Use of artificial intelligence on retinal images to accurately predict the risk of cardiovascular event (CVD-AI)
View ORCID ProfileEhsan Vaghefi, David Squirrell, Song Yang, Songyang An, John Marshall
doi: https://doi.org/10.1101/2022.10.12.22281017
Ehsan Vaghefi
1Toku Eyes, Auckland, New Zealand
David Squirrell
1Toku Eyes, Auckland, New Zealand
Song Yang
1Toku Eyes, Auckland, New Zealand
Songyang An
1Toku Eyes, Auckland, New Zealand
John Marshall
2School of Ophthalmology, University College London, United Kingdom
Article usage
Posted October 13, 2022.
Use of artificial intelligence on retinal images to accurately predict the risk of cardiovascular event (CVD-AI)
Ehsan Vaghefi, David Squirrell, Song Yang, Songyang An, John Marshall
medRxiv 2022.10.12.22281017; doi: https://doi.org/10.1101/2022.10.12.22281017
Subject Area
Subject Areas
- Addiction Medicine (396)
- Allergy and Immunology (708)
- Anesthesia (199)
- Cardiovascular Medicine (2909)
- Dermatology (249)
- Emergency Medicine (437)
- Epidemiology (12683)
- Forensic Medicine (10)
- Gastroenterology (824)
- Genetic and Genomic Medicine (4540)
- Geriatric Medicine (413)
- Health Economics (723)
- Health Informatics (2898)
- Health Policy (1066)
- Hematology (383)
- HIV/AIDS (919)
- Medical Education (422)
- Medical Ethics (115)
- Nephrology (466)
- Neurology (4305)
- Nursing (233)
- Nutrition (633)
- Oncology (2251)
- Ophthalmology (640)
- Orthopedics (258)
- Otolaryngology (324)
- Pain Medicine (276)
- Palliative Medicine (83)
- Pathology (496)
- Pediatrics (1192)
- Primary Care Research (492)
- Public and Global Health (6889)
- Radiology and Imaging (1518)
- Respiratory Medicine (912)
- Rheumatology (433)
- Sports Medicine (381)
- Surgery (482)
- Toxicology (60)
- Transplantation (208)
- Urology (178)