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Abstract  18 

Over the last ten years, there has been considerable progress in using digital behavioral phenotypes, 19 

captured passively and continuously from smartphones and wearable devices, to infer depressive mood. 20 

However, most digital phenotype studies suffer from poor replicability, often fail to detect clinically 21 

relevant events, and use measures of depression that are not validated or suitable for collecting large and 22 

longitudinal data. Here, we report high-quality longitudinal validated assessments of depressive mood 23 

from computerized adaptive testing paired with continuous digital assessments of behavior from 24 

smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to severe symptoms of 25 

depression. We apply a novel combination of cubic spline interpolation and idiographic models to 26 

generate individualized predictions of future mood from the digital behavioral phenotypes, achieving high 27 

prediction accuracy of depression severity up to three weeks in advance (𝑅2 ≥ 80%) and a 65.7% 28 

reduction in the prediction error over a baseline model which predicts future mood based on past 29 

depression severity alone. Finally, our study verified the feasibility of obtaining high-quality longitudinal 30 

assessments of mood from a clinical population and predicting symptom severity weeks in advance using 31 

passively collected digital behavioral data. Our results indicate the possibility of expanding the repertoire 32 

of patient-specific behavioral measures to enable future psychiatric research.  33 

Introduction  34 

Major depressive disorder (MDD) affects almost one in five people1 and is now the world’s leading cause 35 

of disability2. However, it is often undiagnosed: only about half of those with MDD are identified and 36 

offered treatment3,4. In addition, for many people, MDD is a chronic condition characterized by periods of 37 

relapse and recovery that requires ongoing monitoring of symptoms. MDD diagnosis and symptom 38 

monitoring is typically dependent on clinical interview, a method that rarely exceeds an inter-rater 39 
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reliability of 0.75,6. Furthermore, sufferers are unlikely to volunteer that they are depressed because of the 40 

reduced social contact associated with low mood and because of the stigma attached to admitting to being 41 

depressed. Developing new ways to quickly and accurately diagnose MDD or monitor depressive 42 

symptoms in real time would substantially alleviate the burden of this common and debilitating condition.  43 

The advent of electronic methods of collecting information, e.g., smartphone sensors or wearable 44 

devices, means that behavioral measures can now be obtained as individuals go about their daily lives. 45 

Over the last ten years there has been considerable progress in using these digital behavioral phenotypes to 46 

infer mood and depression7–15. Yet, most digital mental health studies suffer from one or more of the 47 

following limitations16–18. First, many studies are likely underpowered to meet their analytic 48 

objectives10,12,19,20.  Second, most studies do not follow up subjects long enough to adequately capture 49 

changes in signal within an individual over time10,11,19,21,22 , even though such changes are highly 50 

informative for clinical care. The few studies with longitudinal assessments use ecological momentary 51 

assessments19,20,23 to measure state mood, rather than a psychometrically validated symptom scale for 52 

depression. Furthermore, they examine associations between behavior and mood at a population level23. 53 

This nomothetic approach is limited by the fact that both mood and its relationship to behavior can vary 54 

substantially between individuals. Last, many of the existing studies focus on healthy subjects, thus 55 

prohibiting evaluation of how well digital phenotypes perform in predicting depression24.  56 

Here, we overcome these limitations by using a validated measure of depression from 57 

computerized adaptive testing25 to obtain high-quality longitudinal measures of mood. Computerized 58 

adaptive testing is a technology for interactive administration of tests that tailors the test to the examinee 59 

(or, in our application, to the patient)26. Tests are 'adaptive' in the sense that the testing is driven by an 60 

algorithm that selects questions in real time and in response to the on-going responses of the patient. By 61 

employing item response theory to select a small number of questions from a large bank, the test provides 62 
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a powerful and efficient way to detect psychiatric illness without suffering response fatigue.  We also use 63 

smartphone sensing27 to passively and continuously collect behavioral phenotypes for up to 40 weeks on 64 

183 individuals experiencing mild to severe symptoms of depression (3,005 days with mood assessment 65 

and 29,254 days with behavioral assessment). To account for inter-individual heterogeneity and provide 66 

individual-specific predictors of depression trajectories we use an idiographic (or, personalized) modeling 67 

approach. Ultimately, we expect that this approach will provide patient-specific predictors of depressive 68 

symptom severity to guide personalized intervention, as well as enable future psychiatric research, for 69 

example in genome and phenome-wide association studies.  70 

Results 71 

Study participants and treatment protocol 72 

Participants (N = 437; 76.5% female, 26.5% white) are University of California Los Angeles (UCLA) 73 

students experiencing mild to severe symptoms of depression or anxiety enrolled as part of the Screening 74 

and Treatment for Anxiety and Depression28 (STAND) study (Sup Figure 1). The STAND eligibility 75 

criteria and treatment protocol are described extensively elsewhere29. Briefly, participants are initially 76 

assessed using the Computerized Adaptive Testing Depression Inventory31 (CAT-DI), an online adaptive 77 

tool that offers validated assessments of depression severity (measured on a 0-100 scale). After the initial 78 

assessment, participants are routed to appropriate treatment resources depending on depression severity: 79 

those with mild (35 ≤ CAT-DI < 65) to moderate (65 ≤ CAT-DI < 75) depression at baseline received 80 

online support with or without peer coaching30 while those with severe depression (CAT-DI ≥ 75) 81 

received in-person care from a clinician (Materials and Methods).  82 

STAND enrolled participants in two waves, each with different inclusion criteria and CAT-DI 83 

assessment and treatment protocol (Sup Figure 2A). Wave 1 was limited to individuals with mild to 84 
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moderate symptoms at baseline (N=182) and treatment lasted for up to 20 weeks. Wave 2 included 85 

individuals with mild to moderate (N=142) and severe (N=124) symptoms and treatment lasted for up to 86 

40 weeks. Eleven individuals participated in both waves. Depression symptom severity was assessed up to 87 

every other week for the participants that received online support (both waves), i.e., those with mild to 88 

moderate symptoms, and every week for the participants that received in-person clinical care, i.e., those 89 

with severe symptoms (Materials and Methods). 90 

 91 

Adherence to CAT-DI assessment protocol 92 

Overall, participants provided a total of 4,507 CAT-DI assessments (out of 11,218 expected by the study 93 

protocols). Participant adherence to CAT-DI assessments varied across enrollment waves (Likelihood 94 

ratio test [LRT] P-value < 2.2x10-16), treatment groups (LRT P-value < 2.2x10-16), and during the follow-95 

up period (LRT P-value = 1.29x10-6). Specifically, participants that received clinical care were more 96 

adherent than those which only received online support (Sup Figure 2B). Attrition for participants which 97 

received clinical care was linear over the follow-up period, with 1.7% of participants dropping out CAT-98 

DI assessments within two weeks into the study. Attrition for participants that received online support was 99 

large two weeks into the study (33.5% of Wave 1 and 37.3% of Wave 2 participants) and linear for the 100 

remaining of the study. More information about factors impacting study adherence can be found in the 101 

Supplementary Material.  102 

For building personalized mood prediction models, we focus on 183 individuals (49 from Wave 1 103 

and 134 from Wave 2) who had at least five mental health assessments during the study (Materials and 104 

Methods). For these individuals we obtained a total of 3,005 CAT-DI assessments with a median of 13 105 

assessments, 171 follow-up days, and 10 days between assessments per individual (Figure 1A-C). 106 
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Computerized adaptive testing captures treatment-related changes in depression severity 107 

We assessed what factors contribute to variation in the CAT-DI severity scores (Figure 1E, Materials and 108 

Methods). Subjects are assigned to different treatments (online support or clinical care) depending on their 109 

CAT-DI severity scores, so not surprisingly we see a significant source of variation attributable to the 110 

treatment group (10.3% of variance explained, 95% CI: 8.37 - 12.68%). Once assigned to a treatment 111 

group, we expect to see changes over time as treatment is delivered to individuals with severe symptoms 112 

at baseline. This is reflected in a significant source of variation attributable to the interaction between the 113 

treatment group and the number of weeks spent in the study (8.54% of variance explained, 95% CI: 5.92 - 114 

10.4%) and the improved scores for individuals with severe symptoms at baseline as they spend more time 115 

in the study (Sup Figure 3). We found no statistically significant effect of the COVID pandemic, sex, and 116 

other study parameters. The largest source of variation in depression severity scores is attributable to 117 

between-individual differences (41.78% of variance explained, 95% CI: 38.31 - 42.02%), suggesting that 118 

accurate prediction of CAT-DI severity requires learning models tailored to each individual.  119 

 120 

Digital behavioral phenotypes capture changes in behavior  121 

We set out to examine how digital behavioral phenotypes change over time for each person and with 122 

CAT-DI severity scores. For example, we want to know how hours of sleep on a specific day for a specific 123 

individual differs from the average hours of sleep in the previous week, or month. To answer these 124 

questions, we extracted digital behavioral phenotypes (referred to hereinafter as features) captured from 125 

participants’ smartphone sensors and investigated which features predicted the CAT-DI scores. STAND 126 

participants had the AWARE framework27 installed on their smartphones, which queried phone sensors to 127 

obtain information about a participant’s location, screen on/off behavior, and number of incoming and 128 

outgoing text messages and phone calls. We processed these measurements (Materials and Methods and 129 
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Supplementary Material) to obtain daily aggregate measures of activity (23 features), social interaction 130 

(18 features), sleep quality (13 features), and device usage (two features). In addition, we processed these 131 

features to capture relative changes in each measure for each individual, e.g., changes in average amount 132 

of sleep in the last week compared to what is typical over the last month. In total, we obtained 1,325 133 

features. Missing daily feature values (Sup Figure 4) were imputed using two different imputation 134 

methods, AutoComplete31 and softImpute32 (Materials and Methods), resulting in 29,254 days of logging 135 

events across all individuals.  136 

Several of these features map onto the DSM-5 MDD criteria of anhedonia, sleep disturbance, and 137 

loss of energy (Supplementary Material; Sup Figure 5). We computed correlations between these features 138 

and an individuals’ depression severity score and found that these features often correlate strongly with 139 

changes in depression (Figure 2A). For example, for one individual, the number of unique locations 140 

visited during the day shows a strong negative correlation with their depression severity scores during the 141 

study (Pearson’s ρ = -0.65, Benjamini-Hochberg [BH]-adjusted P-value = 2.50x10-20). We observed a lot 142 

of heterogeneity in the strength and direction of the correlation of these features with depression severity 143 

across individuals. For example, features related to location entropy are positively (Pearson’s ρ=0.40, BH-144 

adjusted P-value = 3.55x10-11) correlated with depression severity for some individuals but negatively 145 

(ρ=-0.59, BH-adjusted P-value = 1.11x10-22) or not correlated (ρ=-3.92x10-04, BH-adjusted P-value = 146 

0.995) for others. Finally, as expected from the large heterogeneity in these correlation between 147 

individuals, the correlation of these features with depression severity scores across individuals was very 148 

poor, the strongest correlation was observed for the wake-up time (ρ=.07, BH-adjusted P-value = 2.47x10-149 

03).  150 

Figure 2B illustrates an individual with severe depressive symptoms for whom we can identify a 151 

window of disrupted sleep that co-occurred with a clinically significant increase in symptom severity 152 
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(from mild to severe CAT-DI scores). Subsequently, a return to baseline patterns of sleep coincided with 153 

symptom reduction. Quantifying this relationship poses a number of issues, which we turn to next. 154 

 155 

Predicting CAT-DI scores from digital phenotypes 156 

To predict future depression severity scores using digital behavioral phenotypes, we considered three 157 

analytical approaches. First, we applied an idiographic approach, whereby we build a separate prediction 158 

model for each of the participants. Specifically, for each individual, we train an elastic net regression 159 

model using the first 70% of their depression scores and predict the remaining 30% of scores. Second, we 160 

applied a nomothetic approach that used data from all participants to build a single model for depression 161 

severity prediction using the same analytical steps: we train an elastic net regression model using the first 162 

70% of depression scores of each individual and predict the remaining 30% of scores (Materials and 163 

Methods). The result of this nomothetic approach was a single elastic net regression model that makes 164 

predictions in all participants.  165 

The main difference between the nomothetic and idiographic approach is that the nomothetic 166 

model assumes that each feature has the same relationship with the CAT-DI scores across individuals, for 167 

example, that a phone interaction is always associated with an increase in depression score. However, it is 168 

possible, and we see this in our data, that an increase in phone interaction can be associated with an 169 

increase in symptom severity for one person, but a decrease in another (Figure 2A). The idiographic 170 

model allows for this possibility by using a different slope for each feature and individual. In addition, we 171 

know that large differences exist in average depression scores between individuals (Figure 1E). To 172 

understand the impact of accounting for these differences in a nomothetic approach, we also applied a 173 

third approach (referred to as nomothetic*) which includes individual indicator variables in the elastic net 174 
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regression model in order to allow for potentially different intercepts for each individual. All three models 175 

include stay day as a covariate.  176 

To assess whether digital behavioral phenotypes predict mood, we have to deal with the problem 177 

that digital phenotypes are acquired daily, while CAT-DI are usually administered every week (and often 178 

much less frequently, on average every 10 days). We assume that the CAT-DI indexes a continuously 179 

variable trait, but what can we use as the target for our digital predictions when we have such sparsely 180 

distributed measures? We can treat this as a problem of imputation, in which case the difficulty reduces to 181 

knowing the likely distribution of missing values. However, we also assume that both CAT-DI and digital 182 

features only imperfectly reflect a fluctuating latent trait of depression. Thus, our imputation is used not 183 

only to fill in missing data points but also to be a closer reflection of the underlying trait that we are trying 184 

to predict, namely, depressive severity.  185 

We interpolate the unmeasured estimates of depression by modeling the latent trait as a cubic 186 

spline with different degrees of freedom (Figure 3A). For many individuals, CAT-DI values fluctuate 187 

considerably during the study, while for others less so. To accommodate this variation, we alter the 188 

degrees of freedom of the cubic spline: the more degrees of freedom, the greater the allowed variation. For 189 

each individual, we used cubic splines with four degrees of freedom, denoted by CS(4df), degrees of 190 

freedom corresponding to the number of observed CAT-DI categories in the training set, denoted by 191 

CS(2-4df), and degrees of freedom identified by leave-one-out cross-validation in the training set, denoted 192 

by CS(cv). For comparison purposes, we also used a last-observation-carried- forward (LOCF) approach, 193 

a naive interpolation method which does not apply any smoothness to the observed trait. In addition, we 194 

also include results from analyses done without interpolating CAT-DI but rather modeling the (bi)weekly 195 

measurements. Because spline interpolation will cause data leakage across the training-testing split and 196 

upwardly bias prediction accuracy, we train our prediction models using cubic spline interpolation on only 197 
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the training data (first 70% of time series of each individual) and assess prediction accuracy performance 198 

in the testing set (last 30%) using the time series generated by applying cubic splines to the entire time 199 

series (Figure 3B). 200 

We evaluated the prediction performance of each model and for each latent trait across and within 201 

participants. We refer to the former as group level prediction and the later as individual level prediction. 202 

Looking at group level prediction performance, compared to within each participant separately, allows us 203 

to compute prediction accuracy metrics, e.g., R2, as a function of the number of days ahead we are 204 

predicting and test for their statistical significance across all predicted observations. 205 

We first evaluated group level prediction accuracy. Figure 4 shows group level prediction 206 

performance for each latent trait using the nomothetic, nomothetic*, and idiographic model when the 207 

features were imputed with Autocomplete and CAT-DI was modeled using a logistic elastic net 208 

regression. We observed that across all latent traits the nomothetic model shows lower prediction accuracy 209 

(mean absolute percentage error [MAPE] = 25-28% and 𝑅2< 5% for all latent traits), compared to the 210 

nomothetic* (MAPE = 18-25% and 𝑅2= 30-46%) or idiographic (MAPE = 16-23% and 𝑅2=37-66%) 211 

models (Figure 4A-B). This is in line with the large proportion of depression scores variance explained by 212 

between-individual differences (Figure 1E) which get best captured by the nomothetic* and idiographic 213 

models. The idiographic model also showed higher prediction accuracy than the nomothetic(*) model 214 

when the features were imputed using softImpute or when CAT-DI was modeled using a linear elastic net 215 

regression (Sup Figure 6A-B) as well as when CAT-DI was modeled at the (bi)weekly level without 216 

interpolation to get daily level data (Sup Figure 8A-B).  217 

We also compared the prediction performance for each of the different latent traits. As expected, 218 

we achieve a higher prediction accuracy for the more highly penalized cubic spline latent traits compared 219 

to the LOCF latent trait, as the latter has, by default, a larger amount of variation left to be explained by 220 
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the features. For example, for the idiographic models, we obtained an 𝑅2= 66.4% for CS(2-4df) versus 221 

36.9% for LOCF, implying that weekly patterns of depression severity, which are more likely to be 222 

captured by the LOCF latent trait, are harder to predict than depression severity patterns over a couple of 223 

weeks or months, which are more likely to be captured by the cubic spline latent traits with smallest 224 

degrees of freedom.   225 

To understand the effect of time on prediction accuracy, we assessed prediction performance as a 226 

function of the number of weeks ahead we are predicting from the last observation in the training set 227 

(Figure 4C). The idiographic models achieved high prediction accuracy for depression scores up to three 228 

weeks from the last observation in the training set, e.g., R2= 84.2% and 73.2% for the CS(2-4df) latent 229 

trait to predict observations one week and four weeks ahead, respectively. Prediction accuracy falls below 230 

80% after four weeks.  231 

To quantify the contribution of features on group-level prediction accuracy, we assessed to what 232 

extent the features improve the prediction of each model above that achieved by a baseline model that 233 

includes just the intercept and study day. Figure 4D-E shows the log2 fold change in CAT-DI prediction 234 

accuracy, as measured by MAPE and  𝑅2, of the feature-based model over the baseline model. The 235 

baseline nomothetic model often predicts the same value, i.e., training set intercept, so we cannot compute 236 

𝑅2. The feature-based idiographic model achieved the greatest improvement in prediction accuracy over 237 

the corresponding baseline model, resulting in 65.7% reduction in the MAPE and 7.1% increase in 𝑅2 238 

over the baseline model for the CS(2-4df) latent trait. The idiographic model also showed higher 239 

prediction accuracy than the corresponding baseline model when the features were imputed using 240 

softImpute or when CAT-DI was modeled using a linear elastic net regression (Sup Figure 6C-D) as well 241 

as when CAT-DI was modeled at the (bi)weekly level (Sup Figure 8C-D). These results suggest that the 242 
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passive phone features enhance prediction, over and above past CAT-DI and study day, for most 243 

individuals in our study.  244 

We next evaluated individual level prediction accuracy (Figure 5). For this analysis, in order to be 245 

able to assess the statistical significance of our prediction accuracy within each individual, we only keep 246 

individuals with at least five mental health assessments in the test set (N=143). In line with the group level 247 

prediction performance, the idiographic model outperformed the other models at the individual level 248 

(Figure 5A; median MAPE across individuals for all latent traits = 13.3 - 18.9% versus 20.1-23% for the 249 

nomothetic and 14.5-20.4% for the nomothetic* model). Using an idiographic modeling approach, we 250 

significantly predicted the future mood for 79.0% of individuals (113 out of 143 with 𝑅> 0 and FDR < 5% 251 

across individuals) for at least one of the latent traits (Figure 5B), compared to 58.7% and 65.7% of 252 

individuals for the nomothetic and nomothetic* model, respectively. The median 𝑅2 value across 253 

significantly predicted individuals for the idiographic models was 47.0% (Figure 5C), compared to 23.7.% 254 

and 28.4% for the nomothetic and nomothetic* model, respectively. In addition, for 41.3% of these 255 

individuals, the idiographic model had prediction accuracy greater than 70%, demonstrating high 256 

predictive power in inferring mood from digital behavioral phenotypes for these individuals, compared to 257 

6.2% and 9.7% for the nomothetic and nomothetic* model, respectively (Figure 5C). The idiographic 258 

model also outperformed the nomothetic(*) model when the features were imputed using softImpute or 259 

when CAT-DI was modeled using a linear elastic net regression (Sup Figure 7A) as well as when CAT-DI 260 

was modeled at the (bi)weekly level (Sup Figure 8E). 261 

Next, we compared individual-level prediction accuracy of each model against the corresponding 262 

baseline model that includes just the intercept and study day. Figure 5D and Sup Figure 7C-D show the 263 

distribution across individuals of the log2 fold change in CAT-DI prediction accuracy of the feature-based 264 

model over the baseline model. In accordance with the group level prediction performance, the feature-265 
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based idiographic model achieved the greatest improvement in prediction accuracy over the corresponding 266 

baseline model, resulting in a median of over two-fold reduction in the MAPE (Figure 5D; median MAPE 267 

of feature-based model across individuals for all latent traits = 13.3 - 18.9% versus 40.1-41.4% for the 268 

baseline model). The idiographic model also showed greatest improvement in prediction accuracy over the 269 

corresponding baseline model than the nomothetic(*) model when CAT-DI was modeled at the (bi)weekly 270 

level (Sup Figure 8F). 271 

To identify the features that most robustly predict depression in each person we extracted top-272 

feature predictors for each individual’s best-fit idiographic model. We limit this analysis to the 113 273 

individuals which showed significant prediction accuracy for at least one of the latent traits. As expected, 274 

the study day was predictive of the mood for 63% of individuals and was mainly associated with a 275 

decrease in symptom severity (median odds ratio [OR] = 0.86 across individuals). Although no behavioral 276 

feature uniformly stood out, as expected by the high correlation between features and heterogeneity in 277 

correlation between features and CAT-DI across individuals (Figure 2A), the variation within the last 30 278 

days in the proportion of unique contacts for outgoing texts and messages (a proxy for erratic social 279 

behavior), the time of last (first) interaction with the phone after midnight (in the morning) (a proxy for 280 

erratic bedtime [wake up time] and sleep quality), and the proportion of time spent at home during the day 281 

(a proxy for erratic activity level) were among the top predictors of future mood and were often associated 282 

with an increase in symptom severity (OR = 1.05 - 1.23 across features and individuals). The heatmap 283 

display of predictor importance in Figure 6 highlights the heterogeneity of passive features for predicting 284 

the future across individuals. For example, poor mental health, as indicated by high CAT-DI depression 285 

severity scores, was associated with decreased variation in location entropy in the evenings (a proxy for 286 

erratic activity level) in the past 30 days for one individual (OR = 0.94) while for another individual it was 287 

associated with increased variation (OR =1.20).  288 
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Factors associated with prediction performance  289 

Using digital behavioral features to predict future mood was useful for 74-77% of our cohort and the 290 

contribution of the features to the prediction performance varies across these individuals. What might 291 

contribute to this variation? Identifying the factors involved might allow us to develop additional models 292 

with higher prediction accuracy. To identify factors that are associated with prediction performance, we 293 

computed the correlation between accuracy metrics (prediction 𝑅2 and MAPE of feature-based model and 294 

difference in MAPE between feature-based and baseline models) with different study parameters e.g., 295 

treatment group, sex, etc. (Figure 7).  296 

Increased variability in depression scores during the study, as measured by the number of unique 297 

CAT-DI categories for each individual, were correlated with poorer prediction performance of the feature-298 

based model, as measured by MAPE (Spearman’s ρ= 0.49 and 0.23, p-value = 2.25 x 10-2 and 9.79 x 10-4 299 

for LOCF and CS(4df) latent traits, respectively). In addition, larger differences in median depression 300 

scores between the training and test set for each individual were correlated with poorer prediction 301 

performance, as measured by MAPE (Spearman’s ρ=0.32, p-value = 9.11 x 10-4 for the CS(4df) latent 302 

trait). This suggests that, for some individuals in the study, the training depression scores are higher/lower 303 

than the test depression scores (as expected by Sup Figure 4) and that adding the study day or digital 304 

phenotypes as a predictor does not completely mediate this issue. The size of the training and test set as 305 

well as demographic variables were not strongly correlated to prediction performance.  306 

While we had poorer prediction performance for individuals whose mood shows greater variability 307 

during the course of the study, these are also the individuals for which using a feature-based model 308 

improves prediction accuracy compared to a baseline model that predicts based on past depression 309 

severity and study day alone. Specifically, larger variability in depression scores for each individual was 310 

correlated with better prediction performance of a feature-based model than a baseline model, as measured 311 
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by difference in MAPE between the two models (Spearman’s ρ=-0.54 and -0.49, p-value = 5.96x 10-4 and 312 

p-value = 4.46 x 10-3 for the CS(4df) and CS(2-4df) latent traits, respectively).  313 

 314 

Discussion 315 

In this paper, we showed the feasibility of longitudinally measuring depressive symptoms over 183 316 

individuals for up to 10 months using computerized adaptive testing and passively and continuously 317 

measuring behavioral data captured from the sensors built into smartphones. Using a novel combination of 318 

cubic spline interpolation and idiographic prediction models, we were able to impute and predict a latent 319 

depression trait on a hold-out set of each individual several weeks in advance.  320 

Our ability to longitudinally assess depressive symptoms and behavior within many individuals 321 

and over a long period of time enabled us to assess how far out we can predict depressive symptoms, how 322 

variable prediction accuracy can be across different individuals, and what factors contribute to this 323 

variability. In addition, it enabled us to assess the contribution of behavioral features to prediction 324 

accuracy above and beyond that of prior symptom severity or study day alone. We observed that 325 

prediction accuracy dropped below 70% after four weeks. In addition, prediction accuracy varied 326 

considerably across individuals as did the contribution of the features to this accuracy. Individuals with 327 

large variability in symptom severity during the course of the study (such as those in clinical care) were 328 

harder to predict but benefited the most from using behavioral features. We expect that pairing digital 329 

phenotypes from smartphones with behavioral phenotypes from wearable devices, which are worn 330 

continuously and might measure behavior with less error, as well as addition of phenotypes, like those 331 

from electronic health records, could help address some of these challenges.  332 

Our results are consistent with other studies that predict daily mood as measured by ecological 333 

momentary assessments or a short screener (i.e., PHQ217) and confirm the superior prediction 334 
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performance of idiographic models over nomothetic ones. Our study goes further, by exploring if the 335 

superior prediction accuracy of idiographic models is a result of better modeling the relationship between 336 

features and mood or simply of better modeling the baseline mood of each individual. We show that a 337 

large part of the increase in prediction performance of idiographic models is due to the latter, as indicated 338 

by the increase in prediction performance between the nomothetic and modified nomothetic models.  339 

High-burden studies over long time periods may result in drop-out, particularly for depressed 340 

individuals33. In our case, we observed that attrition for CAT-DI assessment was linear over the follow-up 341 

period, except for the first two weeks during which a large proportion of individuals which received online 342 

support dropped out (typical of online mental health studies34). In addition, participants which received 343 

clinical care were more adherent than those which received online support, despite endorsing more severe 344 

depressive symptoms. These participants had regular in-person treatment sessions during which they were 345 

instructed to complete any missing assessments emphasizing the importance of using reminders or 346 

incentives for online mental health studies.   347 

There are several limitations in the current study. First, the idiographic models that we use here are 348 

fit separately for each individual and might not thus maximize statistical power. In addition, they assume a 349 

(log-)linear relationship between behavioral features and depression severity and will fit poorly if this 350 

assumption is violated. One potential alternative is to employ mixed models that jointly model data from 351 

all individuals using individual-specific slopes and low degree polynomials. However, due to the high 352 

dimensionality of our data, such models are hard to implement. Second, while it is well established that 353 

Computerized Adaptive Testing can be repeatedly administration to the same person over time without 354 

response set bias due to adaptive question sets25, extended use over months might still lead to limited 355 

response bias35. Third, the adaptive nature of CAT-DI, which might assess different symptoms for 356 

different individuals, frustrates joint analyses. Fourth, the imputation method used for imputing digital 357 
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behavioral features assumes data to be missing at random (MAR), meaning missingness depended on 358 

observed data36. While this assumption is hard to test, MAR seems quite plausible in our study given that 359 

the data is missing more often for participants that did not receive regular reminders. In addition, research 360 

has shown that violation of the MAR assumption does not seriously distort parameter estimates37. Finally, 361 

the age and gender distribution in our participants may limit the generalizability of our findings to the 362 

wider population.  363 

In conclusion, our study verified the feasibility of using passively collected digital behavioral 364 

phenotypes from smartphones to predict depressive symptoms weeks in advance. Its key novelty lies in 365 

the use of computerized adaptive testing, which enabled us to obtain high-quality longitudinal assessments 366 

of mood on 183 individuals over many months, and in the use of personalized prediction models, which 367 

offer a much higher predictive power compared to nomothetic models. Ultimately, we expect that the 368 

method will lead to a screening and detection system that will alert clinicians in real-time to initiate or 369 

adapt treatment as required. Moreover, as passive phenotyping becomes more scalable for hundreds of 370 

thousands of individuals, we expected that this method will enable large genome and phenome-wide 371 

association studies for psychiatric genetic research.  372 

 373 

Materials and Methods 374 

Study participants and treatment protocol 375 

Participants are University of California Los Angeles (UCLA) students experiencing mild to severe 376 

symptoms of depression or anxiety enrolled as part of the STAND program29 developed under the UCLA 377 

Depression Grand Challenge38 treatment arm. All UCLA students aged 18 or older who had internet 378 

access and were fluent in English were eligible to participate. STAND enrolled participants in two waves. 379 
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The first wave enrolled participants from April 2017 to June 2018. The second wave of enrollment began 380 

at the start of the academic year in 2018 and continued for three years, during which time, from March 381 

2020, a Safer-At-Home order was imposed in Los Angeles to control the spread of COVID-19. All 382 

participants are offered behavioral health tracking through the AWARE27 framework and had to install the 383 

app in order to be included in the study. All participants provided written informed consent for the study 384 

protocol approved by the UCLA institutional review board (IRB #16-001395 for those receiving online 385 

support and #17-001365 for those receiving clinical support).  386 

Depression symptom severity at baseline and during the course of the study was assessed using the 387 

Computerized Adaptive Testing Depression Inventory25 (CAT-DI), a validated online mental health 388 

tracker. Computerized adaptive testing is a technology for interactive administration of tests that tailors 389 

the test to the patient26. Tests are 'adaptive' in the sense that the testing is driven by an algorithm that 390 

selects questions in real-time and in response to the ongoing responses of the patient. CAT-DI uses item 391 

response theory to select a small number of questions from a large bank, thus providing a powerful and 392 

efficient way to detect psychiatric illness without suffering response fatigue.  393 

Participants were classified into treatment groups based on their depression and anxiety scores at 394 

baseline, which indicated the severity of symptoms in those domains. Individuals who are not currently 395 

experiencing symptoms of depression (CAT-DI score < 35) or anxiety are offered the opportunity to 396 

participate in the study without an active treatment component by contributing CAT-DI assessment. These 397 

individuals are excluded from our analyses as they do not show any variation in CAT-DI. Participants that 398 

exhibited scores below the moderate depression range (CAT-DI score < 74) were offered internet-based 399 

cognitive behavioral therapy, which includes adjunctive support provided by trained peers or clinical 400 

psychology graduate students via video chat or in person. Eligible participants with symptoms in this 401 

range were excluded if they were currently receiving cognitive behavioral therapy, refused to install the 402 
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AWARE phone sensor app, or were planning an extended absence during the intervention period. 403 

Participants that exhibited scores in the range of severe depression symptoms (CAT-DI score 75-100) or 404 

who endorsed current suicidality were offered in-person clinical care which included evidence-based 405 

psychological treatment with option for medication management. Additional exclusion criteria were 406 

applied to participants with symptoms in this range, which included clinically-assessed severe 407 

psychopathology requiring intensive treatment, multiple recent suicide attempts resulting in 408 

hospitalization, or significant psychotic symptoms unrelated to major depressive or bipolar manic 409 

episodes. These criteria were determined through further clinical assessment. Participants with symptoms 410 

in this range were also excluded if they were unwilling to provide a blood sample or transfer care to the 411 

study team while receiving treatment in the STAND program. 412 

Depression symptom severity was assessed up to every other week for the participants that 413 

received online support (both waves), i.e., those with mild to moderate symptoms, and every week for the 414 

participants that received in-person clinical care, i.e., those with severe symptoms (Sup Figure 2A). 415 

Participants that received in-person care had also four in-person assessment events, at weeks 8, 16, 28, and 416 

40, prior to the COVID-19 pandemic. Thus, Wave 1 participants can have a maximum of 13 CAT-DI 417 

assessments while Wave 2 participants can have a maximum of 21 (online support) or 44 assessments, 418 

depending on severity and excluding initial assessments prior to treatment assignment.  419 

CAT-DI was assessed at least one time for 437 individuals that installed the AWARE app. Here, 420 

we limit our prediction analyses to individuals that have at least five CAT-DI assessments (N=238; since 421 

we need at least four points to interpolate CAT-DI in the training set), have at least 60 days of sensor data 422 

in the same period for which CAT-DI data is also available (N=189), and show variation in their CAT-DI 423 

scores in the training set (N=183), which is necessary in order to build prediction models.  424 

 425 
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Adherence to CAT-DI assessment protocol and factors affecting adherence 426 

To assess if participant adherence to CAT-DI assessments varied across enrollment waves and treatment 427 

groups, we used a logistic regression with the proportion of CAT-DI assessments a participant completed 428 

as the dependent variable and the enrollment waves or treatment groups as independent variables. A 429 

similar model was used to assess impact of sex and age on participant adherence (results presented in the 430 

Supplement). To assess if participant adherence varied with time in the study, we used a logistic 431 

regression random effect model , as implemented in the lmerTest39 R package, with an indicator variable 432 

for the individual remining in the study for each required assessment as the dependent variable and a 433 

continuous study week as an independent variable. An individual-specific random effect was used to 434 

account for repeated measurement of each individual during the study. A likelihood ratio test was used to 435 

test for the significant of the effect of each independent variable against the appropriate null model.  436 

 437 

Variance partition of CAT-DI metrics 438 

We calculate the proportion of CAT-DI severity variance explained by different study parameters using a 439 

linear mixed model as implemented in the R package variancePartition40 with the subject id, study id, 440 

season, sex, and year modeled as random variables while the day of the study, the age of the subject, and a 441 

binary variable indicating the dates before or after the safer at home order was issued in California 442 

modeled as fixed, i.e., 443 

𝑦 =  ∑

𝑗

𝑋𝑗𝛽𝑗 + ∑

𝑘

𝑍𝑘𝑎𝑘 +  𝜖  444 

where y is the vector of the CAT-DI values across all subjects and time points, 𝑋𝑗 is the matrix of jth fixed 445 

effect with coefficients 𝛽𝑗 , 𝑍𝑘 is the matrix corresponding to the kth random effect with coefficients 𝑎𝑘 446 

drawn from a normal distribution with variance 𝜎𝑎𝑘
2 . The noise term, 𝜖, is drawn from a normal 447 

distribution with variance 𝜎𝜖
2. All parameters are estimated with maximum likelihood42. Variance terms 448 
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for the fixed effects are computed using the post hoc calculation 𝜎̂𝛽𝑗

2 = 𝑣𝑎𝑟(𝑋𝑗𝛽𝑗). The total variance is  449 

𝜎̂𝑇𝑜𝑡𝑎𝑙
2 = 𝜎̂𝛽𝑗

2 + 𝜎̂𝑎𝑘

2 +  𝜎̂𝜖
2   so that the fraction of variance explained by the jth fixed effect is 𝜎̂𝛽𝑗

2 /𝜎̂𝑇𝑜𝑡𝑎𝑙
2 , by 450 

the kth random effect is 𝜎̂𝑎𝑘
2 /𝜎̂𝑇𝑜𝑡𝑎𝑙

2 , and the residual variance is 𝜎̂𝜖
2/𝜎̂𝑇𝑜𝑡𝑎𝑙

2 . Confidence intervals for 451 

variance explained were calculated using parametric bootstrap sampling as implemented in the R package 452 

variancePartition41.  453 

Feature extraction from smartphone sensors  454 

We describe feature extraction in detail in the Supplementary Material. Broadly, we 455 

extracted 23 features related to mobility, e.g., location entropy, 13 related to sleep and circadian 456 

rhythm, e.g., hours of uninterrupted sleep, 18 related to social interaction, e.g., duration of 457 

outgoing calls, and two related to mobile device usage, e.g., number of interactions with phone 458 

per day. Each of these features was calculated on a daily basis. Furthermore, each of these 459 

features was computed over three daily non-overlapping time windows of equal duration (night 460 

00:00-08:00, day 08:00-16:00, evening 16:00-00:00), under the hypothesis that participant 461 

behavior may be more or less variable based on external constraints such as a regular class 462 

schedule during daytime hours.  463 

In addition, considering a participant’s current mental state may be influenced by patterns 464 

of behavior from days prior, sliding window averages of each of the daily features were 465 

calculated over multiple sliding windows ranging from three days to one month prior to the 466 

current day, i.e., windows of length three, seven, 14, and 30 days. The variance of each feature 467 

was also calculated over these same windows, to estimate whether behavior had been stable or 468 

variable during that time, e.g., were there large fluctuations in sleep time over the past week?  469 

Finally, under the hypothesis that recent changes in behavior may be more indicative of 470 

changes in mental state than absolute measures, a final set of transformations were applied to 471 
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each feature. These transformations compared the sliding window means of two different 472 

durations against each other, to estimate the change in behavior during one window over that of a 473 

longer duration window (the longer window serving as a local baseline for the participant). This 474 

allowed estimates from the raw features of whether, e.g., the participant had slept less last night 475 

than typical over the past week or slept less on average in the last week than typical over the last 476 

month. All of these transformations were applied to the base features extracted from sensor data 477 

and included as separate features fed into subsequent regression approaches.  478 

In total, 1,325 raw and transformed features were extracted and included in the final 479 

analysis.  480 

 481 

Imputation of smartphone-based features 482 

To address the missing features problem (Sup Figure 4), we considered two different imputation 483 

methods: matrix completion via iterative soft-thresholder SVD, as implemented in the R package 484 

softImpute, and AutoComplete, a deep-learning imputation method that employs copy-masking to 485 

propagate missingness patterns present in the data. Both approaches were applied separately to each 486 

individual as follows. First, we removed features that exhibited > 90% missingness for that individual. 487 

Next, we trained the imputation model on the training split alone. Finally, each imputation model was 488 

applied to the training and test dataset to impute the features for that individual. Before prediction, we 489 

normalize all features to have zero mean and unit standard deviation using mean and standard deviation 490 

estimates from the training set alone.  491 

 492 
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Imputation and of CAT-DI severity scores for prediction models 493 

To get daily-level CAT-DI severity scores, we interpolate the scores for each individual across the 494 

whole time series (ground truth) or only the time series corresponding to the training set (70% of the time 495 

series) by moving the last CAT-DI score forward, denoted by LOCF, or by smoothing the CAT-DI scores 496 

using cubic splines with different degrees of freedom (Figure 3A). Cubic smoothing spline fitting was 497 

done using the smooth.spline function from the stats package in R. We consider cubic splines with four 498 

degrees of freedom (denoted by CS(4df) and corresponding to the number of possible CAT-DI severity 499 

categories, i.e. normal, mild, moderate, and severe), cubic splines with degrees of freedom equal to the 500 

number of observed CAT-DI categories for each individual in the training set (ranging from two to four 501 

and denoted by CS(2-4df)), and degrees of freedom identified by ordinary leave-one-out cross-validation 502 

in the training set (denoted by CS(cv)).  503 

 504 

Nomothetic and idiographic prediction models of future mood 505 

We split the data for each individual into a training (70% of trajectory) and a test set (remaining 506 

30% of trajectory). To predict the future mood of each individual in the test set from smartphone-based 507 

features in the test set, we train an elastic net logistic or linear regression model41 in the train set. We set 508 

𝛼, i.e., the mixing parameter between ridge regression and lasso, to 0.5 and use 10-fold cross-validation to 509 

find the value for parameter 𝜆, i.e., the shrinkage parameter. For the idiographic models, we train separate 510 

elastic net models for each individual while for the nomothetic and modified nomothetic models we train 511 

one model across all individuals. To account for individual differences in the average CAT-DI severity 512 

scores in the training set, the modified nomothetic model fits individual-specific intercepts by including 513 

individual indicator variables in the regression model. This is similar in nature to a random intercept 514 

mixed model where each individual has their own intercept. Note that the test data are the same for all of 515 
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these models, i.e., the remaining 30% of each individual’s trajectories. Predictions outside the CAT-DI 516 

severity range, i.e., [0,100], are set to NA and not considered for model evaluation. We compute 517 

prediction accuracy metrics by computing the Pearson's product-moment correlation coefficient (R) 518 

between observed and predicted depression scores in the test set across and within individuals as well as 519 

the squared Pearson coefficient (R2). To assess the significance of the prediction accuracy we use a one-520 

sided paired test for Pearson's product-moment correlation coefficient, as implemented in the cor.test 521 

function of the stats42 R package, and a likelihood ratio test for the significance of R2. We use the 522 

Benjamini-Hochberg procedure43 to control the false discovery rate across individuals at 5%.  523 
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 643 

Figure 1: Overview of CAT-DI assessment frequency and source of variation in CAT-DI. (A-C) Boxplot of the observed 644 
number of CAT-DI assessments (A), median number of days between assessments (B), and follow-up time in days (C) for each 645 
wave and treatment group. The numbers in the parentheses indicate the expected values for each of these metrics according to 646 
study design (Sup Figure 2). (D) Proportion of CAT-DI severity variance explained (VE) by inter-individual differences and 647 
other study parameters with 95% confidence intervals. The proportion of variance attributable to each source was computed 648 
using a linear mixed model with the individual id and season (two multilevel categorical variables) modeled as random variables 649 
and all other variables modeled as fixed (see Materials and Methods). 650 

 651 
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 652 
Figure 2: Overview of correlation between depression severity scores and features. (A) Heatmap for Pearson’s correlation 653 
coefficient (color of cell) between CAT-DI scores and behavioral features (y-axis) across individuals (first column) and within 654 
each individual (x-axis). Correlation coefficients with BH-adjusted p-values > 0.05 are indicated by x. For plotting ease, we limit 655 
to untransformed features (N=50, see Materials and Methods). Rows and columns are annotated by feature type and by each 656 
individual’s wave and treatment group. Rows and columns are ordered using hierarchical clustering with Euclidean distance.   657 
(B) Example of identifying window of potential sleep disruption using sensor data related to phone usage and screen on/off 658 
status. The top panel shows estimated hours of sleep for an individual during the study while the bottom panel shows the 659 
depression severity scores during the same period. The dotted lines indicate the dates at which a change point is estimated to 660 
have occurred in the estimated hours of sleep as estimated using a change point model framework for sequential change 661 
detection (Materials and Methods). BH: Benjamini Hochberg.  662 
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 663 
Figure 3: Interpolation of depression severity scores and latent trait inference. (A) Illustration of different interpolation 664 
methods considered for imputing the depression severity scores and inferring the latent depression traits. The dotted horizontal 665 
lines indicate the depression severity score thresholds for the normal (0 ≤ CAT-DI < 35), mild (35 ≤ CAT-DI < 65), moderate (65 666 
≤ CAT-DI < 75), and severe (75 ≤ CAT-DI ≤100) depression severity categories. (B) Illustration of the prediction method for the 667 
CS(2-4df) interpolation method. We first infer the latent trait on the full CAT-DI trajectory of an individual (continuous yellow 668 
line). We then split the trajectory into a training set (days 1 until t) and a test set (days t+1 until T), infer the latent trait on the 669 
training set (dashed yellow line), and predict the trajectory in the test set (yellow triangles). Finally, we compute prediction 670 
accuracy metrics by comparing the observed (yellow circles) and predicted (yellow triangles) depression scores in the test set. 671 
We follow a similar approach for the other interpolation methods. The vertical line indicates the first date of the test set 672 
trajectory, i.e., the last 30% of the trajectory. LOCF: last observation carried forward. CS (xdf): cubic spline with x degrees of 673 
freedom. CS (cv): best-fitting cubic spline according to leave-one-out cross-validation.  674 
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 675 
Figure 4: Idiographic models achieve higher group level prediction accuracy than nomothetic models. (A-B) CAT-DI 676 
prediction accuracy across all individuals in the test set as measured by MAPE (A) and R2 (B) across all individuals for different 677 
models and latent depression traits. The dotted line in B indicates 70% prediction accuracy and bars indicate 95% confidence 678 
intervals of R2. (C) R2 versus the number of weeks ahead we are predicting from the last observation in the training set. The 679 
dotted line indicates 70% prediction accuracy. Bars indicate 95% confidence intervals of R2. (D-E) log2 fold change in CAT-DI 680 
prediction accuracy, as measured by MAPE (D) and R2 (E), of feature-based model over the baseline model. Negative log2 fold 681 
change in MAPE and positive log2 fold change in R2 mean that the feature-based model performs better than the baseline model. 682 
A log2 fold change in MAPE of -1 means that the prediction error of the baseline model is twice as large as that of the feature-683 
based model. The dotted line indicates the log2 fold change for the best and worse preforming model/latent trait combination. 684 
Features were imputed with Autocomplete and CAT-DI was modeled using a logistic elastic net regression. MAPE: mean 685 
absolute percent error. LOCF: last observation carried forward. CS(xdf): cubic spline with x degrees of freedom. CS(cv): best-686 
fitting cubic spline according to leave-one-out cross-validation. 687 
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 688 
Figure 5: Idiographic models achieve higher individual level prediction accuracy than nomothetic models. (A) Box plots of 689 
distribution of MAPE across individuals for different models and latent depression traits. The dashed line indicates the median 690 
MAPE of the best performing model/latent trait combination, i.e., idiographic model and CS(2-4df) spline. (B) Bar plots of the 691 
proportion of individuals with significantly predicted mood (R>0 at FDR<5% across individuals  ) for each latent trait and 692 
prediction model. (C) Prediction accuracy (R2) with 95% CI across all individuals and latent traits .  (D) log2 fold change in 693 
CAT-DI prediction accuracy, as measured by MAPE, of feature-based model over the baseline model. Negative log2 fold change 694 
in MAPE mean that the feature-based model performs better than the baseline model. All plots are based on individuals with at 695 
least five assessments in the test set (N=143). Features were imputed with Autocomplete and CAT-DI was modeled using a 696 
logistic elastic net regression. LOCF: last observation carried forward. CS(xdf): cubic spline with x degrees of freedom. CS(cv): 697 
best-fitting cubic spline according to leave-one-out cross-validation. 698 
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 699 
Figure 6: Most predictive behavioral features according to idiographic models. Heatmap of idiographic elastic net regression 700 
coefficients for significantly predicted individuals (N=113 with R>0 and FDR<5%). Columns indicate individuals and rows 701 
indicate features. For visualization ease, we limit plot to features that have an odds ratio coefficient value above 1.05 or below 702 
0.95  in at least one individual and individuals with at least one feature passing this threshold. The heatmap color indicates the 703 
elastic net regularized odds ratio  for each feature and individual.  704 
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 705 
Figure 7: Factors associated with prediction performance of CAT-DI severity scores. Correlation between prediction accuracy 706 
of an individual (metrics on the y-axis) and the number of CAT-DI assessment available in the training and test set, the difference 707 
in median CAT-DI severity between the training and test set, the number of the unique CAT-DI categories (normal to severe) 708 
observed (total and in training and test sets), age, sex, wave, and treatment group (a proxy for depression severity). MAPE: mean 709 
absolute percentage error.  710 
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Supplementary Material  711 

Factors impacting study adherence 712 

Participant adherence to CAT-DI assessments varied with sex and age. Among participants that 713 

received online support, men were less likely to complete all CAT-DI assessments in wave 1 (OR= 0.86, 714 

LRT P-value = 2.9x10-4) but more likely to complete them in wave 2 (OR= 1.31, LRT P-value = 3.1x10-715 

11). Participant adherence did not vary with sex for those receiving clinical support. In addition, among 716 

participants that received online support in wave 2, older participants were more likely to complete all 717 

CAT-DI assessments than younger participants (OR=1.13, LRT P-value < 2.2x10-16). Participant 718 

adherence did not vary with age for participants in wave 1 or those receiving clinical support in wave 2. 719 

 720 

Feature extraction from smartphone sensors 721 

Preprocessing features 722 

Each sensor collected through the AWARE framework is stored separately with a common set of 723 

data items (device identifier, timestamp, etc.) as well as a set of items unique to each sensor 724 

(sensor-specific items such as GPS coordinates, screen state, etc.). Data from each sensor was 725 

preprocessed to convert Unix UTC timestamps into local time, remove duplicate logging entries, 726 

and remove entries with missing sensor data. Additionally, some data labels that are numerically 727 

coded during data collection (e.g., screen state) were converted to human-readable labels for ease 728 

of interpretation. 729 

 730 
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Mobility features 731 

Location data was divided into 24-hour windows starting and ending at midnight each 732 

day. To identify locations where participants spent time, GPS data were filtered to identify 733 

observations where the participants were stationary since the previous observation. Stationary 734 

observations were those defined as having an average speed of <0.7 meters per second 735 

(approximately half the average walking speed of the average adult). These stationary 736 

observations were then clustered using hierarchical clustering to identify unique locations in 737 

which participants spent time during each day. Hierarchical clustering was chosen over k-means 738 

and density-based approaches such as DBSCAN due to its ability to deterministically assign 739 

clusters to locations with a precisely defined and consistent radius, independent of occasional 740 

data missingness.  741 

Locations were defined to have a maximum radius of 400 m, a sufficient radius to 742 

account for noise in GPS observations. Clusters were then filtered to exclude any location in 743 

which the participant spent less than 15 minutes over the day to exclude location artifacts, e.g., a 744 

participant being stuck in traffic during daily commute, or passing through the same area of 745 

campus multiple times in a day. To address data missingness in situations where GPS 746 

observations were not received at regular intervals, locations were linearly interpolated to 747 

provide an estimated location every 3 minutes. 748 

For each day, a home location was assigned based on the location each participant spent 749 

the most time in between the hours of midnight to eight am. This approach allowed for better 750 

interpretation of behavior for participants who split time between multiple living situations, for 751 

example, students who return home for the weekend or a vacation. Next, multiple features were 752 

extracted from this location data, including total time spent at home each day, total number of 753 
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locations visited, overall location entropy, and normalized location entropy. Each of these 754 

features was additionally computed over three daily non-overlapping time windows of equal 755 

duration (night 00:00-08:00, day 08:00-16:00, evening 16:00-00:00), under the hypothesis that 756 

participant behavior may be more or less variable based on external constraints such as a regular 757 

class schedule during daytime hours. In total, 28 mobility features were extracted.  758 

 759 

Sleep and circadian rhythm features 760 

Sleep and circadian rhythm features were extracted from logs of participant interactions 761 

with their phone, following prior work showing that last interaction with the phone at night can 762 

serve as a reasonable proxy for bedtime, and first interaction in the morning for waketime 46. The 763 

longest phone-off period (or assumed uninterrupted sleep duration) was tracked each night, as 764 

well as the beginning and end time of that window as estimates of bedtime and waketime. To 765 

account for participants who may have interrupted sleep, the time spent using the phone between 766 

the hours of midnight and 8 am was also tracked to account for participants who may use their 767 

phone briefly in the middle of the night but are otherwise asleep for the majority of that window. 768 

Finally, time-varying kernel density estimates were derived using the total set of phone 769 

interactions, to estimate the daily time nadir of interactions, as an additional proxy for the time of 770 

overall circadian digital activity nadir. In total, 12 sleep and circadian rhythm features were 771 

extracted.  772 

 773 

Social interaction and other device usage features 774 

Additional social interaction features were extracted from anonymized logs of participant 775 

calls and text messages sent and received from their smartphone device. Features extracted from 776 
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this data include, for example, the total number of phone calls made, total time spent on the 777 

phone, and percentage of calls connected that were outgoing (i.e., dialed by the participant) 778 

versus incoming. In total, 18 social interaction and device usage features were extracted. Due to 779 

OS restrictions, sensors needed to extract text message features are not available on iOS devices 780 

and were only computed for the 15 participants with Android devices. 781 

Mapping of behavioral features to DSM-5 Major Depressive Disorder criteria 782 

The set of features described above map onto only a subset of DSM criteria that are closely 783 

associated with externally observable behaviors (Sup Figure 5) - sleep, loss of energy, and anhedonia (to 784 

the extent it is severe enough to globally reduce self-initiated activity). Other DSM criteria such as weight 785 

change, appetite disturbance, and psychomotor agitation/retardation are in theory also directly observable, 786 

but less so with the set of sensors available on a standard smartphone. For these criteria, other device 787 

sensors - for instance, smartwatch sensors - may be more applicable in the detection of e.g., fidgeting 788 

associated with psychomotor agitation. A final set of DSM criteria include those primarily subjective 789 

findings - depressed mood, feelings of worthlessness, suicidal ideation - which inherently require self-790 

report to directly assess. Given that only 5 of 9 criteria are required for the diagnosis of MDD, an 791 

individual patient’s set of symptoms may overlap minimally with those symptoms we expect to measure 792 

with the features described above. However, for others, the above features may cover a more significant 793 

portion of their symptom presentation and do a better job directly quantifying fluctuations in DSM-5 794 

criteria for that individual. 795 

 796 

 797 

 798 

 799 
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 800 

 801 
Sup Figure 1: Demographic information for participants in each wave. First row: histogram of age and bar plot of sex and 802 
gender. Second row: histogram of BMI and bar plot of race and ethnicity. Color indicates wave and treatment protocol 803 
combination. AI or AN: American Indian or Alaska Native.  AA: African American. 804 
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 805 
Sup Figure 2: CAT-DI administration protocol and compliance with CAT-DI assessment protocol for each wave and 806 
treatment group. (A) CAT-DI administration schedule. Each box indicates a week during which participants in each group were 807 
expected to complete the CAT-DI. Asterisks indicate weeks with additional in-person administrations of CAT-DI for Wave 2 808 
participants which received clinical care. (B) Participant CAT-DI retention rate for each enrollment wave and treatment group. 809 
The x-axis shows weeks from the beginning of the study for each participant while the y axis shows the proportion of individuals 810 
that were still completing the CAT-DI at that week. The continuous lines show the linear regression fit with 95% confidence 811 
intervals (gray shading). 812 

 813 
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 814 
Sup Figure 3: Effect of therapy per wave and treatment group. The x-axis shows the study day with zero indicating the first day 815 
of CAT-DI assessment for each individual. The y-axis indicates the CAT-DI severity score for each individual / day in the study. 816 
The blue line indicates the fit of a generalized additive model with y ~ s(day + wave: treatment group, bs = "cs") and gaussian 817 
family.   818 
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 819 
Sup Figure 4: Missing feature data summary. Heat map showing missing data percentage in each of the four types of features 820 
extracted from smartphone data for all individuals. Each tick on the x-axis (y-axis) represents an individual (feature). For ease of 821 
plotting, we have excluded transformation-based features. For participants with iOS devices (majority of individuals), we did not 822 
have any information on social interaction features related to text message information due to permission. These features are 823 
excluded from analyses when considering individuals with iOS devices. 824 
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 825 
Sup Figure 5: Mapping of sensor-derived behavioral features to DSM5 Major Depressive Disorder criteria. The individual 826 
behavioral features derived from phone sensors map primarily to the DSM criteria of disrupted sleep, loss of energy, and 827 
anhedonia. Each of these base features is further transformed to look for deviations from individual baseline over varying time 828 
scales (e.g., last day’s deviation from the weekly average) to arrive at the final set of behavioral features. 829 
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 830 
Sup Figure 6: Idiographic models achieve higher group level prediction accuracy than nomothetic models. (A-B) CAT-DI 831 
prediction accuracy across all individuals in the test set as measured by MAPE (A) and R2 (B) across all individuals for different 832 
latent depression traits (panel), modeling approaches (color), CAT-DI regression model (x-axis), and feature imputation methods 833 
(transparency). The dotted line in B indicates 70% prediction accuracy and bars indicate 95% confidence intervals of R2. (C-D) 834 
log2 fold change in CAT-DI prediction accuracy, as measured by MAPE (C) and R2 (D), of feature-based model over the 835 
baseline model for different latent depression traits, modeling approaches, CAT-DI regression models, and feature imputation 836 
methods. Negative log2 fold change in MAPE and positive log2 fold change in R2 mean that the feature-based model performs 837 
better than the baseline model. A log2 fold change in MAPE of -1 means that the prediction error of the baseline model is twice 838 
as large as that of the feature based model. MAPE: mean absolute percent error. LOCF: last observation carried forward. 839 
CS(xdf): cubic spline with x degrees of freedom. CS(cv): best-fitting cubic spline according to leave-one-out cross-validation. 840 
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 841 
Sup Figure 7: Idiographic models achieve higher individual-level prediction accuracy than nomothetic models. Box plots of 842 
MAPE distribution of feature-based model (A) and log2 fold change in CAT-DI prediction accuracy of feature-based model over 843 
the baseline model (B) across individuals for different latent depression traits (panel), modeling approaches (color), CAT-DI 844 
regression model (x-axis), and feature imputation methods (transparency). All plots are based on individuals with at least five 845 
assessments in the test set (N=143). LOCF: last observation carried forward. CS(xdf): cubic spline with x degrees of freedom. 846 
CS(cv): best-fitting cubic spline according to leave-one-out cross-validation. 847 
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 848 
Sup Figure 8: Idiographic models achieve higher group and individual level prediction accuracy than nomothetic models 849 
when CAT-DI is modeled at the (bi)weekly level..(A-D) Population-level CAT-DI prediction accuracy of the feature-based 850 
model (A-B) and log2 fold change in population-level CAT-DI prediction accuracy of the feature-based model over the baseline 851 
model (C-D) as measured by MAPE (A and C) and R2 (B and D) across all individuals in the test set for different modeling 852 
approaches (color) and CAT-DI regression model (x-axis). The dotted line in B indicates 70% prediction accuracy and the bars 853 
indicate 95% confidence intervals of R2. (E-F) Box plots of MAPE distribution of feature-based model (E) and log2 fold change 854 
in CAT-DI prediction accuracy of feature-based model over the baseline model (F) in the test set across individuals for different 855 
modeling approaches (color) and CAT-DI regression model (x-axis). Plots E-F are based on individuals with at least five 856 
assessments in the test set (N=143). For all six plots, features were imputed using AutoComplete. MAPE: mean absolute 857 
percentage error. 858 
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