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Abstract

Over the last ten years, there has been considerable progressin using digital behavioral phenotypes,
captured passively and continuously from smartphones and wearable devices, to infer depressive mood.
However, most digital phenotype studies suffer from poor replicability, often fail to detect clinically
relevant events, and use measures of depression that are not validated or suitable for collecting large and
longitudinal data. Here, we report high-quality longitudinal validated assessments of depressive mood
from computerized adaptive testing paired with continuous digital assessments of behavior from
smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to severe symptoms of
depression. We apply a combination of cubic spline interpolation and idiographic models to generate
individualized predictions of future mood from the digital behavioral phenotypes, achieving high
prediction accuracy of depression severity up to three weeks in advance (R? > 80%) and a 65.7%
reduction in the prediction error over a baseline model which predicts future mood based on past
depression severity alone. Finally, our study verified the feasibility of obtaining high-quality longitudinal
assessments of mood from a clinical population and predicting symptom severity weeks in advance using
passively collected digital behavioral data. Our results indicate the possibility of expanding the repertoire

of patient-specific behavioral measures to enable future psychiatric research.
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Introduction

Major depressive disorder (MDD) affects almost onein five people" and is now the world’ s leading cause
of disability?. However, it is often undiagnosed: only about half of those with MDD are identified and

offered treatment®*. In addition, for many people, MDD is a chronic condition characterized by periods of
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relapse and recovery that requires ongoing monitoring of symptoms. MDD diagnosis and symptom
monitoring is typically dependent on clinical interview, a method that rarely exceeds an inter-rater
reliability of 0.7°®. Furthermore, sufferers are unlikely to volunteer that they are depressed because of the
reduced social contact associated with low mood and because of the stigma attached to admitting to being
depressed. Devel oping new ways to quickly and accurately diagnose MDD or monitor depressive
symptomsin real time would substantially alleviate the burden of this common and debilitating condition.
The advent of electronic methods of collecting information, e.g., smartphone sensors or wearable
devices, means that behavioral measures can now be obtained as individuals go about their daily lives.
Over the last ten years there has been considerable progress in using these digital behavioral phenotypesto
infer mood and depression ™. Y et, most digital mental health studies suffer from one or more of the
following limitations'® ™2, First, many studies are likely underpowered to meet their analytic
objectives'®*?#1%%  Second, most studies do not follow up subjects long enough to adequately capture

changes in signal within an individual over time'®*+1921:22

, even though such changes are highly
informative for clinical care. The few studies with longitudinal assessments use ecological momentary
assessments'*?*?® to measure state mood, rather than a psychometrically validated symptom scale for
depression. Furthermore, they examine associ ations between behavior and mood at a population level %,
This nomothetic approach is limited by the fact that both mood and its relationship to behavior can vary
substantially between individuals. Last, many of the existing studies focus on healthy subjects, thus
prohibiting evaluation of how well digital phenotypes perform in predicting depression®.

Here, we overcome these limitations by using a validated measure of depression from
computerized adaptive testing® to obtain high-quality longitudinal measures of mood. Computerized

adaptive testing is atechnology for interactive administration of tests that tailors the test to the examinee

(or, in our application, to the patient)®. Tests are 'adaptive' in the sense that the testing is driven by an
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algorithm that selects questionsin real time and in response to the on-going responses of the patient. By
employing item response theory to select a small number of questions from alarge bank, the test provides
a powerful and efficient way to detect psychiatric illness without suffering response fatigue. We also use
smartphone sensing”’ to passively and continuously collect behavioral phenotypes for up to 40 weeks on
183 individuals experiencing mild to severe symptoms of depression (3,005 days with mood assessment
and 29,254 days with behavioral assessment). To account for inter-individual heterogeneity and provide
individual-specific predictors of depression trgjectories we use an idiographic (or, personalized) modeling
approach. Ultimately, we expect that this approach will provide patient-specific predictors of depressive
symptom severity to guide personalized intervention, as well as enable future psychiatric research, for

example in genome and phenome-wide association studies.

Results

Study participants and treatment protocol

Participants (N = 437; 76.5% female, 26.5% white) are University of CalifornialLos Angeles (UCLA)
students experiencing mild to severe symptoms of depression or anxiety enrolled as part of the Screening
and Treatment for Anxiety and Depression”® (STAND) study (Sup Figure 1). The STAND eligibility
criteriaand treatment protocol are described extensively elsewhere®. Briefly, participants are initialy
assessed using the Computerized Adaptive Testing Depression Inventory®* (CAT-DI), an online adaptive
tool that offers validated assessments of depression severity (measured on a 0-100 scale). After theinitial
assessment, participants are routed to appropriate treatment resources depending on depression severity:
those with mild (35 < CAT-DI < 65) to moderate (65 < CAT-DI < 75) depression at baseline received
online support with or without peer coaching® while those with severe depression (CAT-DI > 75)

received in-person care from aclinician (Materials and Methods).
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STAND enrolled participants in two waves, each with different inclusion criteriaand CAT-DI
assessment and treatment protocol (Sup Figure 2a). Wave 1 was limited to individuals with mild to
moderate symptoms at baseline (N=182) and treatment lasted for up to 20 weeks. Wave 2 included
individuals with mild to moderate (N=142) and severe (N=124) symptoms and treatment lasted for up to
40 weeks. Eleven individuals participated in both waves. Depression symptom severity was assessed up to
every other week for the participants that received online support (both waves), i.e., those with mild to
moderate symptoms, and every week for the participants that received in-person clinical care, i.e., those

with severe symptoms (Materials and M ethods).

Adherenceto CAT-DI assessment protocol

Overall, participants provided atotal of 4,507 CAT-DI assessments (out of 11,218 expected by the
study protocols). Participant adherence to CAT-DI assessments varied across enrollment waves
(Likelihood ratio test [LRT] P-value < 2.2x10%°), treatment groups (LRT P-value < 2.2x10™°), and during
the follow-up period (LRT P-value = 1.29x10°®). Specifically, participants that received clinical care were
more adherent than those which only received online support (Sup Figure 2b). Attrition for participants
which received clinical care was linear over the follow-up period, with 1.7% of participants dropping out
CAT-DI assessments within two weeksinto the study. Attrition for participants that received online
support was large two weeks into the study (33.5% of Wave 1 and 37.3% of Wave 2 participants) and
linear for the remaining of the study.

Participant adherence to CAT-DI assessments varied with sex and age. Among participants that
received online support, men were less likely to complete all CAT-DI assessmentsin wave 1 (OR= 0.86,
LRT P-value = 2.9x10*) but more likely to complete them in wave 2 (OR= 1.31, LRT P-value = 3.1x10°
1y Participant adherence did not vary with sex for those receiving clinical support. In addition, among

participants that received online support in wave 2, older participants were more likely to complete all
5
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CAT-DI assessments than younger participants (OR=1.13, LRT P-value < 2.2x10™*°). Participant
adherence did not vary with age for participantsin wave 1 or those receiving clinical support in wave 2.
For building personalized mood prediction models, we focus on 183 individuals (49 from Wave 1
and 134 from Wave 2) who had at |east five mental health assessments during the study (Materials and
Methods). For these individuals we obtained atotal of 3,005 CAT-DI assessments with amedian of 13

assessments, 171 follow-up days, and 10 days between assessments per individual (Figure 1a-c).

Computerized adaptive testing captures treatment-related changes in depression severity

We assessed what factors contribute to variation in the CAT-DI severity scores (Figure 1e, Materials and
Methods). Subjects are assigned to different treatments (online support or clinical care) depending on their
CAT-DI severity scores, so not surprisingly we see a significant source of variation attributable to the
treatment group (10.3% of variance explained, 95% CI: 8.37 - 12.68%). Once assigned to a treatment
group, we expect to see changes over time as treatment is delivered to individuals with severe symptoms
at baseline. Thisis reflected in asignificant source of variation attributable to the interaction between the
treatment group and the number of weeks spent in the study (8.54% of variance explained, 95% CI: 5.92 -
10.4%) and the improved scores for individuals with severe symptoms at baseline as they spend more time
in the study (Sup Figure 3). We found no statistically significant effect of the COVID pandemic, sex, and
other study parameters. The largest source of variation in depression severity scoresis attributable to
between-individual differences (41.78% of variance explained, 95% CI: 38.31 - 42.02%), suggesting that

accurate prediction of CAT-DI severity requires learning models tailored to each individual.
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Digital behavioral phenotypes capture changes in behavior

We set out to examine how digital behavioral phenotypes change over time for each person and with
CAT-DI severity scores. For example, we want to know how hours of sleep on a specific day for a specific
individual differs from the average hours of slegp in the previous week, or month. To answer these
guestions, we extracted digital behavioral phenotypes (referred to hereinafter as features) captured from
participants smartphone sensors and investigated which features predicted the CAT-DI scores. STAND
participants had the AWARE framework?®’ installed on their smartphones, which queried phone sensors to
obtain information about a participant’s location, screen on/off behavior, and number of incoming and
outgoing text messages and phone calls. We processed these measurements (M aterials and Methods and
Supplementary Material) to obtain daily aggregate measures of activity (23 features), social interaction
(18 features), sleep quality (13 features), and device usage (two features). In addition, we processed these
features to capture relative changes in each measure for each individual, e.g., changes in average amount
of dleep in the last week compared to what istypical over the last month. In total, we obtained 1,325
features. Missing daily feature values (Sup Figure 4) were imputed using two different imputation
methods, AutoComplete® and softimpute® (Materials and Methods), resulting in 29,254 days of logging
events across all individuals.

Several of these features map onto the DSM-5 MDD criteria of anhedonia, deep disturbance, and
loss of energy (Supplementary Material; Sup Figure 5). We computed correlations between these features
and anindividuals depression severity score and found that these features often correlate strongly with
changes in depression (Figure 2a). For example, for one individual, the number of unique locations visited
during the day shows a strong negative correlation with their depression severity scores during the study
(Pearson’s p = -0.65, Benjamini-Hochberg [BH]-adjusted P-value = 2.50x10%°). We observed a ot of

heterogeneity in the strength and direction of the correlation of these features with depression severity
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across individuals. For example, features related to location entropy are positively (Pearson’s p=0.40, BH-
adjusted P-value = 3.55x10™") correlated with depression severity for some individuals but negatively
(p=-0.59, BH-adjusted P-value = 1.11x10%) or not correlated (p=-3.92x10%, BH-adjusted P-value =
0.995) for others. Finally, as expected from the large heterogeneity in these correlation between
individuals, the correlation of these features with depression severity scores across individuals was very
poor, the strongest correlation was observed for the wake-up time (p=.07, BH-adjusted P-value = 2.47x10°
03)_

Figure 2b illustrates an individual with severe depressive symptoms for whom we can identify a
window of disrupted sleep that co-occurred with aclinically significant increase in symptom severity
(from mild to severe CAT-DI scores). Subsequently, a return to baseline patterns of sleep coincided with

symptom reduction. Quantifying this relationship poses a number of issues, which we turn to next.

Predicting CAT-DI scores from digital phenotypes

To predict future depression severity scores using digital behavioral phenotypes, we considered three
analytical approaches. First, we applied an idiographic approach, whereby we build a separate prediction
model for each of the participants. Specifically, for each individual, we train an elastic net regression
model using thefirst 70% of their depression scores and predict the remaining 30% of scores. Second, we
applied a nomothetic approach that used data from all participantsto build asingle model for depression
severity prediction using the same anaytical steps: we train an elastic net regression model using the first
70% of depression scores of each individual and predict the remaining 30% of scores (Materials and
Methods). The result of this nomothetic approach was a single elastic net regression model that makes

predictionsin all participants.
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The main difference between the nomothetic and idiographic approach is that the nomothetic
model assumes that each feature has the same relationship with the CAT-DI scores across individuals, for
example, that a phone interaction is always associated with an increase in depression score. However, itis
possible, and we see thisin our data, that an increase in phone interaction can be associated with an
increase in symptom severity for one person, but a decrease in another (Figure 2a). The idiographic model
allowsfor this possibility by using a different slope for each feature and individual. In addition, we know
that large differences exist in average depression scores between individuals (Figure 1€). To understand
the impact of accounting for these differences in a nomothetic approach, we also applied a third approach
(referred to as nomothetic*) which includes individual indicator variablesin the elastic net regression
model in order to allow for potentially different intercepts for each individual. All three models include
stay day as a covariate.

To assess whether digital behavioral phenotypes predict mood, we have to deal with the problem
that digital phenotypes are acquired daily, while CAT-DI are usually administered every week (and often
much less frequently, on average every 10 days). We assume that the CAT-DI indexes a continuously
variable trait, but what can we use as the target for our digital predictions when we have such sparsely
distributed measures? We can treat this as a problem of imputation, in which case the difficulty reducesto
knowing the likely distribution of missing values. However, we also assume that both CAT-DI and digital
features only imperfectly reflect a fluctuating latent trait of depression. Thus, our imputation is used not
only to fill in missing data points but also to be a closer reflection of the underlying trait that we are trying
to predict, namely, depressive severity.

We interpolate the unmeasured estimates of depression by modeling the latent trait as a cubic
spline with different degrees of freedom (Figure 3a). For many individuals, CAT-DI values fluctuate

considerably during the study, while for others less so. To accommodate this variation, we alter the
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degrees of freedom of the cubic spline: the more degrees of freedom, the greater the allowed variation. For
each individual, we used cubic splines with four degrees of freedom, denoted by CS(4df), degrees of
freedom corresponding to the number of observed CAT-DI categoriesin the training set, denoted by
CS(2-4df), and degrees of freedom identified by leave-one-out cross-validation in the training set, denoted
by CS(cv). For comparison purposes, we also used a last-observation-carried- forward (LOCF) approach,
a naive interpolation method which does not apply any smoothness to the observed trait. In addition, we
also include results from analyses done without interpolating CAT-DI but rather modeling the (bi)weekly
measurements. Because spline interpolation will cause data |eakage across the training-testing split and
upwardly bias prediction accuracy, we train our prediction models using cubic spline interpolation on only
the training data (first 70% of time series of each individual) and assess prediction accuracy performance
in the testing set (last 30%) using the time series generated by applying cubic splines to the entire time
series (Figure 3Db).

We evaluated the prediction performance of each model and for each latent trait across and within
participants. We refer to the former as group level prediction and the later asindividual level prediction.
Looking at group level prediction performance, compared to within each participant separately, allows us
to compute prediction accuracy metrics, e.g., R?, as afunction of the number of days ahead we are
predicting and test for their statistical significance across all predicted observations.

Wefirst evaluated group level prediction accuracy. Figure 4 shows group level prediction
performance for each latent trait using the nomothetic, nomothetic*, and idiographic model when the
features were imputed with Autocomplete and CAT-DI was modeled using a logistic elastic net
regression. We observed that across all latent traits the nomothetic model shows lower prediction accuracy
(mean absol ute percentage error [MAPE] = 25-28% and R*< 5% for all latent traits), compared to the

nomothetic* (MAPE = 18-25% and R%= 30-46%) or idiographic (MAPE = 16-23% and R?=37-66%)

10
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models (Figure 4a-b). Thisisin line with the large proportion of depression scores variance explained by
between-individual differences (Figure 1e) which get best captured by the nomothetic* and idiographic
models. Theidiographic model also showed higher prediction accuracy than the nomothetic(*) model
when the features were imputed using softimpute or when CAT-DI was modeled using alinear elastic net
regression (Sup Figure 6a-b) as well aswhen CAT-DI was modeled at the (bi)weekly level without
interpolation to get daily level data (Sup Figure 8a-b).

We also compared the prediction performance for each of the different latent traits. As expected,
we achieve a higher prediction accuracy for the more highly penalized cubic spline latent traits compared
to the LOCF latent trait, as the latter has, by default, alarger amount of variation left to be explained by
the features. For example, for the idiographic models, we obtained an R?= 66.4% for CS(2-4df) versus
36.9% for LOCF, implying that weekly patterns of depression severity, which are more likely to be
captured by the LOCF latent trait, are harder to predict than depression severity patterns over a couple of
weeks or months, which are more likely to be captured by the cubic spline latent traits with smallest
degrees of freedom.

To understand the effect of time on prediction accuracy, we assessed prediction performance as a
function of the number of weeks ahead we are predicting from the last observation in the training set
(Figure 4c). Theidiographic models achieved high prediction accuracy for depression scores up to three
weeks from the last observation in the training set, e.g., R*= 84.2% and 73.2% for the CS(2-4df) |atent
trait to predict observations one week and four weeks ahead, respectively. Prediction accuracy falls below
80% after four weeks.

To quantify the contribution of features on group-level prediction accuracy, we assessed to what
extent the features improve the prediction of each model above that achieved by a baseline model that

includes just the intercept and study day. Figure 4d-e shows the log2 fold change in CAT-DI prediction

11
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accuracy, as measured by MAPE and R?, of the feature-based model over the baseline model. The
basaline nomothetic model often predicts the same value, i.e., training set intercept, so we cannot compute
R?. The feature-based idiographic model achieved the greatest improvement in prediction accuracy over
the corresponding baseline mode, resulting in 65.7% reduction in the MAPE and 7.1% increase in R?

over the baseline model for the CS(2-4df) latent trait. The idiographic model also showed higher
prediction accuracy than the corresponding baseline model when the features were imputed using
softimpute or when CAT-DI was modeled using a linear elastic net regression (Sup Figure 6¢-d) aswell as
when CAT-DI was modeled at the (bi)weekly level (Sup Figure 8c-d). These results suggest that the

passi ve phone features enhance prediction, over and above past CAT-DI and study day, for most
individualsin our study.

We next evaluated individual level prediction accuracy (Figure 5). For thisanalysis, in order to be
able to assess the statistical significance of our prediction accuracy within each individual, we only keep
individuals with at least five mental health assessmentsin the test set (N=143). In line with the group level
prediction performance, the idiographic model outperformed the other models at the individual level
(Figure 5a; median MAPE acrossindividuals for all latent traits = 13.3 - 18.9% versus 20.1-23% for the
nomothetic and 14.5-20.4% for the nomothetic* model). Using an idiographic modeling approach, we
significantly predicted the future mood for 79.0% of individuals (113 out of 143 with R> 0 and FDR < 5%
across individuals) for at least one of the latent traits (Figure 5b), compared to 58.7% and 65.7% of
individuals for the nomothetic and nomothetic* mode!, respectively. The median R? value across
significantly predicted individuals for the idiographic models was 47.0% (Figure 5c), compared to 23.7.%
and 28.4% for the nomothetic and nomothetic* model, respectively. In addition, for 41.3% of these
individuals, the idiographic model had prediction accuracy greater than 70%, demonstrating high

predictive power in inferring mood from digital behavioral phenotypes for these individuals, compared to

12
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6.2% and 9.7% for the nomothetic and nomothetic* model, respectively (Figure 5¢). Theidiographic
model also outperformed the nomothetic(*) model when the features were imputed using softimpute or
when CAT-DI was modeled using alinear elastic net regression (Sup Figure 7a) aswell as when CAT-DI
was modeled at the (bi)weekly level (Sup Figure 8e).

Next, we compared individual-level prediction accuracy of each model against the corresponding
baseline model that includes just the intercept and study day. Figure 5d and Sup Figure 7c-d show the
distribution across individuals of the log2 fold change in CAT-DI prediction accuracy of the feature-based
model over the baseline model. In accordance with the group level prediction performance, the feature-
based idiographic model achieved the greatest improvement in prediction accuracy over the corresponding
baseline model, resulting in a median of over two-fold reduction in the MAPE (Figure 5d; median MAPE
of feature-based model acrossindividualsfor al latent traits = 13.3 - 18.9% versus 40.1-41.4% for the
baseline model). The idiographic model also showed greatest improvement in prediction accuracy over the
corresponding baseline model than the nomothetic(*) model when CAT-DI was modeled at the (bi)weekly
level (Sup Figure 8f).

To identify the features that most robustly predict depression in each person we extracted top-
feature predictors for each individual’s best-fit idiographic model. We limit this analysis to the 113
individuals which showed significant prediction accuracy for at least one of the latent traits. As expected,
the study day was predictive of the mood for 63% of individuals and was mainly associated with a
decrease in symptom severity (median odds ratio [OR] = 0.86 across individuals). Although no behaviora
feature uniformly stood out, as expected by the high correlation between features and heterogeneity in
correlation between features and CAT-DI across individuals (Figure 2a), the variation within the last 30
days in the proportion of unique contacts for outgoing texts and messages (a proxy for erratic social

behavior), the time of last (first) interaction with the phone after midnight (in the morning) (a proxy for
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erratic bedtime [wake up time] and sleep quality), and the proportion of time spent at home during the day
(aproxy for erratic activity level) were among the top predictors of future mood and were often associated
with an increase in symptom severity (OR = 1.05 - 1.23 across features and individuals). The heatmap
display of predictor importance in Figure 6 highlights the heterogeneity of passive features for predicting
the future across individuals. For example, poor mental health, asindicated by high CAT-DI depression
severity scores, was associated with decreased variation in location entropy in the evenings (a proxy for
erratic activity level) in the past 30 days for one individual (OR = 0.94) while for another individual it was

associated with increased variation (OR =1.20).

Factors associated with prediction performance

Using digital behavioral features to predict future mood was useful for 74-77% of our cohort and the
contribution of the features to the prediction performance varies across these individuals. What might
contribute to this variation? Identifying the factors involved might allow us to develop additional models
with higher prediction accuracy. To identify factors that are associated with prediction performance, we
computed the correl ation between accuracy metrics (prediction R? and MAPE of feature-based model and
difference in MAPE between feature-based and baseline models) with different study parameterse.g.,
treatment group, sex, etc. (Figure 7).

Increased variability in depression scores during the study, as measured by the number of unique
CAT-DI categories for each individual, were correlated with poorer prediction performance of the feature-
based model, as measured by MAPE (Spearman’s p= 0.49 and 0.23, p-value = 2.25 x 10% and 9.79 x 10
for LOCF and CS(4df) latent traits, respectively). In addition, larger differences in median depression
scores between the training and test set for each individual were correlated with poorer prediction
performance, as measured by MAPE (Spearman’s p=0.32, p-value = 9.11 x 10 for the CS(4df) |atent

trait). This suggests that, for some individualsin the study, the training depression scores are higher/lower
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than the test depression scores (as expected by Sup Figure 4) and that adding the study day or digital
phenotypes as a predictor does not completely mediate thisissue. The size of the training and test set as
well as demographic variables were not strongly correlated to prediction performance.

While we had poorer prediction performance for individuals whose mood shows greater variability
during the course of the study, these are also the individuals for which using a feature-based model
improves prediction accuracy compared to a baseline moddl that predicts based on past depression
severity and study day alone. Specifically, larger variability in depression scores for each individual was
correlated with better prediction performance of afeature-based model than a baseline model, as measured
by difference in MAPE between the two models (Spearman’ s p=-0.54 and -0.49, p-value = 5.96x 10™* and

p-value = 4.46 x 10 for the CS(4df) and CS(2-4df) latent traits, respectively).

Discussion

In this paper, we showed the feasibility of longitudinally measuring depressive symptoms over 183
individuals for up to 10 months using computerized adaptive testing and passively and continuously
measuring behavioral data captured from the sensors built into smartphones. Using a combination of cubic
spline interpolation and idiographic prediction models, we were able to impute and predict a latent
depression trait on ahold-out set of each individual several weeks in advance.

Our ability to longitudinally assess depressive symptoms and behavior within many individuals
and over along period of time enabled us to assess how far out we can predict depressive symptoms, how
variable prediction accuracy can be across different individuals, and what factors contribute to this
variability. In addition, it enabled us to assess the contribution of behavioral featuresto prediction
accuracy above and beyond that of prior symptom severity or study day alone. We observed that

prediction accuracy dropped below 70% after four weeks. In addition, prediction accuracy varied
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considerably across individuals as did the contribution of the features to this accuracy. Individuals with
large variability in symptom severity during the course of the study (such asthosein clinical care) were
harder to predict but benefited the most from using behavioral features. We expect that pairing digital
phenotypes from smartphones with behavioral phenotypes from wearable devices, which are worn
continuously and might measure behavior with less error, as well as addition of phenotypes, like those
from electronic health records, could help address some of these challenges.

Our results are consistent with other studies that predict daily mood as measured by ecological
momentary assessments or a short screener (i.e., PHQ2'") and confirm the superior prediction
performance of idiographic models over nomothetic ones. Our study goes further, by exploring if the
superior prediction accuracy of idiographic modelsisaresult of better modeling the relationship between
features and mood or simply of better modeling the baseline mood of each individual. We show that a
large part of the increase in prediction performance of idiographic modelsis due to the latter, as indicated
by the increase in prediction performance between the nomothetic and modified nomothetic models.

High-burden studies over long time periods may result in drop-out, particularly for depressed
individuals®. In our case, we observed that attrition for CAT-DI assessment was linear over the follow-up
period, except for the first two weeks during which a large proportion of individuals which received online
support dropped out (typical of online mental health studies™). In addition, participants which received
clinical care were more adherent than those which received online support, despite endorsing more severe
depressive symptoms. These participants had regular in-person treatment sessions during which they were
ingtructed to complete any missing assessments emphasi zing the importance of using reminders or
incentives for online mental health studies.

There are several limitations in the current study. First, the idiographic models that we use here are

fit separately for each individual and might not thus maximize statistical power. In addition, they assume a
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(log-)linear relationship between behavioral features and depression severity and will fit poorly if this
assumption isviolated. One potential alternative isto employ mixed models that jointly model data from
al individuals using individual-specific slopes and low degree polynomials. However, due to the high
dimensionality of our data, such models are hard to implement. Second, whileit iswell established that
Computerized Adaptive Testing can be repeatedly administration to the same person over time without
response set bias due to adaptive question sets®, extended use over months might still lead to limited
response bias®. Third, the adaptive nature of CAT-DI, which might assess different symptoms for
different individuals, frustrates joint analyses. Fourth, the imputation method used for imputing digital
behavioral features assumes data to be missing at random (MAR), meaning missingness depended on
observed data®®. While this assumption is hard to test, MAR seems quite plausible in our study given that
the datais missing more often for participants that did not receive regular reminders. In addition, research
has shown that violation of the MAR assumption does not seriously distort parameter estimates® . Finally,
the age and gender distribution in our participants may limit the generalizability of our findingsto the
wider population.

In conclusion, our study verified the feasibility of using passively collected digital behavioral
phenotypes from smartphones to predict depressive symptoms weeks in advance. Its key novelty liesin
the use of computerized adaptive testing, which enabled us to obtain high-quality longitudinal assessments
of mood on 183 individuals over many months, and in the use of personalized prediction models, which
offer a much higher predictive power compared to nomothetic models. Ultimately, we expect that the
method will lead to a screening and detection system that will alert cliniciansin real-time to initiate or
adapt treatment as required. Moreover, as passive phenotyping becomes more scalable for hundreds of
thousands of individuals, we expected that this method will enable large genome and phenome-wide

association studies for psychiatric genetic research.
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Materials and M ethods

Study participants and treatment protocol

Participants are University of California Los Angeles (UCLA) students experiencing mild to severe
symptoms of depression or anxiety enrolled as part of the STAND program® devel oped under the UCLA
Depression Grand Challenge® treatment arm. All UCLA students aged 18 or older who had internet
access and were fluent in English were eligible to participate. STAND enrolled participants in two waves.
Thefirst wave enrolled participants from April 2017 to June 2018. The second wave of enrollment began
at the start of the academic year in 2018 and continued for three years, during which time, from March
2020, a Safer-At-Home order was imposed in Los Angeles to control the spread of COVID-19. All
participants are offered behavioral health tracking through the AWARE? framework and had to install the
app in order to beincluded in the study. All participants provided written informed consent for the study
protocol approved by the UCLA institutional review board (IRB #16-001395 for those receiving online
support and #17-001365 for those receiving clinical support).

Depression symptom severity at baseline and during the course of the study was assessed using the
Computerized Adaptive Testing Depression Inventory® (CAT-DI), avalidated online mental health
tracker. Computerized adaptive testing is a technology for interactive administration of tests that tailors
the test to the patient®. Tests are 'adaptive' in the sense that the testing is driven by an algorithm that
selects questionsin real-time and in response to the ongoing responses of the patient. CAT-DI usesitem
response theory to select a small number of questions from alarge bank, thus providing a powerful and

efficient way to detect psychiatric illness without suffering response fatigue.
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Participants were classified into treatment groups based on their depression and anxiety scores at
basdline, which indicated the severity of symptoms in those domains. Individuals who are not currently
experiencing symptoms of depression (CAT-DI score < 35) or anxiety are offered the opportunity to
participate in the study without an active treatment component by contributing CAT-DI assessment. These
individuals are excluded from our analyses as they do not show any variation in CAT-DI. Participants that
exhibited scores below the moderate depression range (CAT-DI score < 74) were offered internet-based
cognitive behavioral therapy, which includes adjunctive support provided by trained peers or clinical
psychology graduate students via video chat or in person. Eligible participants with symptomsin this
range were excluded if they were currently receiving cognitive behavioral therapy, refused to install the
AWARE phone sensor app, or were planning an extended absence during the intervention period.
Participants that exhibited scores in the range of severe depression symptoms (CAT-DI score 75-100) or
who endorsed current suicidality were offered in-person clinical care which included evidence-based
psychological treatment with option for medication management. Additional exclusion criteriawere
applied to participants with symptoms in this range, which included clinically-assessed severe
psychopathology requiring intensive treatment, multiple recent suicide attempts resulting in
hospitalization, or significant psychotic symptoms unrelated to maor depressive or bipolar manic
episodes. These criteria were determined through further clinical assessment. Participants with symptoms
in thisrange were also excluded if they were unwilling to provide a blood sample or transfer care to the
study team while receiving treatment in the STAND program.

Depression symptom severity was assessed up to every other week for the participants that
received online support (both waves), i.e., those with mild to moderate symptoms, and every week for the
participants that received in-person clinical care, i.e., those with severe symptoms (Sup Figure 2a).

Participants that received in-person care had also four in-person assessment events, at weeks 8, 16, 28, and
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40, prior to the COVID-19 pandemic. Thus, Wave 1 participants can have a maximum of 13 CAT-DI
assessments while Wave 2 participants can have a maximum of 21 (online support) or 44 assessments,
depending on severity and excluding initial assessments prior to treatment assignment.

CAT-DI was assessed at |least onetime for 437 individuals that installed the AWARE app. Here,
we limit our prediction analyses to individuals that have at |east five CAT-DI assessments (N=238; since
we need at least four pointsto interpolate CAT-DI in the training set), have at least 60 days of sensor data
in the same period for which CAT-DI datais also available (N=189), and show variation in their CAT-DI

scores in thetraining set (N=183), which is necessary in order to build prediction models.

Adherenceto CAT-DI assessment protocol and factors affecting adherence

To assess if participant adherence to CAT-DI assessments varied across enrollment waves and treatment
groups, we used alogistic regression with the proportion of CAT-DI assessments a participant completed
as the dependent variable and the enrollment waves or treatment groups as independent variables. A
similar model was used to assess impact of sex and age on participant adherence (results presented in the
Supplement). To assessif participant adherence varied with time in the study, we used alogistic
regression random effect model , asimplemented in the ImerTest®® R package, with an indicator variable
for the individual remining in the study for each required assessment as the dependent variable and a
continuous study week as an independent variable. An individual-specific random effect was used to
account for repeated measurement of each individual during the study. A likelihood ratio test was used to

test for the significant of the effect of each independent variable against the appropriate null mode.
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Variance partition of CAT-DI metrics

We calculate the proportion of CAT-DI severity variance explained by different study parametersusing a
linear mixed model as implemented in the R package variancePartition* with the subject id, study id,
season, sex, and year modeled as random variables while the day of the study, the age of the subject, and a
binary variable indicating the dates before or after the safer at home order was issued in California
modeled asfixed,i.e,y = ¥; X;B; + X  Zrax + € whereyisthe vector of the CAT-DI values
across all subjects and time points, X; isthe matrix of j™ fixed effect with coefficients B, Zy isthe matrix
corresponding to the k™ random effect with coefficients a, drawn from anormal distribution with
variance a}{k. The noiseterm, ¢, is drawn from anormal distribution with variance o2. All parameters are
estimated with maximum likelihood*. Variance terms for the fixed effects are computed using the post

hoc calculation 65}, = var(X;B;). Thetotal varianceis 67,¢q; = 65}, + 64, + 62 sothat thefraction of
variance explained by the " fixed effect is 83 187 otar, by the k™ random effect is 62 /67,4, and the

residual varianceis 62/62,,,;. Confidence intervals for variance explained were calculated using

parametric bootstrap sampling as implemented in the R package variancePartition®.

Feature extraction from smartphone sensors

We describe feature extraction in detail in below. Broadly, we extracted 23 features
related to mobility, e.g., location entropy, 13 related to sleep and circadian rhythm, e.g., hours of
uninterrupted sleep, 18 related to social interaction, e.g., duration of outgoing calls, and two
related to mobile device usage, e.g., number of interactions with phone per day. Each of these
features was calculated on a daily basis. Furthermore, each of these features was computed over

three daily non-overlapping time windows of equal duration (night 00:00-08:00, day 08:00-
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16:00, evening 16:00-00:00), under the hypothesis that participant behavior may be more or less
variable based on external constraints such as aregular class schedule during daytime hours.

In addition, considering a participant’s current mental state may be influenced by patterns
of behavior from days prior, diding window averages of each of the daily features were
calculated over multiple dliding windows ranging from three days to one month prior to the
current day, i.e., windows of length three, seven, 14, and 30 days. The variance of each feature
was also calculated over these same windows, to estimate whether behavior had been stable or
variable during that time, e.g., were there large fluctuations in sleep time over the past week?

Finally, under the hypothesis that recent changes in behavior may be more indicative of
changes in mental state than absolute measures, a final set of transformations were applied to
each feature. These transformations compared the sliding window means of two different
durations against each other, to estimate the change in behavior during one window over that of a
longer duration window (the longer window serving as alocal baseline for the participant). This
allowed estimates from the raw features of whether, e.g., the participant had slept less last night
than typical over the past week or slept less on average in the last week than typical over the last
month. All of these transformations were applied to the base features extracted from sensor data
and included as separate features fed into subsequent regression approaches.

In total, 1,325 raw and transformed features were extracted and included in the final

anaysis.

Preprocessing features

Each sensor collected through the AWARE framework is stored separately with a common set of
dataitems (device identifier, timestamp, etc.) as well as a set of items unique to each sensor

(sensor-specific items such as GPS coordinates, screen state, etc.). Data from each sensor was
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preprocessed to convert Unix UTC timestamps into local time, remove duplicate logging entries,
and remove entries with missing sensor data. Additionally, some data labels that are numerically
coded during data collection (e.g., screen state) were converted to human-readable labels for ease

of interpretation.

Mobility features

Location datawas divided into 24-hour windows starting and ending at midnight each
day. To identify locations where participants spent time, GPS data were filtered to identify
observations where the participants were stationary since the previous observation. Stationary
observations were those defined as having an average speed of <0.7 meters per second
(approximately half the average walking speed of the average adult). These stationary
observations were then clustered using hierarchical clustering to identify unique locationsin
which participants spent time during each day. Hierarchical clustering was chosen over k-means
and density-based approaches such as DBSCAN dueto its ability to deterministically assign
clusters to locations with a precisely defined and consistent radius, independent of occasional
data missingness.

Locations were defined to have a maximum radius of 400 m, a sufficient radiusto
account for noisein GPS observations. Clusters were then filtered to exclude any location in
which the participant spent less than 15 minutes over the day to exclude location artifacts, e.g., a
participant being stuck in traffic during daily commute, or passing through the same area of
campus multiple timesin aday. To address data missingness in situations where GPS
observations were not received at regular intervals, locations were linearly interpolated to

provide an estimated location every 3 minutes.
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For each day, ahome location was assigned based on the location each participant spent
the most time in between the hours of midnight to eight am. This approach allowed for better
interpretation of behavior for participants who split time between multiple living situations, for
example, students who return home for the weekend or a vacation. Next, multiple features were
extracted from this location data, including total time spent at home each day, total number of
locations visited, overall location entropy, and normalized location entropy. Each of these
features was additionally computed over three daily non-overlapping time windows of equal
duration (night 00:00-08:00, day 08:00-16:00, evening 16:00-00:00), under the hypothesis that
participant behavior may be more or less variable based on external constraints such as aregular

class schedule during daytime hours.

Sleep and circadian rhythm features

Sleep and circadian rhythm features were extracted from logs of participant interactions
with their phone, following prior work showing that last interaction with the phone at night can
serve as a reasonable proxy for bedtime, and first interaction in the morning for waketime. The
longest phone-off period (or assumed uninterrupted sleep duration) was tracked each night, as
well as the beginning and end time of that window as estimates of bedtime and waketime. To
account for participants who may have interrupted sleep, the time spent using the phone between
the hours of midnight and 8 am was also tracked to account for participants who may use their
phone briefly in the middle of the night but are otherwise asleep for the majority of that window.
Finally, time-varying kernel density estimates were derived using the total set of phone
interactions, to estimate the daily time nadir of interactions, as an additional proxy for the time of

overall circadian digital activity nadir.
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Social interaction and other device usage features

Additional social interaction features were extracted from anonymized logs of participant
calls and text messages sent and received from their smartphone device. Features extracted from
this datainclude, for example, the total number of phone calls made, total time spent on the
phone, and percentage of calls connected that were outgoing (i.e., dialed by the participant)
versus incoming. Due to OS restrictions, sensors needed to extract text message features are not

available on iOS devices and were only computed for the 15 participants with Android devices.

Imputation of smartphone-based features

To address the missing features problem (Sup Figure 4), we considered two different imputation
methods: matrix completion viaiterative soft-thresholder SVD, as implemented in the R package
softimpute, and AutoComplete, a deep-learning imputation method that employs copy-masking to
propagate missingness patterns present in the data. Both approaches were applied separately to each
individual asfollows. First, we removed features that exhibited > 90% missingness for that individual.
Next, we trained the imputation model on the training split alone. Finally, each imputation model was
applied to the training and test dataset to impute the features for that individual. Before prediction, we
normalize all features to have zero mean and unit standard deviation using mean and standard deviation

estimates from the training set alone.

Mapping of behavioral featuresto DSM-5 Major Depressive Disorder criteria
The set of features described above map onto only a subset of DSM criteriathat are closely
associated with externally observable behaviors (Sup Figure 5) - sleep, loss of energy, and anhedonia (to

the extent it is severe enough to globally reduce self-initiated activity). Other DSM criteria such as weight
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change, appetite disturbance, and psychomotor agitation/retardation are in theory also directly observable,
but less so with the set of sensors available on a standard smartphone. For these criteria, other device
sensors - for instance, smartwatch sensors - may be more applicable in the detection of e.g., fidgeting
associated with psychomotor agitation. A final set of DSM criteriainclude those primarily subjective
findings - depressed mood, feelings of worthlessness, suicidal ideation - which inherently require self-
report to directly assess. Given that only 5 of 9 criteriaare required for the diagnosis of MDD, an
individual patient’s set of symptoms may overlap minimally with those symptoms we expect to measure
with the features described above. However, for others, the above features may cover a more significant
portion of their symptom presentation and do a better job directly quantifying fluctuationsin DSM-5

criteriafor that individual .

Imputation of CAT-DI severity scoresfor prediction models

To get daily-level CAT-DI severity scores, we interpolate the scores for each individual across the
whole time series (ground truth) or only the time series corresponding to the training set (70% of the time
series) by moving the last CAT-DI score forward, denoted by LOCF, or by smoothing the CAT-DI scores
using cubic splines with different degrees of freedom (Figure 3a). Cubic smoothing spline fitting was done
using the smooth.spline function from the stats package in R. We consider cubic splines with four degrees
of freedom (denoted by CS(4df) and corresponding to the number of possible CAT-DI severity categories,
i.e. normal, mild, moderate, and severe), cubic splines with degrees of freedom equal to the number of
observed CAT-DI categories for each individual in the training set (ranging from two to four and denoted
by CS(2-4df)), and degrees of freedom identified by ordinary |eave-one-out cross-validation in the

training set (denoted by CS(cv)).
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Nomothetic and idiographic prediction models of future mood

We split the data for each individual into atraining (70% of tragjectory) and a test set (remaining
30% of trajectory). To predict the future mood of each individual in the test set from smartphone-based
features in the test set, we train an elastic net logistic or linear regression model** in the train set. We set
a, i.e., the mixing parameter between ridge regression and lasso, to 0.5 and use 10-fold cross-validation to
find the value for parameter 4, i.e., the shrinkage parameter. For the idiographic models, we train separate
elastic net models for each individual while for the nomothetic and modified nomothetic models we train
one model across al individuals. To account for individual differencesin the average CAT-DI severity
scores in the training set, the modified nomothetic model fits individual-specific intercepts by including
individual indicator variablesin the regression model. Thisis similar in nature to a random intercept
mixed model where each individual has their own intercept. Note that the test data are the same for al of
these models, i.e., the remaining 30% of each individual’ s trgjectories. Predictions outside the CAT-DI
severity range, i.e,, [0,100], are set to NA and not considered for model evaluation. We compute
prediction accuracy metrics by computing the Pearson's product-moment correlation coefficient (R)
between observed and predicted depression scores in the test set across and within individuals as well as
the squared Pearson coefficient (R?). To assess the significance of the prediction accuracy we use a one-
sided paired test for Pearson's product-moment correlation coefficient, as implemented in the cor.test
function of the stats* R package, and a likelihood ratio test for the significance of R?. We use the

Benjamini-Hochberg procedure™ to control the false discovery rate across individuals at 5%.

Data Availability

The datasets generated and analyzed during the current study are available from the

corresponding author upon reasonable request.
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Code Availability

The code that supports the findings of this study is available online at

https://github.com/BrunildaBalliu/stand mood prediction.
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Figure 1: Overview of CAT-DI assessment frequency and source of variation in CAT-DI. (a-c) Box plot of the observed
number of CAT-DI assessments (a), median number of days between assessments (b), and follow-up time in days (c) for each
wave and treatment group. The numbers in the parentheses indicate the expected values for each of these metrics according to
study design (Sup Figure 2). The dark black line represents the median value; the box limits show the interquartile range (IQR)
fromthefirst (Q1) to third (Q3) quartiles; the whiskers extend to the furthest data point within Q1-1.5* QR (bottom) and
Q3+1.5*IQR (top). (d) Proportion of CAT-DI severity variance explained (VE) by inter-individual differences and other study
parameters with 95% confidence intervals. The proportion of variance attributable to each source was computed using a linear
mixed model with the individual id and season (two multilevel categorical variables) modeled as random variables and all other
variables modeled as fixed (see Materials and Methods).
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Figure 2: Overview of correlation between depression severity scores and features. (a) Heatmap for Pearson’s correlation
coefficient (color of cell) between CAT-DI scores and behavioral features (y-axis) across individuals (first column) and within
each individual (x-axis). Correlation coefficients with BH-adjusted p-values > 0.05 are indicated by x. For plotting ease, we limit
to untransformed features (N=50, see Materials and Methods). Rows and columns are annotated by feature type and by each
individual’ s wave and treatment group. Rows and columns are ordered using hierarchical clustering with Euclidean distance.
(b) Example of identifying window of potential sleep disruption using sensor data related to phone usage and screen on/off
status. The top panel shows estimated hours of deep for an individual during the study while the bottom panel shows the
depression severity scores during the same period. The dotted lines indicate the dates at which a change point is estimated to
have occurred in the estimated hours of deep as estimated using a change point model framework for sequential change
detection (Materials and Methods). BH: Benjamini Hochberg.
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Figure 3: Interpolation of depression severity scores and latent trait inference. (a) Illustration of different interpolation
methods considered for imputing the depression severity scores and inferring the latent depression traits. The dotted horizontal
linesindicate the depression severity score thresholds for the normal (0 < CAT-DI < 35), mild (35 < CAT-DI < 65), moderate (65
< CAT-DI < 75), and severe (75 < CAT-DI <100) depression severity categories. (b) lllustration of the prediction method for the
CS(2-4df) interpolation method. We first infer the latent trait on the full CAT-DI trajectory of an individual (continuous yellow
line). We then split the trajectory into a training set (days 1 until t) and a test set (days t+1 until T), infer the latent trait on the
training set (dashed yellow line), and predict the trajectory in the test set (yellow triangles). Finally, we compute prediction
accuracy metrics by comparing the observed (yellow circles) and predicted (yellow triangles) depression scoresin the test set.
We follow a similar approach for the other interpolation methods. The vertical line indicates thefirst date of the test set
trajectory, i.e., the last 30% of the trajectory. LOCF: last observation carried forward. CS (xdf): cubic spline with x degrees of
freedom. CS (cv): best-fitting cubic spline according to |eave-one-out cross-validation.
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Figure 4: | diographic models achieve higher group level prediction accuracy than nomothetic models. (a-b) CAT-DI
prediction accuracy across all individualsin the test set as measured by MAPE (a) and R? (b) across all individualsfor different
models and latent depression traits. The dotted line in B indicates 70% prediction accuracy and bars indicate 95% confidence
intervals of R?. () R versus the number of weeks ahead we are predicting from the last observation in the training set. The
dotted line indicates 70% prediction accuracy. Bars indicate 95% confidence intervals of R2. (d-€) log2 fold change in CAT-DI
prediction accuracy, as measured by MAPE (d) and R? (e), of feature-based model over the baseline model. Negative log2 fold
change in MAPE and positive log2 fold change in R* mean that the feature-based model performs better than the baseline model.
A log2 fold change in MAPE of -1 means that the prediction error of the baseline model istwice as large as that of the feature-
based model. The dotted line indicates the log2 fold change for the best and wor st performing model/latent trait combination.
Features were imputed with Autocomplete and CAT-DI was modeled using a logistic elastic net regression. MAPE: mean
absolute percent error. LOCF: last observation carried forward. CS(xdf): cubic spline with x degrees of freedom. CS(cv): best-
fitting cubic spline according to leave-one-out cross-validation.
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Figure 5: I diographic models achieve higher individual level prediction accuracy than nomothetic models. (a) Box plots of
distribution of MAPE across individuals for different models and latent depression traits. The dashed line indicates the median
MAPE of the best performing model/latent trait combination, i.e., idiographic model and CS(2-4df) spline. (b) Bar plots of the
proportion of individuals with significantly predicted mood (R>0 at FDR<5% across individuals) for each latent trait and
prediction model. (c) Prediction accuracy (R?) with 95% CI across all individuals and latent traits. (d) Box plot of log2 fold
change in CAT-DI prediction accuracy, as measured by MAPE, of feature-based model over the baseline model. Negative 1og2
fold change in MAPE mean that the feature-based model performs better than the baseline model. All plots are based on
individuals with at least five assessmentsin the test set (N=143). Features were imputed with Autocomplete and CAT-DI was
modeled using a logistic elastic net regression. In (a) and (d), the dark black line represents the median value; the box limits
show the interquartile range (1QR) fromthefirst (Q1) to third (Q3) quartiles; the whiskers extend to the furthest data point
within Q1-1.5*1QR (bottom) and Q3+ 1.5* QR (top). LOCF: last observation carried forward. CS(xdf): cubic spline with x
degrees of freedom. CS(cv): best-fitting cubic spline according to leave-one-out cross-validation.
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Figure 6: Most predictive behavioral features according to idiographic models. Heatmap of idiographic elastic net regression
coefficients for significantly predicted individuals (N=113 with R>0 and FDR<5%). Columns indicate individuals and rows
indicate features. For visualization ease, we limit plot to features that have an odds ratio coefficient value above 1.05 or below
0.95in at least oneindividual and individuals with at least one feature passing this threshold. The heatmap color indicates the
elastic net regularized oddsratio for each feature and individual.
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Figure 7: Factors associated with prediction performance of CAT-DI severity scores. Correlation between prediction accuracy
of anindividual (metrics on the y-axis) and the number of CAT-DI assessment available in thetraining and test set, the difference
in median CAT-DI severity between the training and test set, the number of the unique CAT-DI categories (normal to severe)
observed (total and in training and test sets), age, sex, wave, and treatment group (a proxy for depression severity). MAPE: mean
absolute percentage error.
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