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Abstract. Impressive progresses are being made in bionic limbs design and control. Yet, 
controlling the numerous joints of a prosthetic arm necessary to place the hand at a correct 
position and orientation to grasp objects remains challenging. Here, we designed an intuitive, 
movement-based prosthesis control that leverages natural arm coordination to predict distal 
joints missing in arm amputees based on proximal stump motion and knowledge of the 
movement goal. This control was validated on 29 participants, including 7 above-elbow 
amputees, who picked and placed bottles in a wide range of locations in virtual reality, with 
median success rates over 99% and movement times identical to those of natural movements. 
This control also enabled 15 participants, including 3 with limb deficiency, to reach and grasp 
real objects with a robotic arm operated according to the same principle. Remarkably, this 
was achieved without any prior training, indicating that this control is intuitive and 
instantaneously usable. It could be used for phantom limb pain management in virtual reality, 
or to augment reaching capabilities of invasive neural interfaces usually more focused on 
hand and grasp control. 
 
 
Introduction 
 
The field of bionic limbs has seen great progresses over the last few years, including Targeted 
Muscle Reinnervation (TMR)1, osseointegration2, chronically implanted sensors and 
stimulators for bidirectional communication with the nervous system3–7, and advanced signal 
processing to encode and decode sensorimotor signals8–10. Yet, simultaneous control of the 
multiple Degrees of Freedom (DoFs) of a prosthetic arm remains challenging, especially to 
bring a prosthetic hand to the correct location and orientation to efficiently grasp objects. 
Indeed, although simultaneous and proportional real-time myoelectric control has been 
achieved for two to three DoFs11–17, difficulties appear13 and performance deteriorates as the 
number of DoFs increases (e.g., success rate dropped from 96 to 37% from one to three DoFs 
in17). Furthermore, this was achieved in lab settings, mostly on participants with valid arms, 
sometimes including few participants with limb deficiency at transradial level (either 
amputation or congenital deficiency)12–14,18, using native muscles remaining that normally 
actuate the DoFs under myoelectric control (forearm, wrist, hand). 
 
In the case of an amputation at humeral level, none of the forearm wrist and hand muscles 
would remain, and the important additional DoF of the elbow would need to be controlled. 
Although TMR could be used to recover valid control signals by transferring residual arm 
nerves controlling missing distal muscles and joints to compartments of remaining 
muscles1,19, this is usually geared toward recovering forearm supination-pronation and hand 
opening-closing3,20, arguably more important and available in commercial prosthesis, rather 
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than wrist DoFs (flexion-extension and radial-ulnar deviation) which are nevertheless critical 
to orient the hand in space21,22. In the end, no myoelectric solution exists to simultaneously 
and intuitively control the four arm DoFs (from elbow to wrist included) that are necessary to 
transhumeral amputees in order to correctly position and orient their prosthetic hand to grasp 
objects in a large reachable space. 
 
Here, we provide a solution with an alternative movement-based approach which leverages 
natural coordination between arm segments and knowledge of the movement goal. Control 
strategies exploiting natural synergies in arm coordination23,24 have already been used to 
predict distal joints from the motion of proximal ones25–29. However, these have been mostly 
confined to the control of one DoF (i.e., either the elbow25,27,28 or the wrist supination-
pronation29, reconstructed from shoulder movement), or relying on additional unnatural 
movements to increase functionality26. Here, we unleash this movement-based approach by 
adding knowledge of movement goals, which could be made available through computer 
vision combined with gaze information30–32. We showed recently that adding target position 
and orientation to an Artificial Neural Network (ANN) trained to predict four arm distal DoFs 
(elbow to wrist) from proximal (shoulder) motion greatly improves these predictions, as well 
as human-in-the-loop control using them33. Yet, performance remained lower than natural 
movements, with increased compensatory movements from trunk and shoulder, a limited 
workspace, and a control design not directly applicable to amputees33. Critical changes were 
brought about here to overcome all those limitations, and enabled 29 participants (including 7 
transhumeral amputees) to perform as well as natural, without any prior training, at picking 
and placing a bottle in a wide reachable space in virtual reality. A physical proof of concept is 
also provided whereby 15 participants, including 3 with limb deficiency, were able to reach 
and grasp real objects at different positions and orientations with a robotic arm operated 
according to the same control principle. 
 
 
Results 
 
Natural arm movement in virtual reality. After linking movement trackers placed on 
participants to that of a virtual arm, subjects were engaged in repeatedly picking a bottle 
standing on a platform and placing it on another platform (see Fig. 1b, Methods, Virtual Arm 
Calibration, and Task). To maximize the workspace of this task, 300 “plausible” target 
locations (i.e., position and orientation) were determined randomly within the full range of 
motion established individually for each joint of each participant (see Fig. 1a, Methods). 
Natural arm movements recorded to pick and place bottles at those 300 targets were then used 
to train the ANN involved in our movement-based control (Fig. 1c, cf next section), but also 
to establish a new set of 200 “possible” targets within the workspace actually covered by the 
participants’ arm during the initial acquisition (Fig. 1d). Although “plausible” targets are all 
supposed to be reachable, in practice, anatomical joints’ limits are interdependent in a way 
that makes it uncomfortable or impossible to produce arm configurations with maximal 
excursion simultaneously at multiple joints. To circumvent this, we used an unsupervised self-
organizing neural network34 to identify 200 nodes that best represent the arm postures actually 
produced by participants, and used forward kinematics to turn these nodes into target 
locations, thereby obtaining a set of 200 possible targets guaranteed to be reachable with 
natural arm movements (Fig. 1d, see Methods). While “plausible” targets were used in the 
initial acquisition to collect natural arm movements from which the movement-based 
prosthesis control was designed, “possible” targets were used in all experimental test phases 
involved to compare the different controls. To illustrate the wide resulting workspace, Fig. 2a  
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Fig. 1 Overview of the task and control strategy. a. Wide initial workspace. Three hundred 
7-DoF arm configurations (grey dots, only 3 angles displayed for convenience) within the 
joint operating range of a given participant (materialized by the parallelepiped) are 
transformed into 300 plausible target locations (grey arrows) using forward kinematics. b. 
Natural arm movements are recorded while participants equipped with movement trackers on 
arm and torso are involved in picking and placing a bottle at the 300 target locations in virtual 
reality. c. The ANN is trained on recorded natural arm movement to reconstruct distal DoFs 
(orange) from proximal ones (green) plus target information (position and orientation). d. 
Wide space covered during recorded natural arm movements. Two hundred nodes (red dots) 
that best represent the arm angular configurations actually produced (grey circles) by a 
participant during her/his recorded natural arm movements were identified using an 
unsupervised self-organizing neural network, and transformed into a set of 200 possible 
targets (red arrows) using forward kinematics. e. Movement-based prosthesis control. The 
participant performs the pick and place task at the 200 possible targets using a hybrid arm 
reproducing in real-time her/his own shoulder movements (green angles), and using the ANN 
predictions for the 5 remaining distal DoFs (orange angles).  
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shows the sets of plausible and possible targets of a representative participant, and Fig. 2b the 
sets of possible targets for all subjects of Exp1 and Exp3. SupplementaryVideo1 illustrates a 
participant completing the task at a comfortable yet sustained pace, representative of the 
overall performance observed in our experiments (i.e., with typical movement times of 
approximately 1.3 seconds between pick and place). 
 

 
 
Fig. 2 Wide workspace covered in experiments. a. All targets used for a representative 
participant of Exp1 are displayed, together with 5 arm postures (4 at extended positions and 1 
flexed in the middle) to provide perspectives. Grey arrows represent plausible targets (n=300), 
and red arrows represent possible targets (n=200). b. Possible targets of all participants of 
Exp. 1 (n=2000, red arrows) and Exp. 3 (n=1400, in blue arrows), remapped for an average 
arm, and regrouped on the same graph. Note that for Exp3, possible targets corresponding to 
left sided amputees were mirrored to be represented in relation to a right arm. This figure 
illustrates the comparably large workspaces obtained for the 10 participants of Exp1 (used for 
the Generic ANN) and the 7 amputees of Exp3 (using the Generic ANN). 
 
 
Intuitive movement-based prosthesis control. From natural movements recorded in the 
initial acquisition, the control was developed based on an ANN trained to reconstruct distal 
joint angles from shoulder kinematics plus contextual target information. An initial version of 
this control was proposed and tested in33, and critical changes were designed here to improve 
its quality and applicability to amputees. After being trained to reconstruct five distal arm 
angles from proximal shoulder kinematics plus target location (3D position and 2D 
orientation, see Methods), the ANN illustrated in Fig. 1c was used to control a Hybrid Arm 
emulating the behavior of an upper arm stump fitted with a transhumeral prosthesis (Fig. 1e). 
To this end, shoulder flexion-extension and abduction-adduction of the Hybrid Arm were 
operated from real shoulder movements produced by the operator, whereas the five remaining 
joint angles were driven by predictions from the ANN. Importantly, the ANN could be trained 
either solely from the operator’s own natural movements (Own ANN, see Methods) or from 
those of multiple other participants (Generic ANN). Fig. 3a summarizes the protocols of the 
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three experiments gradually leading to a functional control solution for prosthesis users. 
SupplementaryVideo2 to 4 illustrates the ultimate goal reached in this study, that is, to enable 
transhumeral amputees to pick and place objects with movement time and performance 
similar to that with a natural arm. 
 

 
 
Fig. 3. Protocols and results. a. Protocols of the three experiments. Each box contains a 
phase name and the name of the control used. Fam. stand for Familiarization phase, and Initial 
Acq. for Initial Acquisition phase. The order of test phases conducted with the Own and the 
Generic ANNs were counterbalanced in Exp2. b-d. Results for success rate (b), movement 
time (c) and shoulder volume (d). Each grey line corresponds to a participant. In Exp2, 
dashed lines indicate participants who began by the control with the Generic ANN and plain 
lines those who began by the control with the Own ANN. Boxes limits show first and third 
quartiles whereas inside line shows the median value. Whiskers show min and max values. 
Own, Gen, Nat represent phases in which the control was performed with the Own ANN, the 
Generic ANN, and the Natural Virtual Arm, respectively. In Exp3, Gen1 and Gen2 refer to 
the first and second block performed with the Generic ANN. Stars represent significant 
differences, with * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. The dashed red line 
represents a volume of 1 dm3 ( = 1 L).  
 
 
Specific control based on participants’ own movements. The first experiment aimed at (i) 
emulating a prosthesis control as intuitive as possible in a wide workspace for participants 
based on their own natural movements, and (ii) collecting natural movements from several 
subjects to build a generic model for prosthesis control to be tested on other subjects and 
amputees (in Exp2 and 3, respectively). After an initial acquisition in which they picked-and-
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placed 300 plausible targets with their right arm in a wide workspace, 10 right-handed 
subjects were tested on 200 possible target locations with our intuitive prosthesis control 
trained on their own movements (Exp1, TestOwn, Fig. 3a) before being tested again on the 
same targets with their natural arm movements (TestNat). 
 
Results indicate high success rates for both conditions (median success rate of 100% and 
99.7% for TestNat and TestOwn, respectively), with a minor (<1%) albeit significant 
difference between them (TestOwn vs TestNat; n = 1886; McNemar test, p = 0.023, df = 1; 
Fig. 3b). Regarding movement times (i.e., time taken to reach and validate each target from 
the previous one), results were also closely similar and not significantly different between 
conditions (TestOwn vs TestNat; n = 10; medians of 1.25 s vs 1.17 s respectively; two-tailed 
paired t-test, p = 0.378, t = -0.927, df = 9). The volume spread by the shoulder’s trajectory 
throughout a phase, which includes compensatory movements of the body that might be 
elicited to compensate for imperfect control (see33), was also comparable and not significantly 
different between conditions (TestOwn vs TestNat; n = 10; medians of 0.22 dm3 vs 0.18 dm3 
respectively; two-tailed paired t-test, p = 0.058, t = -2.168, df = 9).  
 
Overall, our movement-based control trained on the own natural movements of each 
participant enabled almost perfect success rate (99.7%), and movement times similar to that 
with their natural arm to pick and place the bottle in the wide workspace tested. Yet, this 
control is inapplicable “as is” to amputees, for which recording natural movements is 
obviously not possible from their missing arm. The next step was therefore to establish an 
equivalent control from data collected on the multiple participants of Exp1, and to be used on 
new naive participants in Exp2. 
 
Generic control based on movements from other participants. After building a generic 
model from data recorded in Exp1 (cf Methods), the second experiment aimed at (i) assessing 
performance with this generic model (as compared to that with natural movements or with a 
control based on each participant’s own natural movements) and (ii) validating the use of this 
generic model on left-handed participants using their dominant arm. As the relationship 
between hand locations and arm configurations depends on segments dimensions that differ 
between participants, a critical step toward building an efficient generic model for a new user 
was to remap hand position data from previous participants to the arm dimensions of that new 
user (Supplementary Fig. 1b). This was done using forward kinematics to remap data from all 
participants of Exp1 before using them to train the generic ANN to be used for intuitive 
control in TestGeneric by each participant of Exp2 (see Methods). After an initial acquisition 
phase equivalent to that of Exp1, 12 participants (6 left-handed) were tested on our 
movement-based control using either the generic model (TestGeneric) or the model based on 
their own movements (TestOwn). The order between TestGeneric and TestOwn was 
counterbalanced amongst subjects, with 3 left-handed participants in each group (see Fig. 3a). 
The protocol ended with each participant being tested again with their natural arm movements 
(TestNat). 
 
Participants achieved high success rates in all conditions (median success rates of 99% or 
higher, cf Fig. 3b), although minor differences between conditions (<1%) were found 
significant (TestOwn vs TestGeneric vs TestNat; n = 2268; medians of 99.50 % vs 99.24 % vs 
100 % respectively, Cochran’s Q test, p = 5.19.10-12, Q = 51.97, df = 2; post-hoc McNemar 
test with Bonferroni adjustment; TestOwn vs TestGeneric, p = 6.42.10-5, chi.sq = 18.1, df = 
1; TestOwn vs TestNat, p = 8.58.10-3, chi.sq = 8.89, df = 1; TestGeneric vs TestNat, p = 
3.24.10-10, chi.sq = 41.7, df = 1). Median movement times remained below 1.4s in all 
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conditions (Fig. 3c), with no significant difference found between conditions (TestOwn vs 
TestGeneric vs TestNat; n = 12; RM ANOVA test, p = 0.181, DFn = 2, DFd = 22, F = 1.848). 
With respect to the volume spread by the shoulder during the Test phases (Fig. 3d), the 
statistical analysis revealed a significant effect of condition, (TestOwn vs TestGeneric vs 
TestNat; medians of 0.23dm3 vs 0.43 dm3 vs 0.14 dm3 respectively, n = 12; RM ANOVA 
test, p = 0.003, DFn = 2, DFd = 22, F = 7.806), with post-hoc tests indicating a higher volume 
for TestGeneric than for Test Nat (Tukey test with Bonferroni correction; TestOwn vs 
TestNat, p = 0.385; TestGeneric vs TestNat, p = 0.025; TestOwn vs TestGeneric, p = 0.347). 
Despite this difference, the spread volumes remained contained, never exceeding 1 liter (Fig. 
3d), which appears reasonable given the high compensations that could have occurred with 
less efficient controls over the wide workspace spanned by the targets. 
 
Overall, our control based on a generic model trained on data from other participants enabled 
therefore new participants to reach almost all targets (>99%) as well as with their natural arm 
(or an intuitive control trained on their own natural movements) regardless of handedness, 
with a moderate increase in compensatory movements. The only remaining step was then to 
validate this control directly on amputees. 
 
Successful validation on arm amputees. As we now dispose of an intuitive control 
applicable to participants with an arm amputation on either side of their body, we tested it on 
7 unilateral amputee participants, 3 of them disabled on their left side. As no initial 
acquisition phase was conducted on these participants, the set of 200 possible targets was 
determined for each of them using a self-organizing map to extract representative postures 
from a large number of postures generated by movements produced by all participants of 
Exp1 filtered to the range of motion of their stump (see Methods). Given the lack of initial 
acquisition, participants had much less practice of the task before they were tested. Therefore, 
two blocks of intuitive control with the Generic ANN were conducted on their amputated side 
(TestGeneric 1 and 2, Fig. 3), before they were tested on the same mirrored targets with their 
valid arm (TestNat). 
 
As for other experiments, success rates were very high (all medians above 99%), and did not 
differ between conditions (TestGeneric1 vs TestGeneric2 vs TestNat; medians of 99.24 % vs 
99.50 % vs 99.50 % respectively, n = 1128; Cochran’s Q test, p = 0.1146, Q = 4.33, df = 2). 
Movement times with our movement-based control were also in the same range as in previous 
experiments, and were even smaller by the second block of intuitive control (TestGeneric2) 
than with their valid arm (TestGeneric1 vs TestGeneric2 vs TestNat; medians of 1.27 s vs 
1.16 s vs 1.40 s; n = 7; Friedman test, p = 0.002, chi-squared = 12.286, df = 2; post-hoc 
Conover test; TestGeneric1 vs TestNat, p = 0.619; TestGeneric2 vs TestNat, p = 0.014; 
TestGeneric1 vs TestGeneric2, p = 0.161). The volumes spread by the shoulder were 
comparable to that measured with the generic model on Exp2 (median 0.43 dm3) and did not 
differ between conditions (TestGeneric1 vs TestGeneric2 vs TestNat; medians of 0.36 dm3 vs 
0.37 dm3 vs 0.33 dm3; n = 7; Friedman test, p = 0.867, chi-squared = 0.28571, df = 2).  
 
Overall, without any prior experience at the task nor with the apparatus, our intuitive control 
allowed disabled participants to achieve performance as good as with their valid arm, and to 
achieve comparable levels of performance as for other subjects in all conditions tested (see 
Fig. 3b-d). Furthermore, beyond objective performance measures, our intuitive control 
elicited high enthusiasm from amputees. This is particularly well illustrated by the following 
feedback they provided during or after the experiment: “X years since I was able to do that, 
this is moving”; “doing a real movement, this is enjoyable”; “a prosthesis that would be 
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controlled like that? I take it straight away”. See SupplementaryNote1 for more feedback 
from amputees. 
 
Physical Proof of Concept on a tele-operated robotic platform. To demonstrate the 
feasibility of our approach in the physical world, we conducted a Proof of Concept (POC) 
whereby 15 participants, including 2 transhumeral amputees and 1 individual with congenital 
limb deficiency, were involved in reaching and grasping real objects in various positions and 
orientations with our novel control applied on a humanoid robotic platform specifically 
designed to explore human-robot control strategies35. As with the Hybrid Arm used to 
emulate the behavior of an upper arm fitted with a tranhumeral prosthesis in virtual reality 
(Fig. 1e), the shoulder flexion-extension and abduction-adduction of the robotic arm were 
operated from real shoulder movement produced by the operator, whereas the five remaining 
distal joint angles were driven by prediction from the generic ANN (Fig. 4). In contrast to 
virtual reality, however, the torso of the humanoid robotic platform was fixed and 
independent of the operator, such that compensatory movements from the trunk and from 
shoulder translations were not transmitted to the device. This is important because this implies 
that the task could only be achieved with the designed control. As in virtual reality, our novel 
control solution (TestGeneric) was tested against a control based on natural arm movements 
(TestNat), whereby all joints of the robotic arm were operated directly from arm movements 
produced by abled-bodied participants (POC protocols Fig. 4c). 
 
Despite the functionality of compensatory movement being withdrawn by design, high 
success rates were achieved by all participants in both conditions (Fig. 4d). A significant 
difference was nevertheless found between the proportion of validated targets using our 
movement-base control and natural control (TestGeneric vs TestNat; medians 93% vs 100% 
respectively; n = 180; McNemar test, p = 0.0003, chi.sq = 13.1, df = 1; Fig. 4d). The 
congenital limb deficient participant was able to reach and grasp 93.3% of the targets (i.e., 
14/15), and the two trans-humeral amputee participants were both able to grasp 80% of the 
first five targets which means that only one target was failed. Furthermore, the validated 
targets were reached and grasped with movement times similar to those obtained using natural 
control applied to the robotic arm (POCa-b TestGeneric vs TestNat; medians 6.08s vs 5.98s 
respectively; two-tailed paired t-test, p = 0.7026, t = -0.39198, df = 11; Fig. 4e). Although no 
statistical analysis was conducted, the movement times recorded for the congenital limb 
deficient participant and for the 2 amputee participants were similar to those obtained by the 
able-bodied participants with the natural control (Medians: Congenital = 5.95s; Amp1 = 
5.81s; Amp2= 4.23s). 
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Fig. 4 Physical Proof of Concept on a tele-operated robotic platform. a. Task and setup. 
The participant stands still setback from the humanoid robotic platform that faces a board on 
which 5 sponges are placed at different positions and orientations. The participant tele-
operates the robotic arm so as to reach and grasp each of the 5 sponges of a block, one trial 
after another, according to order indicated by numbers written on sponges. b. Three types of 
blocks define three spatial arrangements of sponges on the board. c Protocols of the Proof of 
Concept (POC) experiments. Each box contains a phase name and the name of the control 
used, either based on natural arm movements (TestNat) or on predictions from the Generic 
ANN (TestGeneric). Fam. stand for Familiarization phase. The order of test phases was 
counterbalanced in POCa and POCb. d-e. Results for success rate (d) and movement time (e). 
Each grey line corresponds to a participant. In POCa-b, dashed lines indicate participants who 
began by TestGeneric and plain lines those who began by TestNat. Boxes limits show first 
and third quartiles whereas inside line shows the median value. Whiskers show min and max 
values. Stars represent significant differences, with * for p < 0.05, ** for p < 0.01, and *** for 
p < 0.001. Triangles represent performances obtained for the Block 1 by the two transhumeral 
amputees whereas the square represents performances of the congenital participant on all 3 
Blocks.  
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Discussion 
 
Stunning progresses have been made in the field of bionic limbs to restore important hand 
grasping and object manipulation functions, with invasive surgery1,2 and implants enabling 
bidirectional communication with the nervous system3–6. Yet, controlling the numerous joints 
of a prosthetic arm necessary to place the hand at a correct position and orientation to grasp 
objects remains challenging, and is essentially unresolved. Here we provide a non-invasive, 
movement-based solution to this problem, and a clear demonstration of its effectiveness on 
amputees. Indeed, 29 participants including 7 above-elbow amputees were able to pick and 
place bottles in a wide workspace with almost perfect scores (median success rates above 
99%) and movement times identical to those of natural movements, while five distal joints of 
their arm were controlled with our novel solution. The same control principles applied on a 
robotic platform35 also enabled 15 participants, including 3 with limb deficiency, to reach and 
grasp real objects at different positions and orientations, with good success rates and 
movement times similar to those obtained when the robot was controlled with natural arm 
movements. This is ahead of other control solutions that have been proposed so far to solve 
this problem, and whose performances are rarely compared to that of natural movements (as 
unfavorable as this comparison would be to them). We now place this in perspective of recent 
related works, discussing critical features that enabled such performance, as well as remaining 
gaps and perspectives for daily-life applications.  
 
Critical features that unleashed movement-based prosthesis control. The first feature that 
enabled our movement-based control to work so well compared to previous attempts was to 
introduce movement goal as an input to the trained ANN. Without it, the ANN would predict 
the most likely configuration of the distal joints for a given proximal (shoulder) posture, but 
irrespective of the location of the object to reach. Although this was found to provide an 
average distal configuration which was nevertheless suitable to reach in a limited workspace, 
at the expanse of compensatory movements from the trunk and shoulder33, we also showed 
that adding movement goal as an input greatly improves the performance of this control 
strategy33. Indeed, this enabled to control simultaneously four distal DOFs from elbow to 
wrist with close to natural coordination33, where previous attempts were only able to control 
one DOF (either the elbow25,27,28 or the wrist supination-pronation29), or rested upon 
additional unnatural movements to increase functionality26. Yet, performance levels were still 
lower than natural movements, with increased movement times and compensatory movements 
despite the somewhat limited workspace used, and a control design that was not directly 
applicable on amputees33. Here, we overcame all those limitations.  
 
First, we greatly expanded the applicable workspace of this control. This was achieved by 
starting from the widest possible workspace, limited by the maximal range of motion of 
participants, and subsequently using a self-organizing network34 to best represent the space 
covered by participants while producing natural arm movements within this space. Second, 
we substantially increased the amount of relevant training data, by using the entire trajectories 
of the recorded natural arm movements, instead of using only arm postures placing the hand 
sufficiently close to the target33. Critically, the use of the entire trajectories was made efficient 
by artificially placing the target in the hand (see Methods), such that the ANN trained on 
those data performs a form of natural inverse kinematic solving, i.e., one that provides a 
solution that is representative of natural arm postures rather than a mere optimization for an 
arbitrary cost function. Third, we made the control applicable to amputees. Indeed, this was 
not the case in33 as we used the forearm sensor (not available in amputees) to better assess 
humeral rotation, which could not be reliably measured from the sole upper arm sensor due to 
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muscles and soft tissues around the humerus. Here, the humeral rotation was transferred as an 
output of the ANN, being a predicted output rather than a necessary input for the control 
system. In addition, instead of training the control on natural arm movements specifically 
produced by the intended user (also not applicable in amputees), we designed a generic 
control based on natural movements from multiple other individuals, but specifically tuned to 
the morphology of the user (see Methods). This specific tuning was essential, since a given 
target position and orientation could call for markedly different arm postures depending on 
the particular arm morphology of an intended user. Finally, mirror symmetry with respect to 
the medial plane was applied to accommodate for either side of an amputation. Taken 
together, all those features enabled our participants, including those with an above-elbow 
amputation, to reach as well as with their natural arm with our movement-based distal joint 
prosthesis control.  
 
Perspectives for daily-life applications. Despite the clear benefits mentioned above, 
including movement goal as an input of the control system could be seen as a weakness, as it 
might be difficult to determine in real life settings. Yet, impressive progresses in artificial 
intelligence and computer vision are such that what would have been difficult to imagine a 
decade ago appears now well within grasp36. For instance, we showed recently that deep 
learning combined with gaze information enables identifying an object that is about to be 
grasped from an egocentric view on glasses31, and this even in complex cluttered natural 
environments32. Prosthesis control strategies based on computer vision combined with gaze 
and/or myoelectric control for movement intention detection are quickly developing37–42, 
illustrating the promises of this approach. It remains that once an intended object has been 
successfully reached or grasped, what to do with it will still require more that computer vision 
and gaze information to be efficiently controlled. One approach is to complement the control 
scheme with subsidiary movements, such as shoulder elevation to bring the hand closer to the 
body or sternoclavicular protraction to control hand closing26, or even movement of a 
different limb (e.g., a foot43). Another approach is to control the prosthesis with body 
movements naturally occurring when compensating for an improperly controlled prosthesis 
configuration44. In both cases, particular attention should be paid to ensure that subsidiary 
movements do not contaminate natural arm coordination, which is essential to the current 
movement-based control.  
 
Another requirement for our control to be functional on prosthesis is to have actuated wrist 
joints available, as those are essential to orient the hand in space21,22. This is not the case for 
most commercial prostheses, which sometimes include wrist flexion-extension (mostly 
passive), and very rarely wrist radial-ulnar deviation45. Notable exceptions includes the 
LUKE/DEKA arm46 and the RIC arm47, which both include those two degrees of freedom as 
actuated joints, but with a fixed linear relationship between them. Hopefully, the type of 
control proposed here will highlight the need for, and foster mechatronic developments of, a 
suitable actuated wrist with human-like motion capabilities45,48.  
 
As already mentioned, the solution proposed here is suitable to control distal arm joints to 
place the hand at a correct position and orientation to grasp objects in a wide workspace, but 
not for fine hand and grasp control involved in object manipulations, which relies heavily on 
tactile and somatosensory feedback information49,50. In this context, our movement-based 
approach appears complementary to more invasive ones, which specifically target those latter 
functions through bi-directional interactions with the nervous system for both motor control 
and sensory processing3–7. Combining those with osseointegration at humeral level3,4 would 
be particularly relevant as this would also restore amplitude and control over shoulder 
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movements, which are essential for our control but greatly affected with conventional stump 
fitting harness and sockets. 
 
Besides developments needed for application to a real-life setting, the control proposed here 
could be used as is in virtual reality for the management of Phantom-Limb Pain (PLP), a 
painful sensation perceived in the missing limb that often occurs after an amputation. 
Although the precise mechanisms behind PLP and its proposed treatments are still debated 
and unresolved51,52, reduction of pain has been repeatedly reported using mirror therapy, 
whereby the intact hand is moved while the patient views it through a mirror at the place of 
his/her missing limb53. Yet, mirror therapy was found ineffective on patients with distorted 
(telescoped) phantom limb54, and is not applicable to bilateral amputees. Those two 
limitations can easily be overcome in virtual reality55, and our novel movement-based control 
provides a solution immediately available to control virtual (missing) limbs with natural 
coordination solely from stump motion.  
 
Importantly, self-reported feedback from amputated participants indicates that overall, they 
found our prosthesis control solution intuitive and natural, and would use it should it be 
available on their prosthesis (see SupplementaryNote1). Given the rich perspectives 
associated with this movement-based control alternative, its complementarity with other 
quickly developing approaches, and the demonstration provided here of its effectiveness on 
amputees, we believe that this alternative is going to positively impact the field of bionic 
limbs and prosthesis control.  
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Methods  
 
Participants. All participants had normal or corrected-to-normal vision and none suffered 
from motor disorder that could have affected their ability to perform the task (except limb 
deficiency in Exp3 and in the physical proof of concept POC). The able-bodied participants’ 
handedness was assessed using the Edinburgh Handedness Inventory (EHI)56. For Exp1 and 
2, EHI scores over 50 (below -50) corresponded to right-handed (left-handed) participants. 
For POCa-b, able-bodied participants with positive EHI scores were included. Exp1 was 
conducted on 10 naive, able-bodied, right-handed participants (5 males, EHI mean 84.0; SD 
18.4), aged 24 to 43 years (mean 27.3; SD 6.0). Exp2 was conducted on 12 naive, able-bodied 
participants (8 males), aged 20 to 35 years (mean 24.1; SD 4.4). Six of them were right-
handed (EHI mean 96.7; SD 5.2), and the other 6 were left-handed (EHI mean -85.4; SD 
13.0). Exp3 was conducted on 7 naive participants having undergone transhumeral 
amputation (7 males), aged 25-48 (mean 40.4; SD 8.4). Information related to each 
participant’s amputation are provided in Table 1. POCa-b were conducted on 12 naive, able-
bodied participants (6 males, EHI mean 87.1; SD 22.8), aged 19 to 69 years (mean 33.3; SD 
16.6). POCc was conducted on 1 congenital limb deficient participant, with forearm 
malformation on the right side, male, aged 22, naive about the task. POCd was conducted on 
2 male participants having undergone transhumeral amputation on the right side, aged 34 and 
39 years. Both were also included in the Exp3 (see Table 1 lines 4 and 5). They completed 
Exp3 before POCd. All participants gave their informed consent and research presented here 
has been conducted in accordance with the Declaration of Helsinki and with local ethics 
committee (CCP Est II: n°2019-A02890-57). 
 
Apparatus. During an experimental session, participants remained seated on a chair located 
at the center of the experimental room. They wore a virtual reality headset (Vive™ Pro, HTC 
Corporation) that was adjusted by the experimenter to fit the head firmly and comfortably. 
When movements of the dominant arm for able-bodied participants or the valid arm 
(contralateral to the amputated side) for transhumeral amputees were recorded, four motion 
trackers (Vive™ Tracker HTC Corporation) were attached to the body using elastic straps. 
Each segment of the arm (upper arm, forearm and hand) as well as the trunk had a dedicated 
tracker attached to it. The fingers were immobilized with hand wraps so that the hand tracker 
would move with wrist movements only. For transhumeral amputees, when motion of the 
amputated side was recorded, only two trackers were attached: one on the trunk and one on 
the stump. A push-button was placed under the participant’s contralateral hand or under the 
participant’s dominant foot. 
 
The infrared beacons and virtual environment were calibrated so that the workspace was 
centered on the chair, its ground plane at the same height as the room’s floor and its scale 
identical to real-world dimensions. For each VR device (headset and trackers), the tracking 
setup measured the 3D position and orientation relative to a fixed reference frame within the 
virtual environment, using SteamVR (Valve Corporation) as middleware. These 
measurements were recorded at 90 Hz and the virtual environment was displayed 
synchronously to the participant at a 90 Hz refresh rate through the headset’s stereoscopic 
display. The Unity engine (Unity Technologies) was used to run the simulation of the virtual 
scene’s contents and interaction with the participant. 
 
Virtual Arm Calibration. The scene displayed a virtual arm whose skeleton consisted of 
three rigid segments (upper arm, forearm and hand) linked to each other by spherical joints. 
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After the participant was equipped with the VR devices, a procedure was carried out to make 
this virtual arm mimic the participant’s actual arm motion. This procedure included five steps: 
 

1. During a ten-second recording, motion data were collected while the participant was 
asked to perform slow movements using all of the arm’s degrees of freedom (DoFs): 
shoulder flexion-extension (θS-FE), shoulder abduction-adduction (θS-AA) and humeral 
rotation (θH-R), elbow flexion-extension (θE-FE), forearm pronation-supination (θF-PS), 
wrist flexion-extension (θW-FE) and radial-ulnar deviation (θW-RU) (see Supplementary 
Fig. 1a). For participants with arm amputation, when stump movements were 
recorded, only the first two DoFs were taken into account. 

2. The method described in57 was applied to estimate the joint centers’ locations relative 
to a parent tracker. The upper arm’s tracker worked as the parent for the virtual 
shoulder and elbow, whereas the forearm’s tracker worked as the virtual wrist’s 
parent. At the end of this step, the estimated joint centers were displayed as yellow 
spheres linked by grey lines and the trackers’ silhouettes were outlined in the virtual 
scene. For amputees with stump movements, only the shoulder’s center was estimated, 
with the upper arm’s tracker working as parent. Based on the tracker’s orientation, a 
grey line drawn in the virtual scene indicated the estimated actual arm’s humeral axis. 
The line’s length was estimated based on the participant’s height (see 3). A yellow 
sphere representing a hypothetical elbow center was placed according to these 
estimations of the humerus’s orientation and length as well as the shoulder center. 

3. The virtual arm’s segment dimensions were adjusted to match those of the 
participant’s arm. These dimensions were measured as the distances between 
estimated joint centers. When stump movements were used on transhumeral amputees, 
these dimensions were computed by scaling a standard set of segment lengths based 
on the participant’s height. 

4. Then, the virtual shoulder was attached to the participant’s estimated shoulder center, 
so that the root of the virtual arm would follow the actual shoulder at all times. 

5. The virtual arm was locked in a reference posture with the elbow flexed at 90° where 
its segment orientations and joint positions were clearly visible. The virtual arm’s 
segments were “linked” to the corresponding trackers one at a time, while the yellow 
spheres acted as anatomical landmarks. First, the participant was asked to move their 
arm so that the yellow sphere representing the estimated elbow center overlaid the 
virtual arm’s elbow. When the overlaying was deemed correct, the virtual upper arm 
became a child object of the corresponding tracker, so that its orientation followed that 
of the actual upper arm. Then, the same method was repeated to associate the virtual 
and actual forearms by overlaying the estimated wrist’s yellow sphere with the virtual 
arm’s wrist. Finally, the tracker’s silhouette was used as a landmark for the participant 
to orient the actual hand similarly to the virtual hand, aligned with the virtual forearm. 
The procedure ended with the virtual hand being made a child object of the hand 
tracker. For amputees with stump movements, only the virtual upper arm needed to be 
attached to the corresponding tracker. The hypothetical elbow sphere was used as a 
landmark for participants to align their stump with the virtual upper arm. 

 
As a final step, this virtual arm calibration was corrected for errors in humeral rotation, and 
reduced from a 9-DoF to a 7-DoF virtual arm. Indeed, soft tissues around the biceps and 
triceps are such that the sensor attached to the upper arm is not able to follow accurately the 
rotation of the humerus. To counter this, humeral rotation was computed based on the triangle 
formed by the centers of the three joints (shoulder, elbow and wrist), estimated using both the 
upper arm and the forearm sensors. Furthermore, the procedure described above considers 
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three rigid segments linked by spherical joints offering each three DoFs in rotation. Although 
the resulting nine DoFs allowed the arm’s segments to be placed at all times in orientations 
identical to those of the actual arm despite slight variations from an ideal 7-DoF arm, the 
reduction to seven DoFs was necessary to match anatomical arm description, and to emulate 
control over the relevant prosthesis joints. This was achieved by extracting seven joint angles 
from the 9-DoF kinematic chain’s segment orientations, following a kinematic model 
comprising three DoFs at shoulder level, one DoF at elbow level and three DoFs at wrist 
level. Then, the same model was used to compute the segment orientations corresponding to 
the posture described by these seven joint angles, and the resulting virtual arm was moved 
accordingly in the virtual scene. 
 
Hybrid Arm Control. The Hybrid Arm was designed to emulate the behavior of an upper 
arm stump fitted with a transhumeral prosthesis (Fig. 1e). In the case of an actual prosthesis, 
movements of the whole arm would combine the wearer’s residual limb motion with the 
prosthesis’s actuation of artificial joints, hence the term “Hybrid”. To emulate this behavior, 
the two most proximal DoFs (i.e., shoulder flexion-extension and shoulder adduction-
abduction) were taken from the participant’s natural shoulder motion derived from the Virtual 
Arm, whereas the five remaining joint angles were driven by predictions from an Artificial 
Neural Network (ANN) trained as indicated in the next section (Fig. 1c). Following the same 
7-DoF model as with the Virtual Arm, segment orientations were then computed from the 
whole set of seven joint angles, and the Hybrid Arm was moved accordingly in the virtual 
scene. 
 
Own and Generic ANN. In order to drive the Hybrid Arm’s five distal joints, an ANN was 
trained to predict the five corresponding joint angles from natural arm movements recorded 
using the Virtual Arm in the VR setup. This section presents the two ANNs used in this study: 
The Own ANN, trained on the data produced by the same participant as the one that is going 
to use the network to control the Hybrid Arm, and the Generic ANN, trained on data from 10 
other participants recorded in Exp1, and tuned to the arm size of the user. ANNs inputs and 
outputs are presented in Fig. 1c and in Supplementary Fig. 1a. The network structure includes 
two densely connected layers of 256 neurons each, a dropout layer with a drop fraction of 0.5 
and a dense layer of 64 neurons. The network was implemented and trained using TensorFlow 
in association with Keras as the programming interface. 
 
The Own ANN training data was taken from the recording of an Initial Acquisition phase 
performed with the Virtual Arm (cf. Experimental Phases). From this recording, 7 signals 
were extracted and fed to the ANN as inputs: the 2 most proximal angles of the Virtual Arm, 
and 5 goal-related contextual information (3 Cartesian coordinates and 2 spherical angles that 
define the position and orientation of the cylindrical target). The error between the ANN 
outputs (i.e., predictions of the 5 distal DoFs) and the actual 5 distal joints of the Virtual Arm 
produced in the same recording session were used to train the ANN. The network was trained 
during a pause after the Initial Acquisition phase, and was therefore specific to the 
corresponding participant. 
 
In our experiments, the targets were sparse and scattered within a wide and continuous 
workspace. Mirroring this discrete distribution, the goal-related contextual information 
describing the target locations provided discontinuous and highly clustered signals, displaying 
little variability within a trial and changing abruptly to express the new target location as soon 
as the next trial began. Preliminary testing revealed that training on such input signals resulted 
in the ANN being much more subject to overfitting and less efficient for control. To avoid this 
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issue, the training data made use of hand locations instead of target locations to provide 
contextual information. For each sample, the recorded arm posture was therefore treated as if 
it brought the virtual hand at the exact location of a hypothetical target. Accordingly, the 
contextual information provided as input corresponded to the position and orientation of the 
virtual hand, such that the training data covered the workspace more homogeneously and 
continuously. Thirty epochs were done with a learning rate of 1e-4, similar to that used in33.  
 
In the case of an amputee, driving the prosthesis’s joints with an ANN trained on the wearer’s 
own motion tracking data would be impractical. To tackle this, we designed a method to 
create a Generic ANN, by transforming motion tracking data recorded from previous 
participants into a training dataset adapted to the current participant. Recordings produced in 
the Initial Acquisition phase of the 10 participants of Exp1 were concatenated into a single 
dataset. However, this dataset would not be appropriate “as is” to train a Generic ANN 
because the relationship between hand locations and postures depends on arm segment 
dimensions that differ between participants. Indeed, as illustrated Supplementary Fig. 1b, 
similar arm postures give rise to different hand locations depending on arm morphology, such 
that hand positions need to be “remapped” to the current participant’s arm before being fed as 
training data to a Generic ANN. This was achieved using forward kinematics solving with the 
7-DoF model underlying the Virtual Arm calibrated for the current participant. The dataset 
adapted to the current participant contained the remapped hand locations as well as the 
original arm angular configurations from Exp1, and was used to train the Generic ANN to 
perform the same task as the Own ANN: predict 5 distal DoFs from 2 proximal joint angles 
and 5 spatial parameters expressing the hand location. For the sake of fair comparison, this 
network’s structure (i.e., layer arrangement and number of neurons) was identical to that of 
the Own ANN. However, the training dataset included data from 10 participants instead of 
just 1, thus containing approximately 10 times more samples than data used to train an Own 
ANN. Given this, the epoch number was reduced to 10 to minimize computation time, and a 
momentum parameter was introduced to further prevent overfitting. An offline analysis 
indicated that a learning rate of 1.59e-7 combined with a momentum of 0.95 constitutes a 
good compromise for the Generic ANN to perform well both when the target is considered in 
the hand (as for the training data used) and when moving toward it (as it is mostly the case 
during online experimental phases).  
 
Task. All experiments relied on a pick-and-place task with a virtual cylindrical bottle (Fig. 
1b). Participants were asked to perform the task with either the Virtual Arm or the Hybrid 
Arm, by moving their own arm (Fig. 1b) or stump. Even if they were instructed not to move 
their trunk and to keep their back against the chair depending on the phase and protocol, 
participants were not physically restrained. The goal was to reach and grasp the bottle with 
the virtual hand, then bring it at another location indicated by a cylindrical platform. A trial 
refers to only one part of this process: either the bottle-picking or the bottle-placing. In either 
case, participants completed the trial by pressing the button while the virtual hand was inside 
a target zone, corresponding to a region in the five-dimensional space of hand locations (3D 
position × 2D orientation) centered on the target’s location and delimited by a spatial and 
angular tolerance. A hard constraint was defined with a spatial tolerance of 2cm and an 
angular tolerance of 5°, whereas a relaxed constraint was defined with a spatial tolerance of 
4cm and an angular tolerance of 10°. A semi-transparent arrow was attached to the virtual 
hand to indicate the hand’s axis (arrow direction) and center (arrow base) to help participants 
bring the hand inside the target zone. Whenever the hand was inside the target zone, the bottle 
turned red as a sign that it could be either grasped or released. The virtual hand was limited to 
two states: either open and empty, or closed and holding the bottle. Participants could only 
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toggle the hand’s state while the hand was in the target zone, by pressing the button to 
complete the trial. During a bottle-picking trial, the target corresponded to the bottle itself: the 
target’s center was placed at the middle of the bottle’s height and its axis was the bottle’s 
revolution axis. During a bottle-placing task, the target corresponded to the cylindrical 
platform on which the bottle needed to be placed: the target’s axis was perpendicular to the 
platform’s surface and its center was placed so that a correct hand positioning would bring the 
bottom of the bottle against the platform. This was made so that the instruction to “place the 
bottle on the platform” would remain intuitive. 
 
Participants were given a short time (either 5 or 10s depending on the experimental phase) to 
complete each trial, and instructed to perform the task at a comfortable yet sustained pace. If 
the task was not completed within the allotted time, the current trial ended with a short audio 
cue and the hand’s state was automatically toggled. Each experiment involved four to five 
phases, within which trials were grouped in blocks of 50 trials (i.e., twenty-five repetitions of 
the pick-and-place process) interspersed with short pauses (usually < 1min, occasionally up to 
a few minutes if needed). 
 
Targets Sets Generation. Two sets of targets were generated for each participant: A set of 
Plausible Targets for the Initial Acquisition phase (Fig. 1a), based on the range of motion of 
joint angles, and a set of Possible Targets for the Test phases, based on movements previously 
produced in the Initial Acquisition (Fig. 1d). Each target was defined by 5 spatial parameters: 
3 Cartesian coordinates of its center (in the shoulder referential of the participant), and 2 
spherical coordinates describing its orientation relative to the vertical axis. Note that because 
both the bottle and platform are cylindrical, their rotation about their revolution axis is 
irrelevant to the task, such that a pair of spherical coordinates is sufficient to describe their 
orientation. 
 

Joint Angle Ranges of Motion. With the VR headset temporarily taken off, 
participants were asked to perform a few repetitions of an elementary movement for each arm 
DoF, travelling across its whole range of motion (Supplementary Fig. 1a). For each 
movement, the experimenter performed a demonstration that the participants were required to 
mimic with their own arm, and ranges of motion were estimated from extreme values reached 
with the Virtual Arm recorded. In addition, the range of motion of the elbow was artificially 
fixed at 85% of maximal extension in order to avoid postures in which the arm would be too 
straight. Indeed, the triangle used to compute humeral rotation (formed by the 3 joint centers, 
shoulder, elbow and wrist) would be too small, or even vanishing for a perfectly straight arm. 
For amputees, only the first 2 elementary stump movements were performed and subject to 
range-of-motion extraction. 

 
Plausible Targets Set for Initial Acquisition Phase. Plausible targets were generated 

based on the estimated ranges of motion, as well as on restrictions applied on the workspace. 
Firstly, 7-DoF arm angular configurations were drawn at random within the ranges of motion 
following a multivariate uniform probability distribution. Then, forward kinematics was used 
to compute the target location that would be reached by the virtual hand for those postures. 
The resulting target locations were then filtered according to three criteria: 

• The angle between the target’s axis and the vertical axis did not exceed 80°, excluding 
targets pointing downwards or horizontally. 

• The distance between the target’s center and the participant’s frontal plane exceeded a 
third of the participant’s arm length, ensuring that all targets were in front of the 
participants, and excluding targets too close to their trunk. 
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• The distance between the target’s center and the horizontal plane passing through the 
participant’s shoulder did not exceed two thirds of the participant’s arm length, 
excluding targets too close to the legs. 

The remaining targets spanned a roughly hemispherical region centered on the shoulder (cf 
Plausible target set Fig. 1a and Fig. 2a). The random drawing went until 300 suitable targets 
were obtained, which were then shuffled (half of them treated as picking locations and the 
other half as placing locations) to form a sequence of alternating bottles and platforms. 
 

Possible Targets Set for Test Phases. A second targets set was generated to cover the 
participant’s reachable space more accurately. This was achieved by applying an 
unsupervised learning algorithm called Growing Neural Gas (GNG)34 to arm angular 
configurations previously recorded in the Initial Acquisition phase. A GNG is a type of self-
organizing map whose structure is based on a graph where each node is associated with a 
position in the feature space (in our case, the 7-dimensional space of joint angles describing 
an arm posture). It is trained through a growing process that fits the graph’s topological 
structure to the input data by incrementally moving existing nodes and adding new ones. This 
process allows the graph to “learn” the input data’s topology in terms of size and local 
density, and returns a set of nodes directly within the feature space by the end of the training 
(cf red dots Fig. 1d). 

 
In the present case, the input data corresponded to the Virtual Arm’s postures performed by 
the participant during the Initial Acquisition phase, downsampled by a factor 10 for the 
growing process to remain time-efficient. In this way, the neural gas grew inside the region of 
the configuration space effectively explored when the participant moved their arm to 
complete the task. The training parameters were tuned to return 200 nodes, and the 7-DoF 
postures associated with these nodes were transformed into a set of 200 Possible targets using 
forward kinematics solving (cf Possible target set Fig. 1d and Fig. 2a). The generated targets 
were then ordered in a sequence by randomly drawing targets from the set in a way that 
prevented two consecutive targets from being too close (< 20 cm) to each other. 
 
Because participants with arm amputation did not perform the Initial Acquisition phase, the 
GNG was applied on data recorded from previous participants of Exp1, following a similar 
reasoning as behind the Generic ANN. The data from the Initial Acquisition phases of the 10 
participants for Exp1 were then filtered as exposed previously for plausible targets (except 
that ranges of motion associated with stump motion were applied), and downsampled by a 
factor 100 to obtain an amount of input samples comparable to that used in Exp1 and 2 (where 
data from a single recording session was downsampled by a factor of 10). The growing 
process and targets generation from the resulting postures followed the same method as 
explain previously, except that mirror symmetry with respect to the medial plane was applied 
as appropriate to accommodate the amputated side and the valid arm side used for participants 
in Exp3. 
 
Experimental Phases.  

Familiarization. The first phase was designed to allow participants to familiarize 
themselves with the apparatus, virtual scene and experimental task. During this phase, able-
bodied participants drove the Virtual Arm to perform up to 3 blocks of 50 trials while target 
locations followed the first items of the Plausible Targets Set. Hard Constraints (2cm, 5°) 
were applied to the target zone to ensure maximal use of the range of motion. The time limit 
was set at 5s, with the experimenter being able to manually skip a trial upon request in the 
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event of a participant having issues completing this trial. The Familiarization phase ended 
when the participant was able to reach most targets comfortably. 
For amputees, the 5s time limit was withdrawn so that they could freely explore the apparatus. 
Relaxed constraints (4cm, 10°) were applied to mimic the constraints applied during the 
following Test phases in Exp3. For the stump side, participants drove the Hybrid Arm using 
predictions from the Generic ANN to reach targets from the possible targets set. For the valid 
side, the Familiarization phase was done on the same targets after they were mirrored 
symmetric with respect to the medial plane, and the participant drove the Virtual Arm. 
 

Initial Acquisition. The aim of the Initial Acquisition phase was to record 
participants’ natural movements in order to train their Own ANN used in Exp1 and 2, and to 
train the Generic ANN used in Exp2 and 3. The participant controlled the Virtual Arm while 
the Plausible Targets Set was used to elicit 300 trials. As in the Familiarization phase, hard 
constraints (2cm, 5°) were applied with a 5s time limit. In order to promote arm movements 
only, participants were asked to keep their back against the chair and not to move their trunk.  

 
Test. The Test phases aimed at comparing performances achieved using the Hybrid 

Arm or the Virtual Arm. When using the Hybrid Arm, either the Own or the Generic ANN 
was interfaced so that at each time step, the ANN received 7 inputs and predicted 5 joint 
angles. As in the training data, 2 of these inputs were the proximal joint angles extracted from 
the actual shoulder’s motion and mimicked by the Hybrid Arm’s proximal DoFs. However, 
contextual information provided by the 5 remaining inputs was different from that of the 
training data. Indeed, instead of expressing the hand location, they expressed the target 
location (bottle or platform), thereby being congruent with the current goal of the task. The 
distal joint angles predicted by the ANN were then sent back to the simulation engine in order 
to update the Hybrid Arm’s posture. As in the Initial Acquisition phase, participants were 
required to perform the task by moving their own arm in order to bring the virtual hand on the 
target, with the help of the semi-transparent arrow. They were given no details regarding the 
operation of the Hybrid Arm, and instructed to complete the task by performing arm 
movements as natural as possible. For test phases of Exp2 and 3, the instruction « to keep 
their back against the chair and not to move their trunk » was somehow relaxed such that they 
were allowed to move their trunk only if deemed absolutely necessary to reach the target. One 
Test phase consisted of 200 trials corresponding to the Possible Targets Set, conducted with 
relaxed constraints (4cm, 10°) and a time limit extended to 10s. 
 
Protocols. Exp1 aimed at recording natural arm movements from multiple subjects in order to 
train the Generic ANN for Exp2 and 3, and to compare performances using either the Virtual 
Arm or the Own ANN. The push-button was placed under the participant’s left hand, and each 
participant performed a Familiarization phase and an Initial Acquisition phase, followed by 
two Test phases: one with the control of a Hybrid Arm based on the Own ANN predictions, 
and one with the Virtual Arm (Fig. 3a). During all those phases, participants were instructed 
not to move their trunk in order to perform only the arm movement needed to get the target. 
 
Exp2 aimed at comparing performances with the Generic and Own ANNs, and to validate that 
a Generic ANN trained on right-handed participants could be used by left handed participants. 
The push-button was placed on the ground under the participant’s dominant foot, and each 
participant performed a Familiarization phase and an Initial Acquisition phase, followed by 
three Test phases: One with the Own ANN, one with the Generic ANN, and a final baseline 
Test phase using the Virtual Arm. The order of Test phases with the Own and Generic ANNs 
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were counterbalanced among participants, with equal number of left-handed and right-handed 
participants in each group (cf Fig. 3a). 
 
Exp3 aimed at evaluating the performance achieved by amputees using control from the 
Generic ANN, and compare them to the performance with their valid arm. The push-button 
was placed under the participants’ dominant foot, and participants performed a 
Familiarization phase followed by two Test phases with the Generic ANN on their amputated 
side. Then, after proper calibration with their valid arm (i.e., contralateral to the amputation), 
participants performed a Familiarization phase followed by a baseline Test phase with the 
Hybrid Arm (Fig. 3a). 
 
Data Reduction and Metrics. Data were first filtered to remove trials with substantial 
measurement errors associated with motion capture. Two filters were applied: one for 
« freezing » behavior and one for « jumping » behavior. The « freezing » filter removed trials 
where a sensor position (e.g. trunk, arm, fore-arm and hand sensors during baseline phases 
and only trunk and arm sensors for test phases) stayed still for at least 0.5s. The « jumping » 
filter removed trials with a shoulder position moving more than 0.01m between two samples 
(equivalent to a velocity of 0.9 m/s). Over all experiments, this process removed an average of 
3.8 (± 7.6) % trials per participant and experimental phase. 
 
Given the high success rate associated with all phases of all experiments (average of 99.22 ± 
1.7 % trials validated per participant and experimental phase), analyses were conducted on the 
following metrics computed on trials validated (i.e., button pressed while being within the 
target zone) in all Test phases by a participant. 
 
The Movement Time (MT) refers to the time taken to reach and validate a target. It is 
computed as the time between target appearance and the moment the target is validated using 
the push-button. 
 
The shoulder position Spread Volume (SV) is obtained by computing the ellipsoid containing 
90% of shoulder position during a phase (see33 for more details). Because a certain amount of 
shoulder movement naturally occurs during reaching, the SV at baseline should be viewed as 
a benchmark over which compensatory movements probably occurs. 
 
Physical Proof of Concept (POC). The feasibility of our approach in the physical world was 
established through a Proof of Concept (POC) conducted using a humanoid robotic platform 
with human-like arm dimension and Degrees of Freedom35. The arms of the platform are 
linked to a fixed robotic trunk with no shoulder translational DoF. Thus, the robotic arm is not 
worn by the participant, allowing the inclusion of able-bodied individuals, and preventing the 
use of compensatory movements from the trunk and shoulder to perform the task. During the 
experiment, participants stood still, setback to the robotic platform, to avoid visual occlusion 
of the working space (Fig. 4a). Only the right arm of the robotic platform was used, and the 
participants could trigger the opening and the closing of the robotic gripper using a push 
button placed under their foot. The same virtual reality setup as in Exp1 to 3 was used for the 
POC (see Apparatus) to link the participant’s arm movements to those of the virtual arm. 
After calibrating the virtual arm (see Virtual Arm Calibration), the headset was removed. 
Targets were rectangular sponges fixed with wooden sticks on a 45cm X 40cm bench (length 
X height) and a trial was defined as an attempt to reach and grasp a target with the robotic 
arm. Participants were instructed to place their arm along their body at the beginning of each 
trial and waited for a sound signal (i.e., beginning of the trial) to reach and grasp the target. 
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As in virtual reality, Familiarization and Test phases were conducted to familiarize the 
participant with the task and to compare controls applied in different Test phases. The phases 
were divided into blocks of 5 targets for practical reason (Fig. 4b), and numbers written on the 
sponges indicated the order with which participants had to reach and grasp them within each 
block of target configurations. The position and orientation of each sponge was set at the 
beginning of each block using a supplementary sensor. Targets could be vertical or tilted at 45 
and -45° on the frontal plane, and varied in depth by about 10 cm. Block 1 was used to 
familiarize the participants with the control(s) used (Fig. 4c). In POCa, b and c, blocks 1 to 3 
were then performed with each control tested, and a Test phase was constituted by pulling 
trials from all blocks performed with a given control. In POCa-b, participant performed each 
block of target configuration with both controls before going to the next block of target 
configuration. Half participants began with the control based on natural arm movements 
(TestNat) while the other half began with the control based on the Generic ANN 
(TestGeneric). Participants of POCd only performed the first block for Familiarization and 
Test phases. The joint configuration of the Virtual Arm (see Hybrid Arm Control) or that of 
the control based on the Generic ANN (see Own and Generic Arm ANN) were applied to the 
robotic arm depending on the control tested. The data used to train the Generic ANN were 
remapped according to the dimensions of the robotic arm. To prevent sharp acceleration at 
target change when using the control based on the Generic ANN, 0.75ms was allotted before 
the beginning of each trial (signaled by a sound) for the robotic arm to smoothly reach the 
first prediction from the ANN. As in Exp1 to 3, only trials validated (i.e., trials with a sponge 
grasped with the gripper without falling) in all Test phases by a participant were considered 
for further analysis. Movement time (MT) was defined here as the time spent between the 
beginning of the trial and the last close of the gripper and was computed for each validated 
target. Since shoulder translations had no impact on the robotic arm movements, and since the 
participants’ position in the room was not restricted, the shoulder position Spread Volume 
(SV) was not computed. 
 
Statistical Analysis. MT was grouped by participant and test phase, and median values over 
trials were extracted for each of these groups. By design, the SV already gave a single value 
per participant and test phase. In this way, we obtained samples of one value per participant 
for each combination of metric and test phase. For Exp1 and POCa-b, two test phases (with 
the Virtual Arm and the Own ANN, or with the Virtual Arm and the Generic ANN applied to 
the robotic arm, respectively) were compared. After testing for normality using the Shapiro 
test, either a paired T-test or a Wilcoxon test was conducted. For Exp2 and 3, three test phases 
were compared, involving either the 7-DoF Virtual Arm, the Own ANN, or the Generic ANN. 
Thus, after testing for normality using the Shapiro Test and for homogeneity of variances 
between modes using the Maulchly’s Test, either a repeated measures ANOVA or a Friedman 
test was conducted. If a significant difference was found at this level, post-hoc analyses were 
conducted using either Tukey tests or Conover tests, respectively. The high success rates 
observed led to equality between several participants (e.g., at 100% success), which prevented 
the use of statistical tests based either on normality assumption or on ranking procedure. 
Thus, statistical differences reported here were assessed by comparing the differences in the 
achievement of each target along all the phases of each experiment. For Exp1 and POCa-b, a 
McNemar test for paired samples was conducted to find statistical differences between the 
two phases. For Exp2 and Exp3, a Cochran's Q test for paired samples was first performed 
followed by a post-hoc McNemar test if needed. Data processing and statistical analysis were 
carried out with the R software environment, with a significance threshold set at α = 0.05 with 
a Bonferroni correction applied if needed. Due to the insufficient number of participants, no 
statistical analysis was conducted for POCc and d. 
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Data and code availability.  
Raw data recorded during the three experiments, and code required for data treatment and 
ANNs training, are available at https://doi.org/10.5281/zenodo.7187850. Further information 
and requests should be addressed to the corresponding author Aymar de Rugy 
(aymar.derugy@u-bordeaux.fr). 
 
Acknowledgments 
The authors would like to thank Émilie Doat and Léa Haefflinger for their help during the 
experiments, Gerald E Loeb for interactions on an earlier version of the control proposed here 
and feedback on this manuscript, and all participants who took part in this study. This work 
was supported by the CNRS interdisciplinary project RoBioVis, and the ANR-DGA-ASTRID 
grant CoBioPro (ANR-20-ASTR-0012-1). 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 3, 2023. ; https://doi.org/10.1101/2022.10.15.22281053doi: medRxiv preprint 

https://doi.org/10.5281/zenodo.7187850
https://doi.org/10.1101/2022.10.15.22281053
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Participants 
Time since 
amputation 
(months) 

Stump 
circumference 

(cm) 

Stump length 
(cm) 

Amputated 
arm side 

Amputee 1 20 33 15 R 
Amputee 2 48 30 25 L 
Amputee 3 12 30 35 L 
Amputee 4 132 34 23 R 
Amputee 5 120 35 30 R 
Amputee 6 276 31 28 L 
Amputee 7 108 32 23 L 

 

Table 1. Exp3 participants’ amputation description. Each line contains the time since 
amputation, the stump circumference and length, and the side of the amputation for a 
participant (R = right, L = left). 
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Supplementary Information 
 
SupplementaryVideo1: https://youtu.be/XPIlkrjwTtc 
A representative able-bodied participant performing the pick and place task. 
 
SupplementaryVideo2: https://youtu.be/Utoa9aYWRK0 
Transhumeral amputee participant 1 performing the pick and place task with stump 
movement-based control. For anonymization purpose the number reported is not the one of 
the Table 1 or the Supplementary Note 1. 
 
SupplementaryVideo3: https://youtu.be/RpZwwJ9-bEg 
Transhumeral amputee participant 2 performing the pick and place task with stump 
movement-based control. For anonymization purpose the number reported is not the one of 
the Table 1 or the Supplementary Note 1. 
 
SupplementaryVideo4: https://youtu.be/T2NR02exeR0 
Transhumeral amputee participant 3 performing the pick and place task with stump 
movement-based control. For anonymization purpose the number reported is not the one of 
the Table 1 or the Supplementary Note 1. 
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Supplementary Fig. 1. a. ANNs Inputs and Outputs, displayed together with movements 
done to get the joints range of motion (black arrows). ANNs Inputs include shoulder flexion-
extension (θS-FE), shoulder abduction-adduction (θS-AA), target position in relation to the 
shoulder (PT-X, PT-Y and PT-Z), and target orientation (as angles of rotation) with respect to the 
frontal and sagittal plane (θT-F and θT-S). ANNs outputs include all distal angles from the 
humeral rotation included: humeral rotation (θH-R), elbow flexion-extension (θE-FE), forearm 
pronation-supination (θF-PS), wrist flexion-extension (θW-FE) and radial-ulnar deviation (θW-

RU). b. Remapping target position for different arm morphologies. Two arms with the same 
angular configuration but different segments length lead to different positions of the target 
(orange arrows). Forward kinematics was used to remap target position for a subject with a 
different arm segments’ length (remapping for a shorter arm displayed). Note that the target 
orientation remains unaffected. 
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Supplementary Note 1: Feedback from amputated participants of Exp3 about the 
movement-based prosthesis control. The following are oral reports formulated either 
spontaneously or during informal talks with the experimenter while the experiment was in 
pause or finished. English translations are provided followed by the original French sentence 
in brackets. For anonymization purpose the numbers reported are not the ones of the Table 1 
or the Supplementary Videos 2 to 4, and the number of years since amputation has been 
replaced by X in the oral report of Amputee 7. 

Amputee 1: 
Participant: « A prosthesis that would be controlled like that? I take it right away. » 
(Participant : « Une prothèse qui se dirigerait comme ça ? Je prends de suite. ») 

Experimenter: « Do you feel as it’s a natural movement ? »  
Participant: « Yes. »  
(Expérimentateur : « Vous avez l’impression que c’est le mouvement naturel ? » 
Participant : « Oui. ») 

Amputee 2: 
Participant: « At the end, it is quite intuitive. » 
(Participant : « Finalement, c’est assez intuitif. ») 

Amputee 3: 
The participant reported that he would use a prosthesis behaving like this. 
(Le participant rapporte qu’il prendrait une prothèse qui se comporterait comme cela.) 

Amputee 4: 
Participant: « Doing a real arm movement, this is enjoyable. » 
(Participant : « Faire un vrai mouvement du bras, c’est agréable. ») 

The participant reported that he found the arm a bit too stiff from time to time. 
(Le participant a rapporté qu’il trouvait le bras un peu trop raide à certain moment.) 

Amputee 5: 
Participant: «  It’s intuitive, it’s easy. » 
(Participant : « C’est intuitif, c’est facile. ») 

Amputee 6: 
Participant: « The movement doesn't feel like a natural movement to me, it's when I'm on 
target that the wrist is well placed. » 
(Participant : « Le mouvement ne me fait pas penser à un mouvement naturel, c’est quand je 
suis sur la cible que le poignet est bien placé. ») 

Amputee 7: 
Participant: « It’s surprising. » 
(Participant : « C’est étonnant. ») 

Participant: « X years since I was able to do that, this is moving. »  
(Participant : « Il y a X ans que je ne peux plus faire ça, c’est émouvant. ») 
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