed to complete the task by performing arm 

movements as natural as possible. For test phases of Exp2 and 3, the instruction « to keep 

their back against the chair and not to move their trunk » was somehow relaxed such that they 

were allowed to move their trunk only if deemed absolutely necessary to reach the target. One 

Test phase consisted of 200 trials corresponding to the Possible Targets Set, conducted with 

relaxed constraints (4cm, 10°) and a time limit extended to 10s. 

 

Protocols. Exp1 aimed at recording natural arm movements from multiple subjects in order to 

train the Generic ANN for Exp2 and 3, and to compare performances using either the Virtual 

Arm or the Own ANN. The push-button was placed under the participant’s left hand, and each 

participant performed a Familiarization phase and an Initial Acquisition phase, followed by 

two Test phases: one with the control of a Hybrid Arm based on the Own ANN predictions, 

and one with the Virtual Arm (Fig. 3a). During all those phases, participants were instructed 

not to move their trunk in order to perform only the arm movement needed to get the target. 

 

Exp2 aimed at comparing performances with the Generic and Own ANNs, and to validate that 

a Generic ANN trained on right-handed participants could be used by left handed participants. 

The push-button was placed on the ground under the participant’s dominant foot, and each 

participant performed a Familiarization phase and an Initial Acquisition phase, followed by 
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three Test phases: One with the Own ANN, one with the Generic ANN, and a final baseline 

Test phase using the Virtual Arm. The order of Test phases with the Own and Generic ANNs 

were counterbalanced among participants, with equal number of left-handed and right-handed 

participants in each group (cf Fig. 3a). 

 

Exp3 aimed at evaluating the performance achieved by participants with transhumeral limb 

loss using control from the Generic ANN, and compare them to the performance with their 

valid arm. The push-button was placed under the participants’ dominant foot, and participants 

performed a Familiarization phase followed by two Test phases with the Generic ANN on 

their amputated side. Then, after proper calibration with their valid arm (i.e., contralateral to 

the amputation), participants performed a Familiarization phase followed by a baseline Test 

phase with the Hybrid Arm (Fig. 3a). 

 

Data Reduction and Metrics. Data were first filtered to remove trials with substantial 

measurement errors associated with motion capture. Two filters were applied: one for 

« freezing » behavior and one for « jumping » behavior. The « freezing » filter removed trials 

where a sensor position (e.g. trunk, arm, fore-arm and hand sensors during baseline phases 

and only trunk and arm sensors for test phases) stayed still for at least 0.5s. The « jumping » 

filter removed trials with a shoulder position moving more than 0.01m between two samples 

(equivalent to a velocity of 0.9 m/s). Over all experiments, this process removed an average of 

3.8 (± 7.6) % trials per participant and experimental phase. 

 

Given the high success rate associated with all phases of all experiments (average of 99.22 ± 

1.7 % trials validated per participant and experimental phase), analyses were conducted on the 

following metrics computed on trials validated (i.e., button pressed while being within the 

target zone) in all Test phases by a participant. 

 

The Movement Time (MT) refers to the time taken to reach and validate a target. It is 

computed as the time between target appearance and the moment the target is validated using 

the push-button (see Fig. 5a). 

 

The shoulder position Spread Volume (SV) is obtained by computing the ellipsoid containing 

90% of shoulder position during a phase (see35 for more details and Fig. 5a for an illustration 

of the period over which this was computed). Because a certain amount of shoulder 

movement naturally occurs during reaching, the SV at baseline should be viewed as a 

benchmark over which compensatory movements probably occurs. 
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Fig. 5 Timing protocols of the Virtual Reality (a) and the Physical Proof of Concept (b) 

experiments. a. Upper part: Sequence of four hypothetical trials conducted in virtual reality. 

In each trial, the participant had to move the virtual hand to a target zone. When in the target 

zone, the cylindrical object turned red (as indicated by the red squares) and the trial was 

successful if the participant pressed the validation button while within the target zone (see 

trials 1, 2, and 4). A trial was failed if the participant did not validate the target within the 

allotted time (see Trial 3). In this case, a sound signaled the time out and the subsequent trial 

began. Success Rate was calculated for each experimental phase as the percentage of 

successful trials. Movement Time was computed for each successful trial as the time between 

the beginning of the trial and the target validation. Lower part: A phase was sliced into blocks 

of 50 trials. Between blocks, participants could rest during pauses. The Shoulder Volume was 

computed by pooling all the shoulder movements done during the successful trials of a phase. 

b. Sequence of two hypothetical trials conducted in the Physical Proof of Concept. Each trial 

required the participant to move their arm so that a robotic arm could reach a physical target 

(i.e., rectangular sponges). During the first 0.75s of a trial, the robotic arm's distal joints 

reached the first ANN prediction. At this time, a "Go” signal indicated to the participant that 

they could start moving. A trial was successful if the participant grasped the target with the 

robotic gripper and removed it from the wooden sticks (see Trial 1, Target acquired). If the 

participant was not able to grasp the target within the allotted time, the trial was failed (see 

Trial 2). Success Rate was calculated for each phase (i.e., a sequence of 5 targets x 3 blocks 

done with the same control type) as the percentage of successful trials. During a trial, the 

participant was allowed to open and close the gripper as many times as necessary (see black 

arrowheads). The Movement Time was calculated for each successful trial as the time 

between the "Go” signal and the last closure of the gripper. At the end of each trial, the 

participant was instructed to place their arm alongside their body, while the robotic arm 

returned to a neutral posture alongside the robotic platform. 

 

 

Physical Proof of Concept (POC). The feasibility of our approach in the physical world was 

established through a Proof of Concept (POC) conducted using a humanoid robotic platform 

with human-like arm dimension and Degrees of Freedom37. The arms of the platform are 
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linked to a fixed robotic trunk with no shoulder translational DoF. Thus, the robotic arm is not 

worn by the participant, allowing the inclusion of intact-limbs individuals, and preventing the 

use of compensatory movements from the trunk and shoulder to perform the task. During the 

experiment, participants stood still, setback to the robotic platform, to avoid visual occlusion 

of the working space (Fig. 4a). Only the right arm of the robotic platform was used, and the 

participants could trigger the opening and the closing of the robotic gripper using a push 

button placed under their foot. The same virtual reality setup as in Exp1 to 3 was used for the 

POC (see Apparatus) to link the participant’s arm movements to those of the virtual arm. 

After calibrating the virtual arm (see Virtual Arm Calibration), the headset was removed. 

Targets were rectangular sponges fixed with wooden sticks on a 45cm X 40cm bench (length 

X height) and a trial was defined as an attempt to reach and grasp a target with the robotic 

arm. Participants were instructed to place their arm along their body at the beginning of each 

trial and waited for a sound signal (i.e., beginning of the trial) to reach and grasp the target. 

As in virtual reality, Familiarization and Test phases were conducted to familiarize the 

participant with the task and to compare controls applied in different Test phases. The phases 

were divided into blocks of 5 targets for practical reason (Fig. 4b), and numbers written on the 

sponges indicated the order with which participants had to reach and grasp them within each 

block of target configurations. The position and orientation of each sponge were set at the 

beginning of each block using a supplementary sensor. Targets could be vertical or tilted at 45 

and -45° on the frontal plane, and varied in depth by about 10 cm. Block 1 was used to 

familiarize the participants with the control(s) used (Fig. 4c). In POCa, b and c, blocks 1 to 3 

were then performed with each control tested, and a Test phase was constituted by pulling 

trials from all blocks performed with a given control. In POCa-b, participant performed each 

block of target configuration with both controls before going to the next block of target 

configuration. Half participants began with the control based on natural arm movements 

(TestNat) while the other half began with the control based on the Generic ANN 

(TestGeneric). Participants of POCd only performed the first block for Familiarization and 

Test phases. The joint configuration of the Virtual Arm (see Hybrid Arm Control) or that of 

the control based on the Generic ANN (see Own and Generic Arm ANN) were applied to the 

robotic arm depending on the control tested. The data used to train the Generic ANN were 

remapped according to the dimensions of the robotic arm. To prevent sharp acceleration at 

target change when using the control based on the Generic ANN, 0.75s was allotted before the 

beginning of each trial (signaled by a sound) for the robotic arm to smoothly reach the first 

prediction from the ANN. As in Exp1 to 3, only trials validated (i.e., trials with a sponge 

grasped with the gripper without falling) in all Test phases by a participant were considered 

for further analysis. Movement time (MT) was defined here as the time spent between the 

beginning of the trial and the last close of the gripper and was computed for each validated 

target (Fig. 5b). Since shoulder translations had no impact on the robotic arm movements, and 

since the participants’ position in the room was not restricted, the shoulder position Spread 

Volume (SV) was not computed. 

 

Statistical Analysis. MT was grouped by participant and test phase, and median values over 

trials were extracted for each of these groups. By design, the SV already gave a single value 

per participant and test phase. In this way, we obtained samples of one value per participant 

for each combination of metric and test phase. For Exp1 and POCa-b, two test phases (with 

the Virtual Arm and the Own ANN, or with the Virtual Arm and the Generic ANN applied to 

the robotic arm, respectively) were compared. After testing for normality using the Shapiro 

test, either a paired T-test or a Wilcoxon test was conducted. For Exp2 and 3, three test phases 

were compared, involving either the 7-DoF Virtual Arm, the Own ANN, or the Generic ANN. 

Thus, after testing for normality using the Shapiro Test and for homogeneity of variances 
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between modes using the Maulchly’s Test, either a repeated measures ANOVA or a Friedman 

test was conducted. If a significant difference was found at this level, post-hoc analyses were 

conducted using either Tukey tests or Conover tests, respectively. The high success rates 

observed led to equality between several participants (e.g., at 100% success), which prevented 

the use of statistical tests based either on normality assumption or on ranking procedure. 

Thus, statistical differences reported here were assessed by comparing the differences in the 

achievement of each target along all the phases of each experiment. For Exp1 and POCa-b, a 

McNemar test for paired samples was conducted to find statistical differences between the 

two phases. For Exp2 and Exp3, a Cochran's Q test for paired samples was first performed 

followed by a post-hoc McNemar test if needed. Data processing and statistical analysis were 

carried out with the R software environment, with a significance threshold set at α = 0.05 with 

a Bonferroni correction applied if needed. Due to the insufficient number of participants, no 

statistical analysis was conducted for POCc and d. 

 

 

Data and code availability.  
Raw data recorded during the three experiments, and code required for data treatment and 

ANNs training, are available at https://doi.org/10.5281/zenodo.7187850. Further information 

and requests should be addressed to the corresponding author Aymar de Rugy 

(aymar.derugy@u-bordeaux.fr). 
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Participants with 

transhumeral limb 

loss 

Time since 

amputation 

(months) 

Residual limb 

circumference 

(cm) 

Residual limb 

length 

(cm) 

Amputated 

arm side 

Participant 1 20 33 15 R 

Participant 2 48 30 25 L 

Participant 3 12 30 35 L 

Participant 4 132 34 23 R 

Participant 5 120 35 30 R 

Participant 6 276 31 28 L 

Participant 7 108 32 23 L 

 

Table 1. Exp3 participants’ amputation description. Each line contains the time since 

amputation, the residual limb circumference and length, and the side of the amputation for a 

participant (R = right, L = left). 
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Supplementary Information 
 

SupplementaryVideo1: https://youtu.be/XPIlkrjwTtc 

A representative intact-limbs participant performing the pick and place task. 

 

SupplementaryVideo2: https://youtu.be/Utoa9aYWRK0 

Participant 1 with transhumeral limb loss performing the pick and place task with residual 

limb movement-based control. For anonymization purpose the number reported is not the one 

of the Table 1 or the Supplementary Note 1. 

 

SupplementaryVideo3: https://youtu.be/RpZwwJ9-bEg 

Participant 2 with transhumeral limb loss performing the pick and place task with residual 

limb movement-based control. For anonymization purpose the number reported is not the one 

of the Table 1 or the Supplementary Note 1. 

 

SupplementaryVideo4: https://youtu.be/T2NR02exeR0 

Participant 3 with transhumeral limb loss performing the pick and place task with residual 

limb movement-based control. For anonymization purpose the number reported is not the one 

of the Table 1 or the Supplementary Note 1. 
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Supplementary Fig. 1. a. ANNs Inputs and Outputs, displayed together with movements 

done to get the joints range of motion (black arrows). ANNs Inputs include shoulder flexion-

extension (θS-FE), shoulder abduction-adduction (θS-AA), target position in relation to the 

shoulder (PT-X, PT-Y and PT-Z), and target orientation (as angles of rotation) with respect to the 

frontal and sagittal plane (θT-F and θT-S). ANNs outputs include all distal angles from the 

humeral rotation included: humeral rotation (θH-R), elbow flexion-extension (θE-FE), forearm 

pronation-supination (θF-PS), wrist flexion-extension (θW-FE) and radial-ulnar deviation (θW-

RU). b. Remapping target position for different arm morphologies. Two arms with the same 

angular configuration but different segments length lead to different positions of the target 

(orange arrows). Forward kinematics was used to remap target position for a subject with a 

different arm segments’ length (remapping for a shorter arm displayed). Note that the target 

orientation remains unaffected. 
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Supplementary Fig. 2. Distributions of movement times of each participant (and data from 

all participants regrouped in the last subplot) for the two experimental conditions (TestNat 

and TestOwn) of Exp1. Please note that the median of each individual distribution indicated 

by a vertical bar corresponds to the median movement time of each individual displayed as a 

circle Fig. 3c. 
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Supplementary Fig. 3. Distributions of movement times of each participant (and data from 

all participants regrouped in the last subplot) for the three experimental conditions (TestNat , 

TestOwn and TestGen) of Exp2. Please note that the median of each individual distribution 

indicated by a vertical bar corresponds to the median movement time of each individual 

displayed as a circle Fig. 3c. 
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Supplementary Fig. 4. Distributions of movement times of each participant (and data from 

all participants regrouped in the last subplot) for the three test phases (TestNat, TestGen1 and 

TestGen2) of Exp3. Please note that the median of each individual distribution indicated by a 

vertical bar corresponds to the median movement time of each individual displayed as a circle 

Fig. 3c. 
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Supplementary Note 1: Feedback from amputated participants of Exp3 about the 

movement-based prosthesis control. The following are oral reports formulated either 

spontaneously or during informal talks with the experimenter while the experiment was in 

pause or finished. English translations are provided followed by the original French sentence 

in brackets. For anonymization purpose the numbers reported are not the ones of the Table 1 

or the Supplementary Videos 2 to 4, and the number of years since amputation has been 

replaced by X in the oral report of the Participant 7 with transhumeral limb loss. 

Participant 1 with transhumeral limb loss: 

Participant: “A prosthesis that would be controlled like that? I take it right away.” 

(Participant : « Une prothèse qui se dirigerait comme ça ? Je prends de suite. ») 

Experimenter: “Do you feel as it’s a natural movement?”  

Participant: “Yes.”  

(Expérimentateur : « Vous avez l’impression que c’est le mouvement naturel ? » 

Participant : « Oui. ») 

Participant 2 with transhumeral limb loss: 

Participant: “At the end, it is quite intuitive.” 

(Participant : « Finalement, c’est assez intuitif. ») 

Participant 3 with transhumeral limb loss: 

The participant reported that he would use a prosthesis behaving like this. 

(Le participant rapporte qu’il prendrait une prothèse qui se comporterait comme cela.) 

Participant 4 with transhumeral limb loss: 

Participant: “Doing a real arm movement, this is enjoyable.” 

(Participant : « Faire un vrai mouvement du bras, c’est agréable. ») 

The participant reported that he found the arm a bit too stiff from time to time. 

(Le participant a rapporté qu’il trouvait le bras un peu trop raide à certain moment.) 

Participant 5 with transhumeral limb loss: 

Participant: “It’s intuitive, it’s easy.” 

(Participant : « C’est intuitif, c’est facile. ») 

Participant 6 with transhumeral limb loss: 

Participant: “The movement doesn't feel like a natural movement to me, it's when I'm on 

target that the wrist is well placed.” 

(Participant : « Le mouvement ne me fait pas penser à un mouvement naturel, c’est quand je 

suis sur la cible que le poignet est bien placé. ») 

Participant 7 with transhumeral limb loss: 

Participant: “It’s surprising.” 

(Participant : « C’est étonnant. ») 

Participant: “X years since I was able to do that, this is moving.” 

(Participant : « Il y a X ans que je ne peux plus faire ça, c’est émouvant. ») 
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