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Highlights 
 

• Our novel method predicts SARS-CoV-2 epitopes that are stable against future 

mutations 

 

• Genetic analyses (performed 2 years after epitopes were identified) validate the 

stability of the identified peptides  

 

• These epitopes remained invariable in 97% of all 1,514 known SARS-CoV-2 lineages 

 

• 93.9% of such peptides were conserved in the 43 variants of most interest, including 

Omicron 
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Summary 
 

Modern health care needs preventive vaccines and therapeutic treatments with stability 

against pathogen mutations to cope with current and future viral infections. At the 

beginning of the COVID-19 pandemic, our analytic and predictive tool identified a set 

of eight short SARS-CoV-2 S-spike protein epitopes that had the potential to 

persistently avoid mutation. Here a combination of genetic, Systems Biology and 

protein structure analyses confirm the stability of our identified epitopes against viral 

mutations. Remarkably, this research spans the whole period of the pandemic, during 

which 93.9% of the eight peptides remained invariable in the globally predominant 43 

circulating variants, including Omicron. Likewise, the selected epitopes are conserved 

in 97% of all 1,514 known SARS-CoV-2 lineages. Finally, experimental analyses 

performed with these short peptides showed their specific immunoreactivity. This work 

opens a new perspective on the design of next-generation vaccines and antibody 

therapies that will remain reliable against future pathogen mutations. 
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Introduction 
 

Mutational processes are an intrinsic characteristic of viruses, and replication errors are 

the main source of genomic variations. The resulting genetic diversity allows 

evolutionary adaptation to new environments and immunogenic defenses, and the 

consequent emergence of different viral variants.  

 

Human coronaviruses have large and complex genomes, and their spike proteins exhibit 

high plasticity that adapt with relative ease to different cellular receptors and new 

environmental conditions (Forni et al., 2017). SARS-CoV-2, like all coronaviruses, is 

less prone to genomic modifications than other RNA viruses with higher mutation rates. 

The comparatively low 10−3 to 10−5 mutations/nucleotide/round of replication (Smith et 

al., 2013) appear due to the presence of an RNA 3′→5′ exoribonuclease, that maintains 

greater sequence integrity during replication and transcription processes (Minskaia et 

al., 2006; Ferron et al., 2018). However, a large number of mutations have accumulated 

in the spike proteins throughout the recent pandemic. Similar mutational dynamics can 

be observed in experiments performed with Vero cells using two variants of SARS-

CoV-2, in which a spontaneous mutation rate of 1.3 × 10−6 ± 0.2 × 10−6 per-base per-

infection cycle was estimated (Amicone et al., 2022). Specifically, the accumulation of 

S-spike mutations has generated numerous viral variants with different affinities to the 

human angiotensin-converting enzyme 2, and the ACE2 receptor (Ali et al., 2021, Luan 

et al., 2021).   Many of these variants, especially in the N-terminal Domain (Kubik et al, 

2021), have increased the viral infectivity (Davies et al., 2021; Zhang et al., 2021), 

and/or have reduced the sensitivity to antibody neutralization (Planas et al., 2021). 

The majority of mutations observed in the SARS-CoV-2 genome correspond to two 

types: G →U and C →U, thus leading to extremely frequent homoplasies. Moreover, 

studies have revealed that the SARS-CoV-2 mutation process is far from equilibrium 

(De Maio et al., 2021), and that mutations are not symmetric (Roman et al., 2021). On 

the other hand, large-scale SARS-CoV-2 genome sequencing data analyzed during the 

pandemic reveal S-spike protein mutational hotspots across phylogenies, which are 

described as distinct non-synonymous mutations/insertions found at the same positions 

in several lineages. These mutations appear independently in different geographical 

zones (Kubik et al 2021; Gerdol et al. 2022). For example, among the Variants of 

Concern many common mutations are considered to emerge via convergent evolution 

(van Dorp et al., 2020; Martin et al., 2021; Rochman et al., 2021; Kistler, 2022). 

The greatest challenge in the development of successful preventive vaccines lies in 

identifying antigenic epitopes likely to be resistant to future mutations, and capable of 

inducing an effective, safe, and long-lasting immune response (Morens et al., 2021). 

The enormous difficulty of accommodating the inevitable and complex mutational 

dynamics of viruses has hampered the development of efficient vaccines. Different 
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research groups are trying to develop tools that predict likely mutational hotspots so that 

they can be avoided. For example, Maher et al. (2022), Obermeyer et al. (2022), and 

Rodriguez-Rivas et al. (2022) have proposed approaches that rely upon large extant 

sequence data sets to predict the amino acids most likely to change in SARS-CoV-2. 

However, so far, no effective strategies exist that can predict regions likely to remain 

stable in a pathogen’s genome over a long period of evolution. 

 

Over the last 8 years, we used a System Biology approach to improve the development 

of mutation-resistant vaccine strategies (Martínez et al., 2015; Martínez et al., 2019). In 

contrast to the classical methods intending to protect against an individual variant of the 

virus, our methodological platform, called “Multi-stable string,” identifies a small set of 

peptides with immunogenic capacity and affinity to the HLA Class I and Class II 

histocompatibility antigens, and that also exhibit a high probability of remaining stable 

against viral mutation (Martínez et al., 2015). This approach, based upon combinatorial 

mathematics, advanced computational techniques, artificial intelligence, and immune-

informatics tools, provides a new methodology to obtain candidate epitopes most likely 

to remain stable over a long period of viral evolution. 

 

At the beginning of the COVID-19 pandemic (February-March 2020), when only 22 

viral genomes deposited in GISAID project could be analyzed, we identified a set of 

eight SARS-Cov-2 spike protein epitopes using our approach. Here, we have studied the 

stability against mutations of these selected peptides throughout the entire two-year 

period of COVID-19 pandemic.  

 

First, we have carried out an exhaustive genetic analysis of the 3,362 complete genomes 

available at NextStrain (Hadfield et al., 2018) and GISAID (Khare et al., 2021). This 

study covers all the S-spike mutations, including very low frequencies (0.0001), 

considered across 1,514 SARS-CoV-2 variants. The obtained results have shown that 

our epitopes are located in the S-spike protein cold spots (conserved regions with very 

low mutational frequency). The genetic analysis has also allowed us to identify 

additional ten highly stable SARS-CoV-2 spike sequences. Thus, we identified 18 

highly conserved SARS-CoV-2 S-protein regions resistant to mutations in this study. 

 

Next, we have analyzed the mutational stability of the eight epitope pool in the main 

SARS-CoV-2 variants (ECDC), taking into account all the S-spike defining mutations 

for the considered lineages until April 2022 (GISAID-Outbreak project; Gangavarapu et 

al., 2022). The percentage of stability of the eight epitope pool after two years of virus 

evolution was 93.9%. These results have been confirmed in another analysis covering 

all mutations reported in the CoV-GLUE dataset of the 28 lineages considered of most 

interest. 

 

Furthermore, we have carried out a fourth stability study of the selected epitopes using 

all the mutations reported in the CoV-GLUE/GISAID dataset of the 1,514 SARS-CoV-

2 lineages that appeared during the two years of Covid-19 pandemics (CoV-GLUE), 

showing that our epitopes are conserved in at least 97% of all SARS-CoV-2 lineages. 

 

In summary, we designed eight short peptides with the potential to be resistant to 

mutations, when the pandemic started, and now, more than two years later, this 

exhaustive analysis confirms the mutational stability of epitopes selected by our 

quantitative tool.  
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We also performed a peptide mapping of the eight short peptides, which indicated that 

they are all exposed to solvent. Besides, we have studied the structure of the FDA-

authorized monoclonal antibodies used in COVID-19 treatment, comparing them with 

our eight peptides. This study provides additional stable immunogenic targets to 

increase the range of neutralizing antibodies that can be used for COVID-19 treatment. 

The overlap between our peptides and the epitopes targeted by some monoclonal 

antibodies used for COVID-19 treatments advises the selection of these antibodies as a 

component of future antibody cocktails targeting more stable epitopes. 

 

Finally, we have carried out several experimental analyses using cells of donors 

recovered from the COVID-19 infection. These analyses have revealed a Th1-specific 

response after the stimulation with the pool of the eight peptides. Such a response was 

achieved even at low peptide concentrations. On the other hand, our preliminary 

experiments have shown that the antibodies generated in patients with the COVID-19 

infection recognized all the peptides, indicating their potential as immunogens able to 

generate humoral response and immunological memory in the human immune system. 

 

To the best of our knowledge, our tool is the first to reliably predict regions in the 

genome of a pathogen that are likely to remain stable for long periods of time. This 

approach opens a perspective for new methodological procedures able to serve as a base 

for the development of universal vaccines, valid for most or all future variants, and 

more efficient neutralizing antibody therapies through the selection of epitopes stable 

against mutations.  
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Results 
 

1. Selection of eight mutationally stable epitopes at the beginning of the 

COVID-19 pandemic 
 

To design a combination of epitopes stable against future mutations, we first 

quantitatively studied the molecular characteristics of the S-spike using a new Systems 

Biology-based approach (see STAR Methods section). This analysis was performed at 

the beginning of the COVID-19 pandemic (February-March 2020) and identified more 

than 3,000 possible epitopes within the S-spike structure. We further constrained 

epitope selection to those amino acid sequences that were potentially immunogenic:  the 

affinity between the candidate epitopes and the HLA molecules were matched. We took 

into account the absolute frequency of the different HLA alleles present in the world 

population to favor the selection of antigens with the highest affinity to the prevalent 

HLA molecules. Finally, using techniques of combinatorial optimization (Martínez et 

al., 2015), we winnowed the list of candidate sequences to identify regions of the S-

protein structure most likely to remain stable. This analysis enabled selection of the 

eight short peptides (P1-P8) of the SARS-Cov-2 S-protein with the capacity to preserve 

maximum stability against variants of SARS-CoV-2. These sequences comprised 10 to 

24 amino acids 

 

By virtue of our selection criteria, the epitope pool is characterized by high 

immunogenicity and affinity to the HLA antigens, covering 85% and 100% of the most 

frequent Class I and Class II alleles respectively. The location of these peptides within 

the S-structure, as well as their corresponding amino acid sequences, is shown in Figure 

1. Although the algorithm design strategy scanned all S-spike regions without bias, the 

eight short peptides (P1-P8) identified were mainly localized to domains critical for 

viral entry into the host cell, including two peptides located near the angiotensin-

converting enzyme 2 (ACE2) binding site (Figure 1). 

 

Our mathematical epitope selection was developed by February-March 2020 when only 

the 22 viral genomes had been deposited in the GISAID project database (Khare et al., 

2021). The sequences of the eight peptides (P1-P8) were submitted to a formal 

registration procedure (May 2020, patent register #P202030467). 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 15, 2022. ; https://doi.org/10.1101/2022.10.13.22280980doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22280980


8 

 

 
 

 

 
Figure 1. Peptide sequences and location of the eight regions stable against mutations identified at the 

beginning of the COVID-19 pandemic 
(A) The structure of the Spike protein and locations of the eight identified peptides. The complete sequences of the 

eight epitopes and their respective locations are detailed in (B), where peptides P3 and P4 are located in the RBD 

(Receptor Binding Domain). Noteworthy, our methodology studied the S-structure as a whole, without preselecting 

any determined region. S1 – Receptor Binding Domain; S2 – Membrane Fusion Domain; NTD – N-Terminal 

Domain; FCS – Furin Cleavage Site; FP – Fusion Peptide; HR1 and 2 - Heptapeptide Repeat Sequence; TM – 

Transmembrane domain.  

 

 

2. Stability against mutations of the eight epitopes: a two year post hoc 

analysis 
 

To test the predictive capacity of our tool to determine epitope stability we interrogated 

sequence databases of SARS-Cov-2 evolution over the subsequent two years. We 

analyzed the public data of GISAID (Khare et al., 2021), which included 3,362 

complete genomes across 1,514 SARS-CoV-2 lineages sampled between December 

2019 and January 2022 (available at NextStrain; Hadfield et al., 2018). We also 

computed entropy per site, the number of mutational events across the strain tree, and 

protein variation using GISAID hCoV-19 sequences available at the CoV-GLUE 

database (Singer et al., 2020), which includes very rare mutations (0.0001). 
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Figure 2A-D shows an analysis of the Spike sequence mutations covering the 

distribution of non-synonymous mutation frequencies, site entropies, and a number of 

inferred mutational events per site across the SARS-CoV-2 phylogeny. To study 

whether each residue had the same mutation probability, we performed a goodness of fit 

test of the distribution of probabilities using 𝜒2 test scores based on values obtained 

from the number of non-synonymous mutation events (see Figure 2C). We obtained a 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0 and a 𝜒2 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 2 · 104, rejecting the null hypothesis. This 

indicates the probability of mutation is not the same in every region of the protein. The 

non-synonymous mutations are not uniformly distributed over the SARS-Cov-2 S-

protein, and as a consequence, we can observe regions with high or low mutation 

frequency.  

 

Likewise, our analysis indicated that the selected epitopes (P1-P8) are represented by 

specific residues that, on average, have comparable site entropy and mutational event 

values across the SARS-CoV-2 phylogeny, and low mutation rates compared with other 

randomly selected epitopes of similar size. For example, we chose 10,000 random 

combinations of short peptides of similar size and compared them with the set of eight 

selected epitopes (P1-P8) (STAR Methods). The selected epitope pool presented a 

frequency of 0.0023 mutations per site, and relative entropy of 0.022. This pool P1-P8 

epitopes is expected to be invariable in 71.4% of the sequences, as compared with 

45.0% in 10,000 randomly sampled combinations of similar fragments from the Spike 

protein. The results indicate that P1-P8 epitopes are not located in mutational hotspots 

of the S-protein.  

 

In this post-hoc sequence analysis, we found another ten short peptides that have a low 

mutation rate (Figure 2 A-D, marked in blue R1-R10). The complete sequence of these 

peptides (R1-R10) is indicated in the STAR Methods. In total, all 18 mutation-stable 

regions have an average amino-acid length of 16.22±5.54 (mean ± SD), with a 

confidence interval 𝐼𝜇
0.95 = (13.47, 18.98). There were no significant differences 

between the amino-acid lengths in P1-P8 and R1-R10 groups (STAR Methods section). 

 

Our Systems Biology-based approach selected eight short SARS-CoV-2 S-spike 

peptides (P1-P8), among millions of combinations of possible amino acid sequences 

including the previously mentioned ten highly conserved peptide sequences (R1-R10) 

(Figure 2). This latter set of stable S-protein peptides was not predicted by our tool 

because mathematical and computational calculations excluded them on the basis of 

lower potential to induce an immune response (see STAR Methods section). 
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Figure 2. Stable SARS-CoV-2 S-spike sequences against mutations   

Distribution of non-synonymous mutation frequencies (A), site entropies, normalized Shannon entropy where 1 is 

maximal entropy (B), and a number of inferred mutational events per site across the SARS-CoV-2 phylogeny (C) 

overlayed by schematics of S-protein selected peptides (D) are shown as dot plots for all residues of the S-spike 

protein. Bar plots on the right show the distribution of average values for 10,000 randomly chosen combinations of 

epitopes of similar size. Vertical red bars indicate the value for our combination of eight epitopes (P1-P8): frequency 

of 0.0023 mutations per site, 1.82 mutational events per site, and relative entropy of 0.022. Vertical blue bars 

correspond to the set of ten highly conserved peptide sequences (R1-R10).  
 

 

 

3. Stability of the eight selected epitopes in the SARS-CoV-2 variants  
 

Evolution of the SARS-CoV-2 genome has generated a complex cascade of lineages 

derived from a common ancestor (Figure 3A, left). To evaluate the mutational stability 

of the eight selected peptides (P1-P8) we have first analyzed the stability level of our 

epitope pool in the 43 SARS-CoV-2 variants of most interest, taking into account the 

defining S-spike mutations described until April 30, 2022 (GISAID-Outbreak project). 

 

Figure 3A shows the phylogeny of the SARS-CoV-2 virus (nextstrain.org), where 3,544 

representative genomes are considered. The origin of the mutational cascade was 

established in the first viral samples obtained in China at the beginning of the pandemic 

(Wu et al., 2020). On the right in Figure 3A, the 41 SARS-CoV-2 variants of most 

interest as determined by the European Centre for Disease Prevention and Control 

(ECDC) are shown. The list includes variants of concern (VOC), Variants Under 

Monitoring, and De-escalated variants (ecdc.europa.eu). The ECDC traces a wider 

number of variants than the 32 considered by the World Health Organization (who.int). 

The variants defined by the ECDC exhibit “significant potential for transmissibility, 
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severity, and/or immunity likely to have an impact on the epidemiological situation 

based on properties analyzed by combined genomic, epidemiological, and in vitro 

pieces of evidence” (ecdc.europa.eu). In addition, we have added to the analysis two 

other Delta variants (21I and 21J) given their importance in some areas during the 

second half of 2021. The total number of variants considered in our study (n=43), the 

corresponding Pango lineage, WHO-ECDC nomenclature, and the percentages of 

stability for the eight epitopes in each variant, are also shown in Figure 3A. All the 

characteristic mutations for the analyzed lineages (non-synonymous substitutions or 

deletions that occur in > 75% of sequences within each variant) were obtained from the 

GISAID-Outbreak project.  

 

Figure 3 A and B show that the stability percentage of the eight-epitope pool (P1-P8) in 

the 43 SARS-CoV-2 variants is 93.9% with a confidence interval of 𝐼𝜇
0,95 =

(90.8%, 96.2%). 55.8% of all of variants display 100% stability of the eight selected 

peptides, with 41.9% displaying only a single epitope appears mutated. The Omicron 

variant has five out of eight epitopes conserved (62.5%). Specifically, peptide P1 in the 

Omicron variant has two mutations, epitope P3 only displays a substitution of the first 

residue, and epitope P4 presents a unique change in the last residue, which is illustrated 

in Figure 6.  

 

The dynamics of stability against mutations of each peptide in every variant analyzed 

are displayed in Figure 3B. Epitopes P2, P5, P6, P7, and P8 never exhibit mutational 

modification as catalogued by ECDC (GISAID-Outbreak project). Epitope P4 appears 

mutated in eight variants out of 43 (Beta B.1.351, B.1.214.2, B.1.351+P384L, Gamma 

P.1, B.1.351+E516Q, P.1+P681H, B.1.617.2 + K417N and Omicron B.1.1.529), 

displaying a mutational probability of 0.186, with a confidence interval of 𝐼𝑝
0,95 =

(0.084,0.334). Epitope P3 is mutated in four variants (A.23+E484K, Mu B.1.621, 

B.1.640 and Omicron B.1.1.529) with a mutational probability of 0.095 and a 

confidence interval of 𝐼𝑝
0,95 = (0.027, 0.226). Finally, epitope P1 is mutated in nine 

variants (alpha B.1.1.7, A.28, B.1.1.7+E484K, eta B.1.525, B.1.1.7+L452R, 

B.1.1.7+S494P, B.1.616(c), B.1.620 and Omicron B.1.1.529) and exhibits a mutational 

probability of 0.214 with a confidence interval of 𝐼𝑝
0,95 = (0.103, 0.368).  

 

Aside from analyzing the stability of our S-spike-derived peptides with the defining 

mutations (Figure 3), we assessed the stability of the selected epitopes against all non-

synonymous mutations in the 28 lineages of most interest reported in the CoV-GLUE 

dataset (Figure 4A). The results indicated that the peptides (P1-P8) exhibit a very low 

average probability of mutation. Specifically, epitope P1 is conserved in 95% of the 

lineages; epitope P2 in 99.8%; epitope P3 in 89.1%; epitope P4 in 89.2%; the 

overlapping epitope P5-6, in 96.1%; epitope P7 in 98.2%; and finally, epitope P8 in 

91.6% of the lineages. This translates to an overall preservation ratio of 94.1%, with a 

confidence interval 𝐼𝜇
0.95 = (90.19%, 98.08%). Therefore, in the subset of 28 lineages 

(Figure 4A) we observe a strong agreement with the previous analysis focused on 

defining mutations of SARS-CoV-2 variants catalogued by ECDC (GISAID-Outbreak 

project) (Figure 3). 

 

We carried out a fourth study of genetic stability of the P1-P8 peptides by analyzing the 

non-synonymous mutations reported in the GISAID dataset in all the 1,514 known 

SARS-CoV-2 lineages generated during the Covid-19 pandemic (CoV-GLUE lineages). 
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In Figure 4B, the k-means clustering analysis of mutation probabilities of all lineages 

indicates that the vast majority (1384 out of 1514, or 91.4%; cluster 8) exhibit an 

extremely low average probability of mutation within the selected epitopes (P1-P8). 

Among the rest of the lineages (130), 85 exhibit low mutational probability, while only 

45 present a high probability of change, limited to a specific region of a single epitope 

(Figure 4B). Our results indicate that epitope P1 was stable in 97.4% of the lineages; 

epitope P2, 97.9%; epitope P3, 99.5%; epitope P4, 98%; the overlapping epitope P5-6, 

98.8%; epitope P7, 99.9%; and, finally, epitope P8 was stable in 98% of the lineages. 

The percentage of conservation of all short peptides (P1-P8) indicates an overall 

preservation ratio of 98.5%, with a confidence interval 𝐼𝜇
0.95 = (97.65%, 99.34%). 

Therefore, we demonstrate, with 95% of confidence, that the selected epitopes (P1-P8) 

have been conserved at least in 97% of all SARS-CoV-2 lineages that arose during two 

years of the Covid-19 pandemics. 
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Figure 3. Identified epitope stability against all defining mutations in the main 43 SARS-CoV-2 variants 

 (A) The time elapsed from the original design of the epitopes (February to March 2020) until the mutational stability 

analysis performed in April 2022 (two years after design), as well as a summary of the SARS-CoV-2 phylogenetic 

evolution is depicted. On the right side, the percentage of stability of the set of eight peptides (P1-P8) in each of the 

43 variants considered (93.9% in total) is shown. The confidence interval evaluating the stability of the P1-P8 

epitopes is  𝐼𝜇
0,95 = (90.8%, 96.2%). (B) illustrates the mutational stability of the selected epitopes in each variant of 

most interest and the percentage of preservation of each peptide sequence.  
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Figure 4. Stability of the selected epitopes against all non-synonymous mutations in the 28 lineages considered 

of most interest, and in 1514 lineages originated during the Covid-19 pandemics 

(A) Stability of the selected epitope regions against all reported mutations in the GISAID dataset in the 28 lineages of 

most interest. The percentage of stability of the set of eight peptides in each of the 28 lineages considered is 93.9%, 

with a confidence interval 𝐼𝜇
0.95 = (90.19%, 98.08%). This result agrees with the analysis focused on defining 

mutations (Figure 3). (B) k-means clustering of probabilities of observation of non-synonymous mutation within 

regions of selected epitopes across 1514 lineages in the GISAID dataset. The distance is Euclidean, the linkage is 

Ward’s, k = 8. Our selected epitopes are conserved in 97% of all SARS-CoV-2 lineages (1384 total). (C) The 

percentage of conservation of the epitopes (P1-P8). 
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4. Peptide mapping and solvent exposure of the eight epitopes identified 

stable against mutations  
 

 

To identify, understand, and differentiate characteristics of the selected epitopes (P1-P8) 

and the peptides (R1-R10) (which also exhibited low mutation rates but were rejected 

by our Systems Biology methodology), we mapped both groups of peptides on the 

three-dimensional structure of SARS-CoV-2 S-protein. Available experimental models 

of the S-spike allowed us to map seven of the selected peptides (P5-P6 are partially 

overlapped, see Figure 1) on the protein’s structure. Peptide mapping (Figure 5, A and 

B) indicates that at least some of the peptides’ residues are solvent-exposed, with 

residues of peptides P2 and P7 being the most buried. Peptide P8 is located in the C-

terminal region of the protein that is disordered and therefore is most likely exposed to 

solvent. Notably, these residues are solvent exposed in both “closed” and “up” 

conformations (Mehra and Kepp 2022). Moreover, the change from “closed” to “up” 

conformation significantly increases solvent accessibility of peptide P4 (Figure 5, B and 

C).  

 

Our peptide selection methodology does not assume anything about protein 

oligomerization. Method robustness is illustrated by the fact that none of the peptides 

are buried completely in the S-protein trimer, sites instead remain accessible to 

antibodies. Another interesting feature of the selected peptides is that despite the 

relatively large sequence distances separating them, some of them are quite close to 

each other in the mature protein. For example, peptides P1 and P2 are next to each other 

(Figure 5A and B), and peptide P3 and a fragment of peptide P4 are in close vicinity in 

the closed conformation of the S-spike. In addition, peptides P5 and P6 (which partially 

overlap) together with peptide P7 are also relatively close in the three-dimensional 

protein structure.  

 

The analysis of the S-protein (“up” conformation) in a complex with ACE2 (Zhou et al., 

2020) illustrates how the residues forming peptides P3 and P4, which correspond to the 

receptor binding domain (RBD) region, remain exposed to solvent (Figure 6A). This 

suggests that they might remain epitopes recognized by human antibodies, and they are 

not critical for the formation of the S-protein-ACE2 interface (for modifications and 

properties of the peptides, see STAR Methods). However, we cannot exclude the 

possibility that the ACE2 carbohydrate moieties block access to potential epitopes 

formed by peptide P3 or P4 residues. 

 

Only three peptides (P1, P3 and P4) out of the eight originally identified are affected by 

mutations present in the Omicron variant (Figure 6; for details, see STAR Methods). 

Similarly, only three peptides (R2, R3 and R8) from the second group of stable peptides 

are mutated in Omicron strains. However, these mutations have a relatively small 

impact on the spatial conformation of our peptides: only peptide P1 seems to be 

markedly affected. In this instance, there is not only a single mutation (A67V) in 

peptide P1, but also the residues H69-V79 are missing in the Omicron/BA.1 strain. The 

impact of conformational changes, ACE2 binding, and mutations in the Omicron variant 

on the selected peptides are shown in Figure 6. 
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Figure 5. Peptide mapping and solvent exposure. 

Peptides (P1-P8) are marked using a color scheme indicated in Figure 1. Partially overlapped peptides P5 and P6 are 

marked in red. Panel (A) shows an experimental model of the Spike protein in a “closed” conformation (PDB code: 

6VXX). The protein chains forming the trimmer are displayed in different shades of grey. Carbohydrate moieties are 

shown in stick representation with carbon atoms in yellow. Panel (B) presents an experimental model of the S-spike 

protein in “up” conformation (PDB code: 7KMS). This conformation of the S-spike protein allows for ACE2 binding. 

Panel (C) shows an experimental model of the spike protein in “closed” conformation with positions of our non-

selected peptides (R1-R10) shown in magenta. Panel (D) represents an experimental model of the S-spike protein in 

“up” conformation (PDB code: 7KMS) with R1-R10 peptides shown in magenta. 
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Figure 6. Impact of conformational changes, ACE2 binding and mutations on the selected peptides and in the 

Omicron variant  

Identified peptides are marked using a color scheme indicated in Fig. 1. Partially overlapped peptides P5 and P6 are 

marked in red. The interaction between the RBD (shown in surface representation) and human ACE2 (in magenta; 

shown in ribbon representation) is demonstrated in panel (A). Residues forming peptides P3 and P4 are displayed in 

green and lemon green, respectively. The experimental model of the protein in “closed” conformation (PDB code: 

6VXX) is shown in panel (B). The protein chains forming the trimmer are displayed in different shades of grey. 

Carbohydrate moieties are shown in stick representation with carbon atoms in yellow. An experimental model of the 

S-spike protein in “up” conformation (PDB code: 7KMS) is presented in panel (C). This conformation of the S-spike 

proteins allows the ACE2 binding. Carbohydrate residues are indicated in stick representation. The PDB deposit 

(7KMS) corresponding to the S-spike-protein-ACE2 complex was used to generate this figure. Residues that are 

mutated, deleted, or inserted in the Omicron variant are marked as black spheres. Only very small fragments of 

peptide P1 (blue spheres), peptide P3 (green spheres), and peptide P4 (lemon green spheres) are affected by the 

mutations observed in the Omicron/BA.1 variant. 

 

 

5. Analysis of the amino-acid composition in the eight identified versus 

10 rejected epitopes 
 

To investigate what differentiates the identified (P1-P8) from rejected (R1-R10) 

peptides, we studied the structure and amino-acid composition, comparing them with 

random peptides derived from the SARS-CoV-2 S-spike protein (Figure 5A and B; see 

also our complete analysis in Figure S1). The composition of the sequences covered by 

P1-P8 was enriched in tryptophan (4.58%) and depleted in lysine (1.53%) as compared 

to 1.01% and 4.94% respectively in 10.000 randomly-sampled fragment combinations 

controls.  No other amino acid had significantly statistically deviated frequencies. 

However, while none of the peptides P1-P8 contained cysteine residues, half of the R1-

R10 peptides included this amino acid. The cysteine residues observed in R2, R3, R4, 

R5 and R10 peptides form disulfide bridges in the S-spike protein. Consequently, it is 

not surprising that they fall into highly conserved regions of the protein. Most cysteine 

residues are associated with non-epitope regions.  

 

Tryptophan was enriched in peptides P1, P2 and P8, which is somewhat surprising 

because this residue is usually not present in epitopes, but rather in paratopes (Soga et 
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al., 2010). By contrast, there is no tryptophan residue present in peptides R1-R10. 

Moreover, the paucity of lysine residues in peptides P1-P8 is surprising as well because 

this residue is quite often observed in epitopes (Zheng et al., 2015). 

 

 

 

 
 

 

Figure 7. Distribution of K and W amino acid frequencies in random sets of peptides from the S-spike protein  

X-axis represents the frequency (in percentage) of the indicated amino acid (on letter code, in the top right of each 

distribution), each bar represents the count of sets of random peptides showing a given frequency across 10,000 random 

samples (see STAR Methods). The vertical red line indicates the frequency in the set of peptides identified by our 

algorithm. p, indicates the probability of a random peptide set to have a frequency higher than one of the selected 

peptides; P indicates the frequency of the indicated amino acid in the selected peptide set, 10k indicates the average 

frequency of the indicated amino acid in the 10,000 random peptide sets.  

     
 

 

 

6. Experimental testing of cellular response to identified peptides P1-

P8 
 

T-cell memory, the recall response, was interrogated using the eight peptides in an 

ELISPOT assay. The samples probed were from peripheral blood mononuclear cells 

(PBMC) samples derived from convalescent COVID-19 patients and unexposed donors 

(blood drawn in 2016 and 2017; Figure S2). All the samples from convalescent donors 

developed an IFN response following stimulation with the eight-peptide pool (P1-P8) 

even at low concentrations. Two samples of unexposed donors responded with T cell 

activation to the peptide pool. An explanation for the specific response of unexposed 

donors’ samples could be related to a preexistent cross-reactive T-cell memory. 

Different studies have shown the existence of this immune memory prior to SARS-

CoV-2, caused by exposure to previously circulating coronaviruses responsible for 

common colds. This reaction has been observed in roughly 28-60% of healthy people 

sampled in years before the start of SARS-CoV-2 pandemic (Grifoni et al., 2020; 

Mateus et al., 2020; Weiskopf et al., 2020). Neither IL-17 nor IL-5 cytokines were 

detected in the analyses of the response generated by the PBMCs of the convalescent 

and healthy donors. 
 

7. Experimental test of peptides – patients antibody interactions 
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The functionality of the eight peptides was then tested by ELISA assay. The interaction 

of each peptide with serum IgG of patients is shown in Figure S3. All the data were 

normalized against readings of the serum control pool reaction with S-spike-RBD. 

 

The patient samples’ reactions with the S-spike-RBD of SARS-CoV-2 were 

approximately twice more intense than in controls. The sera of patients interact with all 

the peptides. Thus, the designed peptides were recognized by antibodies produced by 

the immune system in response to naturally occurring S-spike protein, which indicated 

that they could generate the immune response in humans. 

 
 

8. Structural analysis of the anti-spike monoclonal antibodies’ targets 

and comparison with the eight stable epitopes 
 

Neutralizing antibodies are being used as a therapeutical tool against SARS-CoV-2 

infection. We compared the epitopes-targets of FDA-authorized monoclonal antibodies to 

the P1-P8 epitopes (this study is detailed in the STAR Methods section). All these 

antibodies bind to the S-spike protein receptor binding domain (Corti et al., 2021; Hansen 

et al., 2020; Hastie et al., 2021; Jones et al., 2021; Shi et al., 2020). Bamlanivimab and 

Imdevimab (REGN10987) targets do not overlap with any residues of the peptides P1-P8. 

However, Etesevimab and Casirimab (REGN10933) targets partially overlap with 

residues from peptides P4 and R3. In addition, there is a significant overlap between the 

Sotrovimab targeted epitope and peptides P3 and R2. This overlap between our peptides 

and some targets of several monoclonal antibodies used for treating patients with 

COVID-19 infection confirms that our tool parameters are accurate, robust, and identify 

the immunogenic potential of epitopes (see STAR Methods section, for more details). 

 
 

 

 

 

 

 

 

 

Discussion 
 

An essential challenge in the development of preventive vaccines is to design an 

efficient and safe antigenic composition that ensures stability and resistance against 

future mutations. Unfortunately, no effective strategies that can predict stable regions in 

a pathogen’s genome over a long period of evolution exist so far. 

 

At the beginning of the COVID-19 pandemic, we used our novel tool, “Multi-stable 

string,” to identify a set of eight SARS-Cov-2 S-spike protein epitopes (P1-P8), which 

were predicted to be stable against long-term future mutations. Here we show that, more 

than two years after the identification of these short peptides, using a combination of 

different analyses, including genetic, Systems Biology and protein structure studies, our 

selected epitopes (P1-P8) are stable against viral mutations. This research spans the 

whole period of the pandemic. 
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Genetic analysis allows us to draw the following three main conclusions:  

 

i. Mutations occurring in the SARS-CoV-2 S-spike do not follow a uniform 

distribution: some peptide sequences display high mutation rates while other small 

regions are remarkably conserved. 

 

ii.        Post hoc analysis shows that after two years of evolution, at least 18 SARS-CoV-

2 S-spike peptide sequences appear stable against mutations (Figure 2). These 

mutational “cold spots” exhibit a short amino-acid length 16.875±7.1 (mean ± SD). 

 

iii.       Of the 18 polypeptides identified by post hoc lineage sequence analysis, the eight 

epitopes (P1-P8) originally identified in February-March 2020 (Figure 1) are all 

included and remained stable against mutations. The remaining ten highly conserved 

sequences (R1-R10) had been discarded since a priori mathematical and computational 

calculations predicted a sub-optimal capacity to induce an immune response (see STAR 

Methods section). 

 

The eight selected epitopes (P1-P8) were interrogated against the SARS-CoV-2 variants 

of most interest (ECDC) taking into account all the S-spike defining mutations for the 

considered lineages until April 2022. Analysis shows that after more than two years of 

evolution of the COVID-19 pandemics, the percentage of stability of our designed 

epitope pool was 93.9%. 

 

This result has been confirmed by analyzing all mutations reported in the Cov-GLUE 

dataset which lists 28 lineages considered of most interest. Specifically, our results 

show that the percentage of stability of the total epitope pool was 94.1%. 

  

Finally, stability of the eight epitopes (P1-P8), was measured against the 

Nextstrain/GISAID dataset which encompass 1,514 SARS-CoV-2 variants generated 

during the Covid-19 pandemics (CoV-GLUE): epitopes P1-P8 are conserved at least in 

97% of all these sequenced SARS-CoV-2 lineages. 

 

Thus, we conclude that our tool functions with fidelity to identify stable sequences. The 

least stable epitopes were P4, which displayed a mutational probability of 0.186, and P1 

which showed a mutational probability of 0.214. Peptide 3 was also mutated in three 

variants with a mutational probability of 0.095. In short, the probability that all epitopes 

may mutate simultaneously is extremely low. 

 

Peptide mapping confirmed that our epitopes (P1-P8) are exposed to solvent in the S-

spike protein structure (Figure 5). The comparison of our peptides with the targets of the 

monoclonal antibodies authorized by the FDA has shown that our peptides could 

increase the range of neutralizing antibodies used for SARS-CoV-2 treatment. Indeed, 

the overlap among our peptides and the targets of monoclonal antibodies used for 

SARS-CoV-2 treatments both confirms tool accuracy and suggests future utility in the 

development of antibody cocktails to target a greater number of stable epitopes.  

 

Preliminary experiments were performed to assess specific immune recognition of the 

identified peptides. Peripheral blood mononuclear cells of donors recovered from 

COVID-19 infection demonstrated an IFN gamma response after stimulation with the 

pool of eight peptides in ELISPOT assays, both at high and low concentrations. Also, 
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IgG antibodies from convalescent COVID-19 patients interacted with all selected 

peptides in a manner similar to the intact Spike antigen. The predicted peptides have the 

potential to induce an immune response in humans. 

 

Our “Multi-stable string” approach, based fundamentally on mathematical 

combinatorial methods, advanced computational techniques, artificial intelligence, and 

immune-informatics tools, allows the design of a number of specific epitopes that can 

direct strategies to accommodate universal variants, thereby enabling the design of long-

lasting prophylactic and therapeutic products. For example, one therapeutic monoclonal 

antibody, directed against an S-protein of SARS-CoV-2, has a remarkable neutralizing 

capacity including against current Omicron variants. It has been approved for use by the 

European Medicines Agency, EMA (www.ema.europa.eu) since May 2021. The 

antibody targets an S-protein sequence (Gupta, et al., 2021; Wu, et al. 2022; Gupta, et 

al., 2022; Iketani et al., 2022) which is located in a small region that is very stable 

against mutations in all the variants known to date. This peptide sequence fully includes 

our epitope P3 (aa339-348). 

 

Our approach can be extended in several ways. We are improving our procedures to 

consider more variables in the combinatorial optimization process. The “Multi-stable 

string” concept will be extended to compare “sets” of solutions, evaluating the number 

of epitopes of each solution, or their total length. While indicating strategic avenues to 

pursue, this work will need to expand immunogenicity analysis to assess the “in vivo” 

immunogenicity and safety profile of our peptides in animal models using as a carrier a 

biologically safe nanoparticle on which we have been working also for several years. 

 

In brief, this work is a Systems Biology pioneer study that opens a new perspective for 

the development of advanced vaccines and therapies with stable epitopes against future 

pathogens that exhibit a high capacity to mutate and evolve. We consider that designing 

universal vaccines and neutralizing antibodies with antigens resilient to pathogen 

mutations is crucial for the development of next-generation preventive vaccines, valid 

for most or all future variants, and more efficient post-infection therapies.  
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Methods Details 
 

Systems Biology-based design of spike protein epitopes stable against 

future mutations 
 

In order to obtain vaccine candidates with elevated stability against long-term 

mutations, we require the solutions to fulfill the 𝜆 superstring condition (Martinez et al., 

2015). In particular, with our first approach, we seek to solve the shortest λ superstring 

problem (which generalizes the shortest common superstring problem, and the set cover 

problem, whose computational complexity is NP-hard). In short, we summarize the 

𝜆 superstring condition and the shortest λ superstring problem as follows:  

Let 𝐴 be a finite alphabet (in our case, formed by 20 amino acids) and 𝐴∗ = ⋃ 𝐴𝑛∞
𝑛=1 ∪

{𝜃} the set of all the possible strings formed by elements of 𝐴, where 𝜃 is the empty 

string. The set 𝐴∗ is a semigroup for the concatenation operation (denoted by +) where 

𝑡 + 𝑡′ = (𝑡1, . . . , 𝑡𝑛) + (𝑡1′, . . . , 𝑡𝑚′) = (𝑡1, . . . , 𝑡𝑛, 𝑡1′, . . . , 𝑡𝑚′). We consider that 𝑡 =

(𝑡1, . . . , 𝑡𝑚) is a substring of another string ℎ = (ℎ1, . . . , ℎ𝑛) when ∃𝑘 ∈ {1, . . . , 𝑛 −

 𝑚 +  1}| 𝑡𝑘+𝑖−1 = ℎ𝑖 , ∀𝑖 ∈ {1, . . . , 𝑚}. Then, the overlapping between two strings 𝑡 

and 𝑡′ is defined as 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔(𝑡, 𝑡′) = max{𝑖 ∈ {0,1, … , 𝑚𝑖𝑛{𝑚, 𝑛}} | 𝑡𝑛−𝑖+𝑗 =

𝑡′𝑗 , 𝑓𝑜𝑟 𝑗 = 1, … , 𝑖}. Additionally, if we consider 𝑇 ⊆ 𝐴∗ the set of target strings (in our 

case, corresponding to potential epitopes), and 𝜆 ∈ ℕ, we can define a 𝜆 superstring as: 

let 𝐻1, … , 𝐻𝑘 ⊆ 𝐴∗ and 𝑇 ⊆ 𝐴∗, if we denote as 𝐶(ℎ, 𝑣) the set of all common substrings 
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of ℎ and 𝑣, a 𝜆 superstring for the set (𝐻1, … , 𝐻𝑘, 𝑇) is a string 𝑣 ∈ 𝐴∗| |𝐶(𝐻𝑖, 𝑣) ∩ 𝑇| ≥

𝜆, ∀ 𝑖 = 1, … , 𝑘.  

Now we can enunciate the shortest λ superstring problem as: let 𝐻1, … , 𝐻𝑛 ⊆ 𝐴∗ be a 

finite set of strings of the alphabet 𝐴, let 𝑇 ⊆ 𝐴∗ the set of target strings, and let 𝜆 ∈ ℕ, 

find a λ superstring 𝑣 ∈ 𝐴∗ for (𝐻1, … , 𝐻𝑘 , 𝑇) with minimum length.  

Weighed λ superstring problem 

This concept was generalized in (Martinez et al., 2019), where we included weights for 

each target string (epitopes), therefore giving more importance to the most interesting 

ones. A weighted λ superstring for (𝐻1, … , 𝐻𝑘 , 𝑇, 𝑤) is defined as a string 𝑣 ∈ 𝐴∗ such 

as  

∑ 𝑤(𝑡) ≥ λ

𝑡∈𝐶(ℎ,𝑣)∩𝑇

, ∀ℎ ∈ 𝐻𝑖, 𝑖 = 1, … , 𝑘, 

and solving the shortest weighted 𝜆 superstring problem is to find, for a given 𝜆, a 

weighted 𝜆 superstring for (𝐻1, … , 𝐻𝑘 , 𝑇, 𝑤) of minimum length.  

Multi-stable string problem 

In order to obtain a combination of short peptides to build a multi-peptide vaccine, we 

have adapted the problem of weighted 𝜆 superstring to the Multi-stable string problem, 

which is to find a group of short weighted 𝜆 superstrings obtained sequentially, each 

from a smaller subset. To do this, first, we obtained a weighted 𝜆 superstring 𝑣1 for 

(𝐻1, … , 𝐻𝑘 , 𝑇1, 𝑤); next, we removed from 𝑇1 the target strings 𝑡 ∈ 𝑣1 ∩ 𝑇1, obtaining 

the set 𝑇2, and we obtained a weighted λ superstring 𝑣2 for (𝐻1, … , 𝐻𝑘 , 𝑇2, 𝑤); this 

procedure was repeated until we obtained the group of strings creating the final 

solution.  

 

Combinatorial optimization  

 

To solve the Multi-stable string problem, first, we approached the shortest common 

superstring problem by developing an algorithm based on Estimation of Distribution 

Algorithms (EDA). This family of algorithms searches for the probability distribution of 

the best solution to a given problem with respect to an objective function (in our case, 

the 𝜆 parameter), starting with an initial distribution and evolving during the learning 

process, where the probability distribution is improved.  

In short, the algorithm for solving the shortest common superstring problem goes as 

follows: 

Given a set of strings 𝑠1, … , 𝑠𝑛 ⊆ 𝐴∗ over an alphabet 𝐴, we define the weight matrix as 

𝑊𝑖,𝑗
0 = (𝑤𝑖,𝑗

0 ), where  𝑤𝑖,𝑗
0 ≔ (1 + |𝑜(𝑠𝑖, 𝑠𝑗)|)

𝑒𝑥𝑝𝑜
. This matrix 𝑊0 will determine the 

initial estimation of the probability distribution of the common superstring, and the expo 

parameter is a control parameter of the algorithm.  

Now, given a number of iterations nit, iterating, we build the weight matrix 𝑊𝑘 for 𝑘 =

1, … , 𝑛𝑖𝑡, which will let us estimate the probability distribution of the string of the 𝑘 + 1 

iteration. Given a population of size spop, we build the matrix 𝑊𝑘 by sampling spop 
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permutations and using the probability distribution given by 𝑊𝑘−1, i.e., we generate 

𝜋1, … , 𝜋𝑠𝑝𝑜𝑝 permutations of the set {1, . . , 𝑛}.  

In more detail, the procedure is the following:  

For each element of the population (spop times), we obtain a permutation 𝜋𝑖 as follows: 

first, we obtain a permutation 𝜋(1) from {1, . . , 𝑛} using the continuous uniform 

distribution, and we proceed iteratively:  

1. If 𝜋(1), … , 𝜋(𝑟) permutations (with 𝑟 ≤ 𝑛 − 1) have been chosen, we chose 

randomly a value for 𝑏 ∈ {0,1}. 

a. If 𝑏 = 0 (element on the left), we chose an element 𝑢 ∈ 𝐺 = {1, . . , 𝑛} −

{𝜋(1), … , 𝜋(𝑟)} following the probability distribution 𝑝 defined ∀𝑥 ∈ 𝐺 

as 𝑝(𝑥) ≔
𝑤𝑦,𝜋(1)

𝑘−1

𝑧
, where 𝑧 = ∑ 𝑤𝑦,𝜋(1)

𝑘−1
𝑦∈𝐺 . Using the value obtained for 

𝑢, we redefine the set of permutations as (𝜋(1), … , 𝜋(𝑟 + 1)) ≔

(𝑢, 𝜋(1), … , 𝜋(𝑟)), being 𝜋(1), … , 𝜋(𝑟) the previous values. 

b.  If 𝑏 = 1 (element on the right), we chose an element 𝑢 ∈ 𝐺 =

{1, . . , 𝑛} − {𝜋(1), … , 𝜋(𝑟)} following the probability distribution 𝑝 

defined ∀𝑥 ∈ 𝐺 as 𝑝(𝑥) ≔
𝑤𝜋(𝑟),𝑦

𝑘−1

𝑧
, where 𝑧 = ∑ 𝑤𝜋(𝑟),𝑦

𝑘−1
𝑦∈𝐺 . Using the 

value obtained for 𝑢, we redefine the set of permutations as 

(𝜋(1), … , 𝜋(𝑟 + 1)) ≔ (𝜋(1), … , 𝜋(𝑟), 𝑢), being 𝜋(1), … , 𝜋(𝑟) the 

previous values. 

2. If 𝜋(1), … , 𝜋(𝑛 − 1) permutations have been chosen and {𝑢} = {1, . . , 𝑛} −

{𝜋(1), … , 𝜋(𝑛 − 1)}, then 

a. If 𝑤𝑢,𝜋(1)
𝑘−1 > 𝑤𝜋(𝑛−1),𝑢

𝑘−1 , we redefine (𝜋(1), … , 𝜋(𝑛)) ≔

(𝑢, 𝜋(1), … , 𝜋(𝑛 − 1)). 

b. Otherwise, (𝜋(1), … , 𝜋(𝑛)) ≔ (𝜋(1), … , 𝜋(𝑛 − 1), 𝑢).  

Once 𝜋1, … , 𝜋𝑠𝑝𝑜𝑝 are obtained, we build the string 𝑡𝑖 ≔ 𝑆𝑡𝑟𝑆𝜋𝑖
 for each permutation 

𝜋𝑖, merging (with overlap) the strings 𝑠𝜋(1), … , 𝑠𝜋(𝑛), and we evaluate the length of 𝑡𝑖. 

Next, after fixing an acceptance ratio, we chose a total of 𝑚 = ⌊𝑟𝑎𝑡𝑖𝑜 · 𝑠𝑝𝑜𝑝⌋ 

permutations 𝜋𝑖1
, … , 𝜋𝑖𝑚

 for which the lengths of 𝑡𝑖1
, … , 𝑡𝑖𝑚

 are the smallest ones. 

Finally, to obtain 𝑊𝑘, we begin assigning 𝑊𝑘 ≔ 𝑊𝑘−1, and carry out the next 

readjustment for 𝑗 = 1, … , 𝑚 and for 𝑙 = 1, … , 𝑛 − 1:  

𝑤𝜋𝑖𝑗
(𝑙),𝜋𝑖𝑗

(𝑙+1)
𝑘 ≔ 𝑤𝜋𝑖𝑗

(𝑙),𝜋𝑖𝑗
(𝑙+1)

𝑘 + 𝑤𝜋𝑖𝑗
(𝑙),𝜋𝑖𝑗

(𝑙+1)
0 . 

Thus, the factor (1 + |𝑜(𝑠𝑖, 𝑠𝑗)|)
𝑒𝑥𝑝𝑜

 is implicitly considered. The reason for 

considering this factor is twofold, first, it guarantees that the described process of 

sampling randomly the superstrings makes sense and no division by 0 occurs. 

Additionally, it preserves the diversity in the population, allowing the appearance of 
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two consecutive disjoint strings. Last, the output of the algorithm is the shortest 𝑡𝑖 

obtained after nit iterations.  

The pseudocode of this algorithm is the following: 

 

Algorithm for solving the shortest common superstring problem 

 

Input: 𝑆 = {𝑠1, … , 𝑠𝑛}, expo, nit, spop, ratio. 

Output: A common superstring 𝑠 of 𝑆 with minimum length. 

𝑖 ≔ 1;  
while 𝑖 ≤ 𝑛 do 

 𝑗 ≔ 1;  
 while 𝑗 ≤ 𝑛 do 

  𝑤𝑖,𝑗
0 ≔ (1 + |𝑜(𝑠𝑖, 𝑠𝑗)|)

𝑒𝑥𝑝𝑜
; 

  𝑗 ≔ 𝑗 + 1; 
 𝑖 ≔ 𝑖 + 1; 
𝑘 ≔ 1;  
while 𝑘 ≤ 𝑛𝑖𝑡 do  

𝑖 ≔ 1;  
while 𝑖 ≤ 𝑠𝑝𝑜𝑝 do 

 𝜋(1) ≔ 𝑟𝑛𝑑_𝑢𝑛𝑖𝑓(1, 𝑛);  
 𝑟 ≔ 1;  
 while 𝑟 ≤ 𝑛 − 2 do 

  𝑏 ≔ 𝑟𝑛𝑑_𝑢𝑛𝑖𝑓(0,1);  
  if 𝑏 = 0 then 

   𝐺 ≔ {1, . . , 𝑛} − {𝜋(1), … , 𝜋(𝑟)}; 

   𝑢 ≔ 𝑟𝑛𝑑_𝑑𝑖𝑠𝑡𝑟(𝑥 ∈ 𝑃| 𝑝(𝑥) ≔
𝑤𝑦,𝜋(1)

𝑘−1

𝑧
, 𝑧 ≔ ∑ 𝑤𝑦,𝜋(1)

𝑘−1
𝑦∈𝐺 );  

    (𝜋(1), … , 𝜋(𝑟 + 1)) ≔ (𝑢, 𝜋(1), … , 𝜋(𝑟)); 

  else 

   𝐺 ≔ {1, . . , 𝑛} − {𝜋(1), … , 𝜋(𝑟)}; 

   𝑢 ≔ 𝑟𝑛𝑑_𝑑𝑖𝑠𝑡𝑟(𝑥 ∈ 𝑃| 𝑝(𝑥) ≔
𝑤𝜋(𝑟),𝑦

𝑘−1

𝑧
, 𝑧 ≔ ∑ 𝑤𝜋(𝑟),𝑦

𝑘−1
𝑦∈𝐺 );  

    (𝜋(1), … , 𝜋(𝑟 + 1)) ≔ (𝜋(1), … , 𝜋(𝑟), 𝑢); 

  𝑟 ≔ 𝑟 + 1; 
 {𝑢} ≔ {1, . . , 𝑛} − {𝜋(1), … , 𝜋(𝑛 − 1)}; 

 if  𝑤𝑢,𝜋(1)
𝑘−1 > 𝑤𝜋(𝑛−1),𝑢

𝑘−1  then 

  (𝜋(1), … , 𝜋(𝑛)) ≔ (𝑢, 𝜋(1), … , 𝜋(𝑛 − 1)); 

 else 

  (𝜋(1), … , 𝜋(𝑛)) ≔ (𝜋(1), … , 𝜋(𝑛 − 1), 𝑢); 

 𝜋𝑖 ≔ 𝜋; 

 𝑡𝑖 ≔ 𝑆𝑡𝑟𝑆𝜋𝑖
; 

 𝑖 ≔ 𝑖 + 1; 

𝑚 ≔ ⌊𝑟𝑎𝑡𝑖𝑜 · 𝑠𝑝𝑜𝑝⌋;  
Take the permutations 𝜋𝑖1

, … , 𝜋𝑖𝑚
 for which the lengths of 𝑡𝑖1

, … , 𝑡𝑖𝑚
are the smallest. 

𝑊𝑘 ≔ 𝑊𝑘−1; 

𝑗 ≔ 1;  
while 𝑗 ≤ 𝑚 do 
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 𝑙 ≔ 1; 
 while 𝑙 ≤ 𝑛 − 1 do 

  𝑤𝜋𝑖𝑗
(𝑙),𝜋𝑖𝑗

(𝑙+1)
𝑘 ≔ 𝑤𝜋𝑖𝑗

(𝑙),𝜋𝑖𝑗
(𝑙+1)

𝑘 + 𝑤𝜋𝑖𝑗
(𝑙),𝜋𝑖𝑗

(𝑙+1)
0 ; 

  𝑙 ≔ 𝑙 + 1; 

 𝑗 ≔ 𝑗 + 1; 
𝑘 ≔ 𝑘 + 1; 

Take the shortest string 𝑠 obtained along the process. 

 

Finally, before applying the algorithm over the host string, target string, and weight sets, 

we adapted it, first, to solve the weighted 𝜆 superstring problem (requiring the 

combinatorial condition to our solutions; for more information, see Martinez et al., 

2015; Martinez et al., 2019), and then, to solve the Multi-stable string problem (by 

applying the algorithm sequentially, and altering the target string set).  

Weighting the epitopes 

 

To select the most promising epitopes to include in the vaccine candidates, we have 

studied the amino acid sequences of the aforementioned 22 variants of the S-spike 

protein. The objective was to consider the minimum number of amino acids that make up 

epitopes with a possible immunogenic response. In addition, these sequences of amino 

acids should be recognized by the molecules of the major histocompatibility complex 

classes I and II. Specifically, we used a sliding window technique to extract all the 

possible sequences of length 9 and 15, storing the unmatched peptides. The final result of 

this analysis gave us a total of 3112 possible epitopes. 

 

Next, we analyzed the class I immunogenicity levels of each of the epitopes of length 9. 

To do this, we used a bioinformatic tool developed by the IEDB team 

(http://www.iedb.org/), the main database of epitopes. Specifically, this tool allows us to 

classify epitopes according to their immunogenicity (Class I), which is estimated through 

their amino acid composition, and order of amino acids (Calis et al., 2013). We applied 

this tool to all the 9-mers, and ranked them from highest values to lowest. Since negative 

estimation meant low probabilities of being immunogenic, we only maintained the values 

for positive estimations and assigned 0 to all the rest. 

 

To define the final set of potential epitopes of length 9, we evaluated the degree of 

affinity to the histocompatibility molecules of class I. In particular, we evaluated the 

affinity of class I molecules to the reference allele of IEDB, composed by 27 HLA 

molecules (A*01:01, A*02:01, A*02:03, A*02:06, A*03:01, A*11:01, A*23:01, 

A*24:02, A*26:01, A*30:01, A*30:02, A*31:01, A*32:01, A*33:01, A*68:01, A*68:02, 

B*07:02, B*08:01, B*15:01, B*35:01, B*40:01, B*44:02, B*44:03, B*51:01, B*53:01, 

B*57:01, B*58:01) (Weiskopf et al., 2013). Only those that obtained the best 

computational results were considered i.e., those below the 1% cutoff on the percentile 

rank). Finally, we removed all the 9-mers which did not pass either the immunogenicity 

threshold, or the HLA-I binding threshold.  

 

To select the potential epitopes of length 15, we used the tool for class II molecules 

(Wang et al., 2010). Likewise, we studied the affinity of each epitope to the most 

representative set of HLA alleles in the population (DRB1*03:01, DRB1*07:01, 
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DRB1*15:01, DRB3*01:01, DRB3*02:02, DRB4*01:01, DRB5*01:01) (Paul, et al., 

2015), and considered as potential epitopes those that obtained the best computational 

results (i.e., those below the 10% cutoff on the percentile rank).  

 

In order to develop a vaccine candidate as universal as possible, epitopes obtained in the 

previous step, were weighted by the absolute frequency of the different HLA alleles that 

occur in the population. This approach would favour the selection of epitopes with higher 

affinity to the most prevalent histocompatibility molecules in the general population. This 

analysis was carried out considering experimental data 

(http://www.allelefrequencies.net/). The epitopes selected in this phase of the process 

were those that, on the one hand, could be recognized by as many different alleles as 

possible, and, on the other hand, had an affinity to the most frequent alleles in society, 

thus increasing the possibilities of vaccine success. 

 

Systems Biology-based analysis of the ten highly conserved antigenic 

sequences not selected (R1-R10). 
 

Even if our methodological system selected eight short SARS-CoV-2 spike peptides 

(P1-P8), it took into account millions of possible amino acid combinations, and in 

particular, it evaluated and discarded the aforementioned ten highly conserved antigenic 

sequences. This second set of 10 S-spike peptides (R1-R10) was not selected due to the 

following criteria: 

 

First, based on the 22 S-spike sequence considered, besides fulfilling the lambda-

superstring criterion, another main characteristic was maximized to obtain the best 

epitopes. This point corresponds to the estimation of the class-I immunogenicity by the 

tool “T cell class-I pMHC immunogenicity predictor” 

(http://tools.iedb.org/immunogenicity), which classifies epitopes according to their 

immunogenic response, amino acid composition, and order of their amino acids 

sequence (Calis et al., 2013). After estimating the values of the “second set of ten stable 

epitopes”, we observed that seven of them scored less than the smallest score obtained 

by our main set of eight selected stable epitopes (which scored higher than 0.153). 

Consequently, since a higher value is related to a higher probability of generating an 

immune response, those seven were outperformed by the chosen ones because of their 

lower estimated immunogenicity.  

 

Therefore, only three of the “second set of ten stable epitopes (R1-R10)” were possibly 

immunogenically good candidates. Two of them (the sequences NITNLCPFGEVFN 

and KLNDLCFTNVYADSFVIRGDEV) overlapped with two of our main set of eight 

stable epitopes (P3 and P4).  NITNLCPFGEVFN of length 13, overlapped with our 

selected sequence P3 (GEVFNATRFA) of length ten, was not considered because, 

despite of being shorter, the estimated immunogenic response of sequence P3 scored 

0.312, while the sequence belonging to the “second set of ten stable epitopes” only 

scored 0.276.  

 

Besides considering the score of the tool described above, we also took into account the 

affinity of short peptides for class I molecules (http://tools.iedb.org/mhci; Moutaftsi et 

al., 2006) and the affinity of long peptides to class II molecules 

(http://tools.iedb.org/mhcii; Wang et al., 2010). Additionally, in order to develop an 

antigenic set as universal as possible, each MHC molecule was weighted by the 
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absolute frequency of the different HLA alleles that occur in the population 

(http://www.allelefrequencies.net). Consequently, when the values obtained with these 

tools were taken into account, we maximized a combined score.  

 

The 22 residue epitope KLNDLCFTNVYADSFVIRGDEV that overlapped with our 

identified 24 residue epitope P4 (VYADSFVIRGDEVRQIAPGQTGK) was close in 

estimated immunogenic response (0.481 against 0.471 of the peptide P4). However, 

when the combined score was taken into account, the former scored 7.136, while 

peptide P4 exhibited 7.778. This indicates that, if both estimated immunogenicity and 

binding affinities were taken into account, peptide P4 outperformed the epitope of 

length 22. 

 

Next, the last sequence belonging to the set of ten stable epitopes (R1-R10), namely the 

23 residue peptide RLDKVEAEVQIDRLITGRLQSLQ was compared with identified 

peptide P7 (ALQIPFAMQMAYRFNGIGVTQNVL). They exhibited similar length and 

estimated immunogenicity. When the estimated immunogenicity was calculated, the 

first scored 0.1666 and the second 1.586. However, the differences when considering 

the binding affinity in the combined score were much higher, yielding values of 6.289 

for the 23-length epitope, and 8.038 for the peptide P7.  

 

Finally, when we compared the two epitope pools (P1-P8 and R1-R10), both the 

estimated immunogenicity and the combined score achieved by our main set of eight 

stable epitopes P1-P8 (0.418±0.344, mean±std; and 4.581±3.8, respectively) were 

higher than the scores calculated for R1-R10 (-0.097±0.415; and 2.847±2.381, 

respectively).  

 

 

Analysis of the peptides 
 

The Spike protein sequence that was used in our analysis was obtained from Uniprot (code: 

P0DTC2; SPIKE_SARS2), and it is shown below. The sequences corresponding to our 

identified peptides are highlighted. 
 

        10         20         30         40         50 

MFVFLVLLPL VSSQCVNLTT RTQLPPAYTN SFTRGVYYPD KVFRSSVLHS 

       60         70         80         90        100 

TQDLFLPFFS NVTWFHAIHV SGTNGTKRFD NPVLPFNDGV YFASTEKSNI 

110        120        130        140        150 

IRGWIFGTTL DSKTQSLLIV NNATNVVIKV CEFQFCNDPF LGVYYHKNNK  

       160        170        180        190        200 

SWMESEFRVY SSANNCTFEY VSQPFLMDLE GKQGNFKNLR EFVFKNIDGY  

       210        220        230        240        250 

FKIYSKHTPI NLVRDLPQGF SALEPLVDLP IGINITRFQT LLALHRSYLT  

       260        270        280        290        300 

PGDSSSGWTA GAAAYYVGYL QPRTFLLKYN ENGTITDAVD CALDPLSETK  

       310        320        330        340        350 
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CTLKSFTVEK GIYQTSNFRV QPTESIVRFP NITNLCPFGE VFNATRFASV  

       360        370        380        390        400 

YAWNRKRISN CVADYSVLYN SASFSTFKCY GVSPTKLNDL CFTNVYADSF  

       410        420        430        440        450 

VIRGDEVRQI APGQTGKIAD YNYKLPDDFT GCVIAWNSNN LDSKVGGNYN  

       460        470        480        490        500 

YLYRLFRKSN LKPFERDIST EIYQAGSTPC NGVEGFNCYF PLQSYGFQPT  

       510        520        530        540        550 

NGVGYQPYRV VVLSFELLHA PATVCGPKKS TNLVKNKCVN FNFNGLTGTG  

       560        570        580        590        600 

VLTESNKKFL PFQQFGRDIA DTTDAVRDPQ TLEILDITPC SFGGVSVITP  

       610        620        630        640        650 

GTNTSNQVAV LYQDVNCTEV PVAIHADQLT PTWRVYSTGS NVFQTRAGCL  

       660        670        680        690        700 

IGAEHVNNSY ECDIPIGAGI CASYQTQTNS PRRARSVASQ SIIAYTMSLG  

       710        720        730        740        750 

AENSVAYSNN SIAIPTNFTI SVTTEILPVS MTKTSVDCTM YICGDSTECS  

       760        770        780        790        800 

NLLLQYGSFC TQLNRALTGI AVEQDKNTQE VFAQVKQIYK TPPIKDFGGF  

       810        820        830        840        850 

NFSQILPDPS KPSKRSFIED LLFNKVTLAD AGFIKQYGDC LGDIAARDLI  

       860        870        880        890        900 

CAQKFNGLTV LPPLLTDEMI AQYTSALLAG TITSGWTFGA GAALQIPFAM  

       910        920        930        940        950 

QMAYRFNGIG VTQNVLYENQ KLIANQFNSA IGKIQDSLSS TASALGKLQD  

       960        970        980        990       1000 

VVNQNAQALN TLVKQLSSNF GAISSVLNDI LSRLDKVEAE VQIDRLITGR  

      1010       1020       1030       1040       1050 

LQSLQTYVTQ QLIRAAEIRA SANLAATKMS ECVLGQSKRV DFCGKGYHLM  

      1060       1070       1080       1090       1100 

SFPQSAPHGV VFLHVTYVPA QEKNFTTAPA ICHDGKAHFP REGVFVSNGT  

      1110       1120       1130       1140       1150 

HWFVTQRNFY EPQIITTDNT FVSGNCDVVI GIVNNTVYDP LQPELDSFKE  

      1160       1170       1180       1190       1200 

ELDKYFKNHT SPDVDLGDIS GINASVVNIQ KEIDRLNEVA KNLNESLIDL  

      1210       1220       1230       1240       1250 

QELGKYEQYI KWPWYIWLGF IAGLIAIVMV TIMLCCMTSC CSCLKGCCSC  

      1260       1270  

GSCCKFDEDD SEPVLKGVKL HYT  
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The Uniprot entry was also used to summarize information on modification of residues 

that are present in the identified peptides. The summary of these modifications is listed 

below. 

Peptide P1 

Residues 50-73 (STQDLFLPFFSNVTWFHAIHVSGT) 

N61 – glycosylation; T73 is before a glycosylation site at N74 (not in the peptide); H69-

V79 are deleted for example in Omicron, this is causing increased incorporation of 

cleaved spike into virions. 

Peptide P2 

Residues 257-266 (GWTAGAAAYY) 

No modifications for this peptide are reported in the Uniprot entry. 

Peptide P3 

Residues 339-348 (GEVFNATRFA) 

G339D mutation in Omicron; N343 is glycosylated; N343Q mutation – reduced viral 

infectivity. 

Peptide P4 

Residues 395-417 (VYADSFVIRGDEVRQIAPGQTGK) 

K417N mutation in strain: Beta/B.1.351, Gamma/P.1; May enhance affinity to human 

ACE2 receptor. K417N mutation in Omicron; K417T mutation in strain: Gamma/P.1. 

Peptides P5 & P6 

Peptide 5 – residues 712-722 (IAIPTNFTISV) 

Peptide 6 – residues 718-727 (FTISVTTEIL) 

T716I mutation is present in strain: Alpha/B.1.1.7.; N717 is glycosylated. 

Peptide P7 

Residues 893-916 (ALQIPFAMQMAYRFNGIGVTQNVL) 

No modifications for this peptide are reported in the Uniprot entry. 

Peptide P8 

Residues 1208-1230 (QYIKWPWYIWLGFIAGLIAIVMV) 

G1219V mutation in strain 19B/501Y. 

 

Peptide R1 

Residues 37-48 (YYPDKVFRSSVL). 

 

Peptide R2 

Residues 331-343 (NITNLCPFGEVFN) 

G339D mutation is present in strains Omicron/BA.1 and Omicron/BA.2. 

331N is glycosylated, and N331Q mutation reduced viral infectivity. 

343N is glycosylated 

Cys336 ↔ Cys361 – disulfide bridge. 

 

Peptide R3 

Residues 386-407 (KLNDLCFTNVYADSFVIRGDEV) 

Cys391 ↔ Cys525 - disulfide bridge 

D405N mutation is present in strain Omicron/BA.2. 

 

Peptide R4 

Residues 523-539 (VCGPKKS TNLVKNKCV) 

Cys538 ↔ Cys590 – disulfide bridge. 

 

Peptide R5 
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Residues 586-603 (DITPCSFGGVSVITPGTN) 

Cys538 ↔ Cys590 – disulfide bridge 

N603 is glycosylated. 

 

Peptide R6 

Residues 797-808 (FGGFNFSQILPD) 

N801 is glycosylated. 

 

Peptide R7 

Residues 910-921 (GVTQNVLYENQK). 

 

Peptide R8 

Residues 962-977 (LVKQLSSNFGAISSVL) 

N969K mutation is present in strains Omicron/BA.1 and Omicron/BA.2. 

 

Peptide R9 

Residues 983-1005 (RLDKVEAEVQIDRLITGRLQSLQ) 

Residues K986 and V987 are mutated to prolines (in vaccine BNT162b2/Pfizer-

Biontech, vaccine mRNA-1273/Moderna, vaccine Ad26.COV2.S/Janssen 

Pharmaceutical), which causes stabilization in prefusion state. 

 

Peptide R10 

Residues 1028-1039 (KMSECVLGQSKR) 

Cys1032 ↔ Cys1043 – disulfide bridge. 

 

Aminoacid lengths of SARS-CoV-2 mutation-stable peptide regions.  

The amino acid length of the eight selected epitopes (P1-P8) was 16.875±7.1 (mean ± 

SD), with a confidence interval 𝐼𝜇
0.95 = (10.94, 22.81) while the length for the ten 

highly conserved peptide sequences (R#1-R#10) was 15.7±4.24, with a confidence 

interval 𝐼𝜇
0.95 = (12.66, 18.74). Next, we analyzed if there were significant differences 

between the length of both groups, obtaining a confidence interval of 𝐼𝜇1−𝜇2
0.95 =

(−5.1, 7.45), a 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 0.413 and 𝑎 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.688: there are no 

significant differences between the lengths of the group of eight selected epitopes (P1-

P8), and the group of ten highly conserved ones (R1-R10). The 18 mutation-stable 

regions in total have an average amino-acid length of 16.22±5.54 (mean ± SD), with a 

confidence interval 𝐼𝜇
0.95 = (13.47, 18.98). 

Structural analysis 
Analysis of the S-spike protein structures as well as structures of complexes with 

therapeutic antibodies was performed using COOT (1) and Pymol (2). Pymol was used 

to prepare Fig. 5. PDBePISA and structures of antibodies complexed with the Spike 

protein were used to identify residues forming epitopes. The summary of this analysis 

with information on overlaps between the peptides and the identified epitopes by us is 

presented below.  

 

Bamlanivimab blocks ACE2 and binds to the spike protein RBD in “up” and “down” 

conformations. Analysis of the structure (PDB code: 7KMG) indicates that there is no 

overlap between Bamlanivimab binding epitope and the peptides P1-P8. 
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Etesevimab - Analysis of the structure (PDB code: 7C01) using PDBePISA shows that 

the epitope includes residues 415-417, 420, 421, 453, 455-460, 486, 487, 489, 490, 493 

that are interacting with heavy chain, as well as residues 403, 405, 406, 408, 409, 449, 

453, 493-496, 498, 500-502, 504 and 505, which interact with the light chain. Residues 

highlighted in red are present in peptide P4. Residues marked in bold are present in 

peptide R3.  

 

Casirimab (REGN10933)- Analysis of the structure (PDB code: 6XDG) indicates that 

the epitope includes residues: 403, 406, 417, 421, 473, 475-478, 484-490, 492-496 and 

501. There is a partial overlap between the residues forming the epitope and residues 

from peptide P#4 (403, 406 & 417). Residues highlighted in red are present in peptide 

P4. Residues marked in bold are present in peptide R3. 

 

Imdevimab (REGN10987) - Analysis of the structure (PDB code: 6XDG) shows that 

the epitope includes residues: 346, 439-441, 443-450, 498, 499, 500 and 501. There is 

no overlap between Imdevimab binding epitope and the peptides that we have 

identified. 

 

Sotrovimab – Analysis was done using the structure of S309, (Sotrovimab precursor, 

PDB code: 6WPT). The epitope includes residues 333-337, 339-341, 343-346, 440, 441 

and 509. Peptide P3 (residues 339-348) has a significant overlap with Sotrovimab 

(S309) epitope and residues highlighted in red are present in peptide P3. Residues 

marked in bold are present in peptide R2. 

 

Sequence variation analysis 

 
To test the stability of the epitopes against mutations, we analyzed publicly available 

variation data from GISAID (Khare et al., 2021). These include 3,362 complete 

genomes, across 1,514 SARS-CoV-2 lineages, sampled between December 2019 and 

January 2022 available at NextStrain (Hadfield et al., 2018), from which the entropy per 

site, and the number of mutational events across the strain tree are computed. Likewise, 

the protein variation analysis of GISAID hCoV-19 sequences, available at CoV-GLUE 

database (Singer et al., 2020), have been taken into account in our study. Data from 

CovGlue was downloaded for all SARS-CoV-2 variants separately and disregarding 

mutations with a frequency lower than 0.0001. The probability for a peptide of being 

invariable (e.g. identical to the reference protein sequence) in a given SARS-CoV-2 

variant was approximated by assuming independence of the sites and multiplying the 

expected non-mutated frequencies (1 - mutation frequency). We compared these results 

with 10,000 random samples of seven non-overlapping peptides of the same size as the 

ones selected by our algorithm (note that peptides 5 and 6 overlap and are considered as 

a single peptide spanning 712-727 in this analysis). The amino acid composition for 

these combinations of peptides was computed in terms of amino acid frequencies (%) 

and compared to the selected epitopes. Significant deviations were considered when 

observed values in the selected epitope set was higher or lower than the 95% and 5% 

percentile values in the distribution obtained for the 10,000 random peptide samples.   
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ELISPOT assay 
 

The experiments were performed at Cellular Technology Ltd (CTL, Cleveland, USA). 

Designed peptides were synthesized at Mimotopes Pty Ltd (Australia). The peptides 

were diluted at CTL and studied in the IFN detecting single color- and IFN/IL5/IL-17 

detecting triple color ELISPOT assays. Peptides P1 through P8 were tested individually, 

at different concentrations (100 µg/ml, 25 µg/ml and 2.5 µg/ml) and in a pool of eight 

peptides. The ELISPOT assay was performed using CTL ELISPOT protocols and CTL 

kits for the single color enzymatic (Cat. # hIFNg-1M-red) and triple color ELISPOT 

fluorescent (Cat. # hT3015F/275/hT58/hT32) assays. 

Procedure. Briefly, ELISPOT plates were coated with the appropriate coating antibody 

and stimulated for 24h with peptides in the single color ELISPOT assay and for 72h in 

the triple color ELISPOT assay. Medium alone served as the negative control and PHA 

(tested at 5 µg/ml) served as the positive control. At the end of the stimulation the cells 

were discarded from the plates and the corresponding detecting antibodies were added 

for the overnight incubation at 4ºC. Afterwards, various tertiary reagents were added for 

the overnight incubation at 4ºC. The ImmunoSpot® UV Analyzer/Cell Counter S6 

Ultimate (CTL) was used to quantify the spot forming units. The frequency of peptide-

reactive cells is expressed as spot forming units (SFU) for 400,000 cells. 

An antigen specific positive response was defined as = X - (SD of X) – [Y + (2SD of 

Y)] and is greater than the numerical value 3.  

X: Average Spot # induced by a given Ag (cells and antigen) 

Y: Average Spot # in the medium control (cells and no antigen) 

O: Average Spot # in the negative control (no cells and no antigen). 

Positive response was determined as greater than (Y + O + 2SD of Y) number of spots 

after exposure to Ag (X) and more than 10 spots. 

In Cellular Technology Ltd experiments, all donors provided written informed consent, 

Institutional Review Board (Pro00043178). 

 

ELISA assay 
 

Sera from healthy controls and severely affected patients 3 months after the diagnosis 

of SARS-CoV-2 infection were obtained at the Shaare Zedek Medical Center (SCMZ) 

in Jerusalem, Israel, and tested for specific IgG antibodies in the ELISA assay. The 

experiments were performed at Department of Life Sciences and the National Institute 

for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel. Designed 

peptides were synthesized at Mimotopes Pty Ltd (Australia). Reagents: SARS-CoV-2 

Spike RBD (40592-V08B, Sino Biological Inc.); Donkey Anti-Human IgG, Fc HRP 

(709-035-098, Jackson ImmunoResearch Europe Ltd); BSA (Thermo Fisher). Samples 

were diluted at 1:25 in PBS. The protocols indicated by the company (Thermo Fisher) 

were followed. The virus present in the samples was inactivated by incubating the 

samples at 60 degrees Celsius for 30 minutes. 96-well ELISA plates were coated 

overnight at 4 degrees with 100 µL of Cov S-spike RBD at 0.5 µg/mL or the different 

peptides at 10 µg/ml in coating buffer (0.1 M Na2HPO4 pH=9). The next day, the plates 

were washed three times with washing buffer PBST (PBS with tween at 0.1% w/v). 

The wells were blocked with 1% BSA in PBS for 1 hour at 37 degrees. Then, the plates 

were washed with PBST 3 times. 100 µL of the samples diluted 1:400 in 0.1% BSA in 

PBS were added and incubated for 1 hour at 37 degrees. The wells were washed six 
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times. Donkey Anti-Human IgG, Fc HRP was added at 1:5000 in 0.1% BSA -PBS, and 

the plates were incubated for 1 hour at 37 degrees. The wells were washed six times. 

3,3’,5,5’-tetramethylbenzidine solution was added as a chromogenic substrate. The 

samples' absorbance was measured at 650 nm 10 minutes after in a Spark plate reader 

(Tecan). The study was approved by the ADVARRA. In SZMC the study was approved 

by the institutional review board of SZMC (permit 0181-20-SZMC). 
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Figure S1. Distribution of amino acid frequencies in random sets of peptides from the S-protein  
X axis represents the frequency (in percentage) of the indicated amino acid (on letter code, in the top right of each 

distribution), each bar represents the count of sets of random peptides showing a given frequency across 10,000 random 

samples (see methods). The vertical red line indicates the frequency in the set of peptides selected by our algorithm. p, 

indicates the probability of a random peptide set to have a frequency higher than the one of the selected peptide set; P 

indicates the frequency of the indicated amino acid in the selected peptide set, 10k indicates the average frequency of 

the indicated amino acid in the 10,000 random peptide sets.  
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Figure S2. Recall response to the selected peptides (P1-P8) 

(A) IFN ELISPOT data analysis for individual and pooled peptides at a concentration of 100 µg/ml. (B) IFN 

ELISPOT data analysis for pooled peptides (P1-P8) at different concentrations. Immune response of PBMCs samples 

from convalescent COVID-19 patients and from unexposed donors (with the blood drawn in 2016 and 2017), 

stimulated in vitro with designed peptides for 24 hours was studied in the ELISPOT assay. The frequency of peptide-

reactive cells, expressed as spot-forming units for 400,000 cells, is shown by circles for each donor and the pointed 

lines represent the median frequency. p values derived from Mann–Whitney’s U-test and Kruskal-Wallis’s test: * 

>0.05; # <0.05; ## <0.01; ### <0.005. 
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Figure S3. Binding of IgG from controls and positives for Covid-19 to SARS-CoV-2 S-spike RBD and selected 

peptides (P1-P8)   

First panel shows IgG binding to SARS-CoV-2 S-spike RBD. The rest of the panels illustrate IgG binding to each of 

eight peptides (P1-P8). The data are expressed relative to the control in each case. p values derived from Mann–

Whitney’s U-test: * >0.05; # <0.05. 
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