
 

Abstract— In progressing the use of big data in health 
systems, standardised nomenclature is required to enable 
data pooling and analyses. In many radiotherapy planning 
systems and their data archives, target volumes (TV) and 
organ-at-risk (OAR) structure nomenclature has not been 
standardised. Machine learning (ML) have been utilized to 
standardise volumes nomenclature in retrospective 
datasets. However, only subsets of the structures have 
been targeted. Within this paper, we proposed a new 
approach for standardizing all the structures nomenclature 
by using multi-modal artificial neural networks. A cohort 
consisting of 1613 breast cancer patients treated with 
radiotherapy was identified from Liverpool & Macarthur 
Cancer Therapy Centres, NSW, Australia. Four types of 
volume characteristics were generated to represent each 
target and OAR volume: textual features, geometric 
features, dosimetry features, and imaging data. Five 
datasets were created from the original cohort, the first four 
represented different subsets of volumes and the last one 
represented the whole list of volumes. For each dataset, 15 
sets of combinations of features were generated to 
investigate the effect of using different characteristics on 
the standardisation performance. The best model reported 
99.416% classification accuracy over the hold-out sample 
when used to standardise all the nomenclatures in a breast 
cancer radiotherapy plan into 21 classes. Our results 
showed that ML based automation methods can be used for 
standardising naming conventions in a radiotherapy plan 
taking into consideration the inclusion of multiple 
modalities to better represent each volume.  

 
Index Terms— Multimodal learning; Artificial Neural 

Networks; Data Standardization; Cancer 

I. Introduction 

ADIOTHERAPY data are used in various clinical research 

questions aiming to improve patients’ treatment and assess 

patterns of care such as dosimetry analyses, outcome 

modelling, toxicity, and automated contouring [1-5]. 

Radiotherapy data are large and require extensive amounts of 

time to clean and process. According to Dasu and Johnson, 80% 

of the time in data analytical research is taken up by data 

cleaning, curation, and preparation of medical records [6]. 

In breast cancer radiotherapy, individualised treatment plans 

are developed to optimise each patient’s radiation dose 

delivery. The patient's restricted-dose organs-at-risk (OAR) and 

high-dose tumour target volumes (TV) are defined, together 
with additional regions-of-interest (ROIs) belonging to other 

categories such as machine specific ROIs, optimization 

structures, and control structures. OARs include the heart, left 

lung, right lung, combined lung, and the contralateral breast. 

TVs include the breast clinical target volume (CTV) and 

planning target volume (PTV), chest wall CTV and PTV, nodal 

CTVs and PTVs. Control structures include planning risk 

volumes (PRV) (e.g. heart PRV, lung PRV). Other contours 

include various number of ROIs (e.g. 2_Elekta_Shell_0, 

external, RING).  

As shown in Fig. 1, inconsistency has been observed in the 

OAR and TV nomenclature in retrospective datasets. 
Standardised approaches are required to classifying TV and 

OARs in any cancer site, to utilise big data for radiotherapy 

applications and enable data pooling and analyses. In many 

radiotherapy planning systems and retrospective datasets, OAR 

and TV nomenclature has not been standardised. This 

inconsistency might be due to several reasons, such as the lack 

of specific templates or protocols for structure naming, 

variability in naming conventions between institutions, 

clinicians’ lack of adherence to naming protocols and spelling 

errors. Furthermore, nomenclature may change with time as 

new radiotherapy techniques are implemented. Despite strict 
protocols, inconsistency in structure names have been also 

recognized as an issue in clinical trials [7].  

To address this issue, health institutions released protocols 

for standardizing treatment structures at certain timeframes [8, 

9]. To handle inconsistency in naming structures, the American 

Association of Physicists in Medicine (AAPM) developed a 

protocol for standardizing structure names to enable data 
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pooling in multiple areas such as outcomes research, registries, 

and clinical trials, known as TG-263 [10]. However, patients 

treated before the release of these protocols still require 

standardization of OARs and TVs for inclusion in retrospective 

studies. Furthermore, some limitations in treatment planning 

software character limits the way structure names are displayed 

during the treatment planning process and has resulted in these 
protocols being incompletely implemented. There are also 

challenges for centres not using English for structure naming. 

One possible method to handle inconsistency in naming 

structures is to manually check each patient plan and relabel the 

structures into standardized names. This is considered 

expensive and unachievable, in platforms that utilize large 

datasets from multiple institutions, such as The Australian 

Computer Aided Theragnostics network (AusCAT), which is a 

framework that was established across national and 

international radiation oncology departments, to enable data 

mining and learning from clinical practice datasets [11].  

Another possible solution is to develop rule-based systems 
following discussion with clinicians. To handle variations in 

each environment, clinical staff and researchers are usually 

involved. The process includes discussion between the clinical 

staff and the researchers responsible for preparing the datasets 

to write scripts to interpret the variations. This entails 

time/effort from each of the involved parties. The variations are 

then grouped under a standardized name for each structure. 

With new patients’ records added, the current rules are revisited 

and updated to match variations in the updated records. 

Hereafter, these rules gain complexity with time. Manual 

intervention is still required to validate the results, as no rules 
can cover the whole set of conditions. This process is also 

considered expensive and time consuming, especially with 

datasets from multiple institutions. Considering the time and 

effort required for standardizing nomenclature, we observed the 

need for new systems to automate the process of standardizing 

OARs and TVs naming. 

In recent years, machine learning (ML) algorithms have been 

incorporated to standardize OARs and TVs nomenclature over 

multiple types of cancer patients’ datasets. This included lung, 

prostate and head and neck cancer datasets [9, 12, 13], but to 

our knowledge, no model has yet been developed to standardise 
nomenclature in breast cancer radiotherapy data. These 

methods utilized various types of ML algorithms such as 

convolutional neural networks (CNNs), gradient-boost machine 

(GBM), and multi-layered perceptron (MLP). In these studies, 

2D images, 3D volumes, extracted features from volumes and 

images, or extracted features for text were used as input to the 

models trained to standardise naming conventions. The 

developed studies did not consider all the TVs and OAR used 

in treatment plan, which is needed for real world applications. 

Hereafter, we propose a new approach for standardising 
nomenclature that can be utilised throughout the whole list of 

breast radiotherapy plan volumes, as well as portions of it by 

using artificial neural networks (ANNs). Section II reviews 

related work; Section III describes materials and methods; 

Section IV reports experiments and results; Section V derives a 

conclusion.  

II. RELATED WORK 

Rozario  et al. conducted a feasibility study, which was 
among the first studies that incorporated ML algorithms to 

automate standardizing nomenclature, using a CNN to 

standardize organ labelling in prostate and head and neck 

cancer datasets [12]. Five OARs were used in the prostate 

dataset and nine OARs in the head and neck cancer dataset. 2D 

images were extracted and used as input to the CNN. 100% 

classification accuracy was reported with the proposed 

approach, but no TV have been considered. Hence, TV and 

other structures should be handled before running the 

developed model.  

Another framework was proposed to standardize OARs [14, 
15], which utilized an ensemble of CNNs in head and neck 

cancer patients (3DNNV). The framework consisted of multiple 

ResNets, which is a CNN originally trained on the ImageNet 

dataset, with non-local blocks that were combined using 

majority voting [16]. The authors proposed adaptive sampling 

and adaptive cropping (ASAC) to scale and crop the images as 

input to the networks. Three cohorts were utilized in the study, 

one for training and the rest for testing. 28 head and neck OARs 

were selected for modelling in this study. 3D volumes were 

used as input to the ensemble components. Several baseline 

models were introduced for comparison and analyses purposes. 

These models were compared to the proposed framework, 
which reported better performance in terms of three evaluation 

metrics: true positive rates (TPR), area under the curve (AUC) 

of the receiver operating characteristics (ROC), and f1-score. 

The proposed framework was also compared to two alternative 

approaches, the first uses a fuzzy string-matching algorithm 

 
Fig. 1.  Variations in some OARs and TVs for two breast cancer patients. Left image: breast ctv named CTV_R_BREAST; left lung named 

LT_LUNG; right lung named RT_Lung. Right image: breast ctv as CTV_50; left lung as LUNG_LT; right lung as LUNG_RT.   
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while the other uses a five layered CNN. The authors trained 

the five layered CNN using their dataset. However, the fuzzy 

model was used for testing only. Better performance was 

obtained with the proposed framework compared to the two 

alternative approaches. However, these studies lack the use of 
TV such as the Gross-Tumour Volume (GTV), PTV, and CTV.  

Text features have also been used in standardising 

nomenclatures. Syed et al. utilized ML algorithms to 

standardize OARs in lung and prostate cancer datasets into TG-

263 standardised names [17]. A dataset that consisted of 794 

prostate and 754 lung cancer patients from 40 different centres 

managed by the Veterans health administration (VA) was used 

for developing the model. Another dataset was collected from 

the radiation oncology department at Virginia Commonwealth 

University (VCU) and used as the hold-out sample. 10 prostate 

and 9 lung OAR were identified in the study. The other 

structures were named as non_OAR. The structure names were 
processed and manipulated to numerical representations, then 

an algorithm named fastTEXT was used for training the 

collected records. The authors reported an f1-score of 0.93 for 

prostate structures and 0.95 on lung structures over the hold-out 

samples. Similarly, the study did not consider TV, which 

usually adds the highest levels of complexity in the 

standardization process. 

Sleeman et al. proposed an approach to standardize structures 

based on volumetric bitmap representations and five different 

ML algorithms [9]. Prostate and lung cancer datasets were 

included in the study. Apache spark was used to train the multi-
centred datasets across 40 different institutions. A dataset that 

consisted of 1200 patients was used for training and validation, 

while a dataset that consisted of 100 patients was used for 

testing (50 lung, 50 prostate). Five structures were annotated for 

the lung patients and seven for the prostate patients. Two 

datasets were created: curated dataset which only contains the 

selected structures, and non-curated data which contains 

everything expected in a study. Bitmap images were created 

and converted to feature vectors. Two types of images were 

created with each dataset (curated/non-curated): one contained 

the patient’s bone anatomy, and the other did not. The generated 

feature vectors consisted of hundreds of thousands of features, 
which required the inclusion of dimensionality reduction 

through truncated singular value decomposition (SVD). The 

records were reduced to 100 input features. Five different 

classifiers were used in this study: naïve bayes (NB), random 

forest (RF), gradient-boost machine (GBM), multi-layered 

perceptron (MLP), and support vector machine (SVM). The 

datasets were manipulated to obtain balanced samples for each 

of the included organs. The f1-score was used to measure the 

performance of each classifier. The MLP outperformed the 

other algorithms in majority of the tests over the curated 

datasets. The results showed improved results with the 
inclusion of bone anatomy in the datasets. Only one target 

volume (PTV) was utilized in this study. The highest accuracy 

achieved by a model was less than 92% when using the non-

curated datasets. 

III. MATERIALS AND METHODS 

A. Data Collection and Labelling 

A dataset consisting of 1613 left/right breast cancer patients 

treated between 2014 and 2018 was collected from Liverpool 

& Macarthur Cancer Therapy Centres, New South Wales, 

Australia. This study was approved by the NSW Population & 

Health Services Research Ethics Committee (2019/ETH01550; 

11/09/2016). Each patient’s radiotherapy treatment plan 
consisted of a set of volumes with inconsistent names over the 

whole cohort. Several discussions with the clinicians at the 

centres were required to label the cohort. The labels were 

clustered into five different groups shown in TABLE I.  

B. Input Features Generation 

 Discussions with clinicians about how they determined what 

a non-conventionally labelled structure was led to several 
observations. Initially, the clinicians tend to look at the text to 

categorize each structure. The structure image might be 

checked and visualized for further interpretation. Furthermore, 

the position of the structure may be analysed. Finally, the 

dosimetry values might be checked for analysing the structure 

name. We aimed to utilize various types of features to mimic 

the approach followed by the clinicians with the use of neural 

networks that are originally inspired by the human biological 

brain. Four types of characteristics were generated for each 

structure/volume in each patient radiotherapy plan:  

• Textual features: A treatment plan consists of 

volumes with associated names. These 
volumes/structures are defined using alphanumerical 

characters that represent various patient structures. A 

set of features was created by highlighting the 

existence of specific text blocks in each structure. e.g. 

a feature ‘breast’ was introduced where a value of 1 

was associated with all the structures that contained 

the text ‘breast’, otherwise a value of 0 was allocated. 

TABLE I 

STANDARDISED LABELS AND CATEGORIES OF THE STRUCTURES. 

Nb Class Category Unique values 

1 Combined lungs OAR 17 

2 Contralateral breast OAR 21 

3 Heart OAR 3* 

4 Left lung OAR 9 

5 Right lung OAR 9 

6 Breast CTV TV 89 

7 Breast PTV TV 161 

8 Chestwall CTV TV 19 

9 Chestwall PTV TV 13 

10 Tumourbed CTV TV 30 

11 Tumourbed PTV TV 12 

12 Axilla CTV Nodal TV 42 

13 Axilla PTV Nodal TV 4 

14 Imc CTV Nodal TV 18 

15 Imc PTV Nodal TV 16 

16 Scf CTV Nodal TV 23 

17 Scf PTV Nodal TV 17 

18 Control structure Control 120 

19 Boost structure Boost 36 

20 Combined structure Comb TV 16 

21 Exclude exclude 328 

*low number of variations was observed with the naming conventions of the heart volumes. 
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15 features were introduced to represent the 

occurrence of substrings in structure names (breast, 

lung, chest wall or cw, axilla or ax, etc.). Five 

additional features were created that summarises: 

number of letters in a structure name, number of digits 
in a structure name, number of spaces in a structure 

name, number of other characters in a structure name 

(commas, underscores, etc.), and the total number of 

characters in a structure name. In total, 20 textual 

features were extracted from each structure/volume 

text.  

• Imaging features: 2D central slices were created to 

include details about the structure shape, size, and 

imaging biomarkers in modelling. The central slice 

was defined as the CT slice with the highest number 

of tumour pixels on the z-axis. Each structure binary 

mask was overlaid on the CT image to select the pixel 
values of the central slice. The Hounsfield Units (HU) 

representing pixel values inside the structure were 

selected, while pixel values surrounding the structure 

were replaced by zeros.  

• Geometry features: Positional features were 

extracted to include details of the position of each 

volume. The coordinates of the centroid of the 3D 

volume were calculated and included as features. For 

each structure, the magnitude of the vectors 

connecting the centroid of the structure to the point (0, 

0, 0) in the three-dimensional space were calculated. 
The directions over each axis (cosine angles) of the 

magnitude vector were also calculated. The index of 

the central slice over the z-axis was also included. 

Finally, the number of voxels representing the 

structure was included. In total, nine positional and 

volumetric features were used: x, y, and z coordinates 

of the centroid centroid; cosine angles on each 

dimension of the magnitude vector connecting (0, 0, 

0) to the centroid; magnitude; number of voxels; 

index).  

• Dosimetry features: A total of 10 dosimetry features 
were calculated for each structure: minimum dose, 

median dose, mean dose, maximum dose, 

V%20.0,V%10.0,V%5.0,V%95.0,V%105.0,V%110.0

, D50.0, where Vx is the dose received by x% of the 

volume and Dy is the volume receiving at least y% of 

the prescription dose. 

C. Datasets Generation and Pre-processing 

Five datasets were created from the original cohort, the first 

four represented different subsets of volumes and the last one 

represented the whole list of volumes. The categories of the 

classes used in each study are summarised in TABLE II (further 

details in Appendix A). The first dataset represents a case study 

where OARs were targeted for standardisation. In other words, 

if methods have already been prepared to standardise all/some 

of the other categories (TV, nodes TV), and there is no need to 

utilize a full model. With Dataset5, it was assumed that no 
subsets have been standardised and there is a need to identify 

any possible volume in the patient radiotherapy plan.   

To build ML models, the datasets were partitioned into 

training, validation, and test samples. The training dataset was 

used to train the algorithm. The validation dataset was used to 

track the model performance and to avoid overfitting. The test 

dataset was used to evaluate the performance of the developed 

model on unseen samples. 

The original dataset consisted of 1613 patients. 173 patients 

were selected as the test dataset, while 1440 patients were used 

for training and validating the ML algorithms. The number of 
classes varied per patient. We targeted the selection of a 

stratified cohort, where at least 10% of each class will be 

obtained in the test cohort in each study, e.g. the total number 

of patients with internal mammary lymph node (imc) PTV 

volumes was five, one sample was guaranteed for testing. In 

addition, for all the datasets, the same 173 patients were used 

for evaluation.  

ANNs are known to perform better with smaller ranges. 

Three types of features were tabular and one was image data 

(central slices). Text, dose, and geometrical features were 

normalized into smaller ranges (between 0 and 1). As 

mentioned earlier, the pixel values in the imaging data were 
described in HU. For image data, lower (-255) and upper (+255) 

HU bounds were applied over each pixel value in the central 

slices. The central slices were then resized into 64*64 before 

being mapped into values between 0 and 1. Values surrounding 

the structure were reserved as 0 without being altered in the 

normalisation process.  

While labelling the patients datasets, it was noticed that a 

class might occur one or more times in each plan, e.g. a patient 

might have a structure named ctv42,4 and another structure 

TABLE II 
DATASETS 

Dataset category 
nb of 

classes 
classes 

Dataset 1 OARs 5 heart, combined lungs, left lung, right lung , contralateral breast 

Dataset 2 OARs + TVs 11 heart, combined lungs, left lung, right lung , contralateral breast, breast CTV, breast 

PTV, chestwall CTV, chestwall PTV, tumourbed PTV, tumourbed CTV 

Dataset 3 
OARs + TVs +nodes 

TVs 
17 

heart, combined lungs, left lung, right lung , contralateral breast, breast CTV, breast 

PTV, chestwall CTV, chestwall PTV, tumourbed CTV, tumourbed PTV, scf CTV, scf 

PTV, axilla PTV, axilla CTV, imc CTV, imc PTV 

Dataset 4 

OARs+ TVs+ nodes 

TVs + combined 

structure + boost 

structures + control 

structures 

20 

heart, combined lungs, left lung, right lung , contralateral breast, breast CTV, breast 

PTV, chestwall CTV, chestwall PTV, tumourbed CTV, tumourbed PTV, scf CTV, scf 

PTV, axilla PTV, axilla CTV, imc CTV, imc PTV, combined structure, control structure 

, boost structure 

Dataset 5 

OARs+ TVs+ nodes 

TVs + combined 

structure + boost 

structures + control 

structures + excluded 

21 

heart, combined lungs, left lung, right lung , contralateral breast, breast CTV, breast 

PTV, chestwall CTV, chestwall PTV, tumourbed CTV, tumourbed PTV, scf CTV, scf 

PTV, axilla PTV, axilla CTV, imc CTV, imc PTV, combined structure, control structure 

, boost structure, exclude 
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named ctv_l_breast. The two structures will be interpreted as 

left_breast_ctv, however, one will be selected as final. In real 

case scenarios, this kind of situation is expected. For this 

reason, we removed the duplicates/alternatives from the 

training dataset (to explicitly train the model to detect similar 

patterns in new datasets), but for evaluation purposes we 

introduced two datasets: 

• Original test dataset: consists of the final selected 

structures by the clinicians 

• Extended test dataset: consisted of all the structures 

in the dataset, with the final being flagged.  

D. Artificial Neural Networks (ANNs) 

An ANN is a ML algorithm inspired by the human biological 

brain. It processes information through multiple processing 

units, known as neurons, distributed over multiple layers to 

explore patterns and trends in data. To learn from data, the ANN 

is trained for a number of rounds, known as epochs, where the 
data samples are shown repeatedly to the ANN architecture in 

an attempt to minimise the error between the actual and 

predicted output. Neural networks are trained by updating 

weights and bias connecting the information processing units 

(neurons) across layers. Deep learning is a branch in ML where 

information are processed in a neural network through multiple 

layers (4 or more) of neural processing units. 

The ANN can be adapted to accept any type of input data 

such as tabular, images, and multi-modal records. In neural 

networks where the input data consists of numerical features, 

fully connected layers are typically utilized to form a Feed 

Forward Neural Networks (FFNN). In neural networks where 

the input data consists of images, blocks of convolutional and 

pooling layers are utilized to form a CNN. With multi-modal 

input, both fully connected layers and convolutional blocks are 

used to form a Multi-input neural networks (MINN).  
For each of the five datasets, a total of 15 experiments were 

conducted representing the combinations of the four types of 

input features. FFNNs were utilised with seven case studies that 

used tabular data (Fig. 1a): text, dose, geometry, text + dose, 

text + geometry, dose + geometry, text + dose + geometry. A 

CNN was used with the case study that utilised images only 

(Fig. 2b). To integrate the textual, geometrical, dosimetric, and 

imaging data, multi-input deep ANNs were utilized (Fig. 2c). 

MINNs were utilised with seven case studies that used tabular 

and imaging data: text + image, dose + image, geometry + 

image, text + dose + images, text + geometry + images, dose + 

geometry + images, text + dose + geometry +images.  
The network architectures were the same across each of the case 

studies. The FFNN consisted of three layers with 18 neurons in 

the hidden layer and sigmoid as the activation function. The 

CNN consisted of two convolutional blocks (convolutional, 

pooling, and dropout layers [18]) followed by a flatten layer and 

an output layer as shown in Fig. 2c. The MINN combined the 

FFNN and CNN architectures by removing the last layer, 

adding a concatenation layer followed by an output layer. The 

‘softmax’ activation function as used in the output layer with 

the three architectures. In neural networks with mixed input 

data, a model f is trained by utilizing input features that belong 
to different categories. The output p of the network is defined 

as: 

𝑝 = 𝑓(𝑋1, … , 𝑋𝑛) 
 

Where 𝑋𝑖 in an input modality, 1 < 𝑖 ≤ 𝑛 n is the number 

of input modalities the deep network can receive. The training 

parameters for each network are shown in Table III. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

Four types of volumes characteristics were generated for 

each structure in each dataset (text, dose, geometry, and 

images). A total of 15 combinations of input features were 

generated, each representing an experiment in each dataset. 

Further details are shown in Appendix B. A windows server 

with 10 virtual CPUs and 40GB of RAM was utilized to prepare 

 
Fig. 2.  An overview of the utilized neural networks.  

TABLE III 
PARAMETERS FOR TRAINING THE ANNS. 

parameter value 

Epochs 120 

Batch size 16 

Optimizer Adam  

Learning rate 0.01 

Early stopping If 12 epochs with no improvement 

Reduce learning rate *0.1 if no improvement in 6 epochs 

Loss function Categorical cross-entropy 
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the datasets and to train the ANNs. Keras and Tensorflow were 

used for developing the neural networks [19, 20].  

B. Results and Analyses 

Classification accuracy over the original and extended test 

datasets of each developed model in each dataset for each 

combination of features are shown in TABLE IV and TABLE 

V. Similar to other literature, standardising OAR only 

(Dataset1) can be achieved using only imaging data. Any model 

with images as input showed a 100% accuracy when modelling 

OARs only. Adding the TV (Dataset 2 & 3) highlighted the 

need to include more than one type of features for standardising 
TV nomenclatures. With dose and positional features, the 

feature characteristics for structures (PTVs & CTVs) are quite 

similar and would require additional features for identification. 

It was noticed that using text and images is mandatory to 

achieve reliable models. As expected, combining multiple 

features revealed higher classification accuracy compared to 

using single features. Reliable performance was observed with 

all the datasets when using the text feature as input to the model, 

which aligns with the traditional approach, where clinicians 

tend to look at text initially to standardise nomenclatures. 

The confusion matrix represents the comparison between the 
predicted (x-axis) and true classes (y-axis). The confusion 

matrix for the best performing model with 99.671% 

classification accuracy over the original test sample is shown in 

Fig.3, where 0.329% (10 samples) of the volumes were 

misclassified by the developed model. 6 out of the 10 images 

were predicted not to use (i.e. Exclude) by the model. Further 

details are included Appendix B. 

Similar performance was obtained with the models evaluated 

over the extended test datasets with the best performance being 

reported by model developed using (text + dose + images) with 

99.416% classification accuracy. The confusion matrix for the 

best performing model over the extended dataset with 99.416% 
classification accuracy is shown in Fig.4. 19 samples were 

misclassified by this model, with more than half of them 

predicted as not to use by the model (i.e. exclude). Further 

details about the images are shown in Appendix B. 

The extended dataset might contain multiple structures in the 

same plan interpreted as the same TV/OAR. However, one 

structure will be used as the final structure  for data mining 

analyses. While training, we selected only the structures that 

were reported as final by the clinicians. The other label referring 

to the same structure was assumed as a duplicate, registrar 

contour, etc. For the ‘breast PTV’ , 40 patients in the extended 
test dataset had two or more volumes being referred as ‘breast 

PTV’ with one of them selected by the clinicians as final. We 

selected the structure with the highest probablity generated for 

each of the structures and referred to that as final. For 39 

patients out of the 40, the structure selected as the final by the 

clinicians had the highest probablity in the patient plan. We 

assume that this approach worked because we trained the 

datasets using the final structures only.  

As shown in Fig. 4 and 5, structures with lower numbers of 

occurences were misclassified, which highlights the need for 

more samples to be able to identify such structures. 

C. Discussion 

We have developed different models for each dataset. With 

some datasets, the developed models might be used where some 

features are not possible to generate. With the high accuracy 

being reported with only two types of features, such models will 

be available for use in such cases. 
In addition, there could be some volumes that have already 

been standardised such as the control structures. With the 

successful implementation of the models across the five types 

of datasets, such models can be used where there will be no 

need to standardise the already standardised volumes.  

The time taken to train the two models that revealed the best 

performance over the two test datasets in Dataset 5 was less 

than 1.5 hours. Further details about the time taken to train each 

TABLE IV. 

CLASSIFICATION ACCURACY OVER THE TEST DATASET. 

Features 
Dataset 

1 

Dataset 

2 

Dataset 

3 

Dataset 

4 

Dataset 

5 

Text 76.985 85.644 87.027 90.746 93.46 

Dose 58.412 56.44 48.184 43.892 50.279 

Geometry 97.712 77.523 77.317 62.189 65.265 

Images 100 84.085 82.95 70.862 76.996 

Text + Dose 74.966 86.218 87.027 90.587 94.019 

Text + Geometry 100 99.672 99.555 99.63 99.474 

Text +  Image 100 100 99.852 99.683 99.441 

Geometry +  Dose 98.250 82.937 77.984 69.91 70.457 

Dose  + Image 100 87.449 86.805 77.102 81.893 

Geometry  + Image 100 83.101 83.766 71.549 78.081 

Text+ Geometry + 

Dose 
100 99.918 99.703 99.418 99.408 

Text + Dose + 

Images 
100 99.918 99.852 99.683 99.606 

Text + Geometry + 

Images 
100 100 99.852 99.736 99.639 

Geometry + Dose 

+ Images 
100 89.253 87.472 79.429 81.630 

Text+ Dose + 

Geometry  + 

Images 

100 100 99.778 99.683 99.671 

 
TABLE V 

CLASSIFICATION ACCURACY OVER THE EXTENDED TEST DATASET. 

Features 
Dataset 

1 

Dataset 

2 

Dataset 

3 

Dataset 

4 

Dataset 

5 

Text 77.487 87.544 88.597 91.536 92.934 

Dose 58.115 51.795 44.459 40.942 47.742 

Geometry 97.644 72.766 72.582 56.633 61.567 

Images 100 79.873 78.732 67.19 75.269 

Text + Dose 75.654 88.037 88.597 91.393 94.163 

Text + Geometry 100 99.648 99.359 99.62 98.894 

Text +  Image 100 99.93 99.808 99.62 98.495 

Geometry +  Dose 98.168 76.566 72.325 65.05 67.005 

Dose  + Image 100 80.225 81.166 72.611 78.31 

Geometry  + 

Image 

100 79.24 80.077 68.331 75.853 

Text+ Geometry + 

Dose 

100 99.859 99.552 99.287 99.14 

Text + Dose + 

Images 

100 99.789 99.423 99.429 99.416 

Text + Geometry 

+ Images 

100 99.859 99.616 99.62 98.587 

Geometry + Dose 

+ Images 

100 83.955 83.152 76.034 78.925 

Text+ Dose + 

Geometry  + 

Images 

100 99.859 99.552 99.572 99.048 
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neural network for each study is shown in Appendix B. The 

training time was affected by the number of classes, 

convergence, early stopping, type of input features 

incorporated, and available hardware. The prediction time was 

in seconds.  

It was noticed that the models converged quickly, which 
indicates that the extracted features of the volumes contains 

disciminative features. Within this study, we verified that 

supervised learning can be utilised in standardising breast 

cancer radiotherapy data. This showed potential of conducting 

the experiments using unsupervised learning. In addition, the 

datasets were used as is in this study with no undersampling on 

the list of structures. 

Within this study, the test samples were collected from a 

single data centre. There is a need to further examine such 

models over additional datasets, which will be done as a part of 

our future work. 

V. CONCLUSION 

This paper presented an approach for standardising breast 

radiotherapy data by using artificial neural networks (ANNs). 

An original cohort consisting of 1613 patients was collected 

from Liverpool and Macarthur Cancer Therapy centres, NSW, 

Australia. Five datasets were created from the original cohort, 

representing different scenarios for standardizing radiotherapy 

volumes. Four types of features were extracted from each 
sample in the datasets: text, dosimetry, geometry features, and 

2D images representing central slices. 15 different 

combinations of features were generated, and three types of 

neural networks were trained to standardize volumes. We 

conclude that the standardization of nomenclatures using ML is 

achievable taking into consideration the inclusion of multiple 

modalities while training the ML algorithm. 

APPENDICES 

• Appendix A: Standardised Breast Radiotherapy Structures 

Names  

• Appendix B: Experiments and Results 
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