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Abstract 

Background 

Epidemiological studies suggested an association between Parkinson’s disease (PD) and type 2 

diabetes, but less is known about type 1 diabetes (T1D) and PD.  

Objectives 

To explore the association between T1D and PD. 

Methods 

We used Mendelian randomization, linkage disequilibrium score regression and transcriptome 

wide association analysis (TWAS) to examine the association between PD and T1D. 

Results 

Mendelian randomization showed a potentially protective role of T1D for PD risk (inverse-

variance weighted (IVW); OR (95% CI) 0.97 (0.94-0.99); p=0.039), as well as motor (IVW; 0.94 

(0.88-0.99); p=0.044) and cognitive progression (IVW; 1.50 (1.08-2.09); p=0.015). We further 

found negative genetic correlation between T1D and PD (rg=-0.17, p=0.016), and identified nine 

genes in cross-tissue TWAS that were associated with both traits. 

Conclusions 

Our results suggest a potential genetic link between T1D and PD risk and progression. Larger 

comprehensive epidemiological and genetic studies are required to validate our findings. 
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Introduction 

Multiple lines of evidence suggest an association between type 2 diabetes (T2D) and Parkinson’s 

disease (PD).1-4 T2D is associated with both increased PD risk and worse progression, measured 

by cognitive and motor scales.4 Moreover, drugs targeting TD may reduce the risk of PD and 

potentially could be repurposed to modify PD progression.5  

Less is known about the link between PD and type 1 diabetes (T1D). T1D is an 

autoimmune disorder characterized by the destruction of islets of Langerhans in the pancreas.6 

The pathophysiology of T1D is different from T2D; nonetheless both diseases have strong 

genetic correlation and shared biological pathways.7 PD is a complex disease with multiple 

pathways involved in its development,8 including pathways related to immune response and 

inflammation.9 Most observational studies did not differentiate between T1D and T2D when 

defining diabetes as a risk factor,10-12 since T1D is much less prevalent than T2D. One report 

suggested a potential increased risk of PD in patients with T1D.13 

Mendelian randomization (MR) uses genetic variants such as single nucleotide 

polymorphisms (SNPs) associated with an exposure of interest (in our case, T1D) as proxies for 

causal inference about the association between that exposure and an outcome. In the current 

study we performed MR to estimate whether a relationship between T1D and PD risk and 

progression may exist. Furthermore, we conducted genetic correlation analysis and 

transcriptome-wide association study (TWAS) to assess potential shared genetic architecture.  
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Methods 

Mendelian Randomization 

We selected publicly availably genome-wide association studies (GWASs) for T1D and PD risk 

and progression with participants of European ancestry and no overlapping samples. We used 

SNPs from the selected GWASs that were significant at GWAS level (p<5×10−8) to construct a 

genetic instrument for the exposure (T1D) and examine its effects on two categories of 

outcomes: PD risk and PD progression. For the exposure we selected a recent T1D study (N 

cases= 13,458; N controls= 20,143) 14 downloaded from the GWAS catalog,15 with only samples 

of European ancestry being included. For the outcome, we selected the most recent PD GWAS 

(N cases= 33,674; N controls= 449,056).16 UK biobank participants were included in the PD 

GWAS but not in the selected T1D study, to avoid potential bias. 

To study the genetically estimated effect of T1D on PD motor progression, measured by 

Unified Parkinson Disease Rating Scale (UPDRS) Part III, and on PD cognitive progression, 

measured by Montreal Cognitive Assessment (MoCa) and Mini-Mental State Exam (MMSE), 

we selected the largest publicly available GWASs of these continuous traits.17 The GWAS on PD 

progression is a meta-analysis of several studies, with different number of participants for each 

phenotype. It means that results for different SNPs correspond for different number of cases. 

Therefore, to calculate the sample sizes for PD progression studies, we calculated the means of 

patients included in each analysis across all SNPs. The mean sample sizes included in the 

GWASs of PD progression traits were N=1,398 for UPDRS Part III, N=1,329 for MMSE and 

N=1,000 for MoCA. 

To perform MR we used the Two-sample MR R package.18, 19 We applied Steiger 

filtering, to exclude SNPs that explain more variance in the outcome than in the exposure.19 We 

used inverse variance weighted (IVW) meta-analysis, which combines results from individual 

Wald ratios together. We used MR Egger, which likewise combines separate Wald ratios into 
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meta-regression to obtain an estimate that is unbiased in the presence of directional pleiotropy.20 

Considering that some of our IVs could be invalid, we also used weighted median based estimate 

to account for it.21 To further explore potential pleiotropy, a variety of sensitivity analysis were 

applied including Cochran’s Q test in the IVW, MR-Egger methods and global MR-PRESSO.22 

We calculated power to detect an equivalent effect size of OR 1.2 on PD risk and progression 

utilizing an online Mendelian randomization power calculation 

(https://sb452.shinyapps.io/power/).23  

Genetic correlation 

We examined genetic correlations between PD and T1D using linkage disequilibrium score 

regression (LDSC) as previously described.24, 25 LDSC considers linkage disequilibrium 

structure to estimate potential genetic overlap between two traits. MR analyses and genetic 

correlation were done after the exclusion of SNPs within the major histocompatibility complex 

(MHC) region due to the biased linkage disequilibrium structure.  

Transcriptome wide association analysis 

To calculate cross-tissue, gene-expression associations in T1D and PD we used the Unified Test 

for Molecular Signatures (UTMOST) software.26 We used a pre-calculated matrix with tissue-

specific TWAS weights, which was created using grouped penalized regression. In the next step, 

we used UTMOST to conduct single-tissue TWASs across 44 tissues available in GTEx (V6).  

Subsequently, we used UTMOST to define genes associated with T1D and PD across all tissues, 

by combining the single-tissue test results with Generalized Berk-Jones (GBJ) test.26 Finally, we 

applied false discovery rate correction and did head-to-head comparisons of genes significant for 

both PD and T1D. 

Data availability  
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We used only publicly available data in the current study. References for GWASs and packages 

for analysis are detailed in the Methods section. All results are reported in the tables or attached 

in the supplementary data. 

Results 

Evidence for a modest protective effect of T1D on PD risk and progression 

The instruments in all analyses had sufficient strength as demonstrated by F-statistics >10 (Table 

1). We found weak evidence of a modest protective effect of T1D on PD risk (IVW; OR=0.97, 

95% CI 0.94-0.99, p=0.039; weighted median; OR=0.95, 95% CI 0.90-0.99, p=0.026, Table 1, 

Supplementary figure 1A). We studied the effects of T1D on motor and cognitive progression. 

UPDRS3 is a motor performance scale, meaning that higher scores indicate poorer performance. 

MMSE and MoCA are cognitive scales, and higher scores signify better performance. We 

observed potentially protective effects of T1D on motor progression measured by UPDRS3 

(IVW, OR=0.94, 95% CI 0.88-0.99, p=0.044, Table 1, Supplementary figure 1B) and on 

cognitive progression as measured by both MMSE (IVW, OR=1.11, 95% CI 0.99-1.25, p=0.060) 

and MoCA (IVW, OR=1.50, 95% CI 1.08-2.09, p=0.015, Table 1, Supplementary figure 1C-D). 

We found that rs7110099 near INS-IGF2 (Insulin-Insulin like growth factor 2) and rs56994090 

near MEG3 (Maternally expressed gene 3) have potential protective effects on PD risk (Wald 

ratio OR=0.95, 95% CI 0.89-1.00, p=0.055 and OR=0.67, 95% CI 0.46-0.96, p=0.03, 

respectively, uncorrected p values). Another SNP next to MEG3, rs4900384, might have a 

protective effect for cognitive progression as measured by MoCA (Wald ratio OR=17.25, 95% 

CI 1.86-159.50, p=0.010). We did not find pleiotropy in any of sensitivity analysis 

(Supplementary Table 1). Furthermore, we applied MR-PRESSO analysis and did not find either 

general pleiotropy or specific pleiotropic SNPs (Supplementary Table 1).  
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Shared expression for genes related to autophagy and lysosomal pathways between T1D and 

PD 

We found evidence for some negative genetic correlation between T1D and PD using LDSC 

(rg=-0.17, p=0.016). We then performed TWASs on T1D and PD in multiple tissues and selected 

significant genes across all tissues for both traits after FDR correction. We demonstrated nine 

significant genes for PD as well as for T1D (Table 2, AAR2, CTSB, LAT, LRRC37A, LRRC37A2, 

R3HDM1, RAB7L1, RNF40, WNT3) suggesting potential pleiotropy that was not detected by the 

MR tools.  
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Discussion 

In this analysis, we demonstrated a potential protective effect of T1D on PD risk and 

progression. We did not find obvious pleiotropy or heterogeneity in any of our MR analyses, 

using a variety of sensitivity methods. However, our genetic correlation analysis suggested that 

there is some potential pleiotropy, with negative genetic correlation between the two traits (i.e. 

variants that are associated with reduced risk of one trait are associated with increased risk of the 

other traits). This may suggest that the association seen in the MR analysis is due to residual 

pleiotropy that was not identified by the MR tools. This observation was reinforced by our cross-

tissue TWASs, demonstrating that several genes may be overlapping between the two traits.   

We demonstrated potential protective effects of SNPs near IGF2 and MEG3 for PD. 

Previously, neuroprotective effect of IGF2 was reported in cell and mouse models of PD 27 and 

its downregulation was shown in PD patients’ blood.28 Moreover, overexpression of IGF2 

resulted in neuroprotective effect.29 Similarly, downregulation of MEG3 was recently reported in 

PD patients 30 and its overexpression could be protective for PD through negative regulation of 

LRRK2.30 

Inflammatory and autoimmune pathways play an important role in the development of 

T1D.31 Accumulating evidence suggest lysosomal dysfunction as a prevalent mechanism in the 

pathogenesis of PD.32 We showed that CTSB and RAB7L1 were associated in cross-tissue TWAS 

analysis with both PD and T1D. These genes are playing an important role in the autophagy-

lysosome pathway, suggesting a role for lysosomal function in both traits and potential pathway 

overlap. Another gene in overlap between these traits was CD19, which is encoding B-

lymphocyte antigen CD19, demonstrating the potential importance of immune pathways for both 

traits outside of the MHC locus. Previously, using the conjunction false discovery rate method, 

some weak pleiotropy was demonstrated between PD and T1D,33 further supported by our 

findings. Recently, similar protective effect in MR study was demonstrated for another 

autoimmune disease – rheumatoid arthritis.34 The authors also highlighted the hypothesis that the 
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protective effect of autoimmune conditions of PD could be driven by some variants in genes 

involved the lysosomal-autophagy pathway.34 We suggest that protective association could be 

driven by pleiotropy, particularly in lysosomal genes, as demonstrated by the genetic correlation 

and TWAS in our analyses.  

Our study has several limitations. First, we only included samples of European ancestry, 

since large GWASs in other populations do not exist, therefore our findings cannot be 

generalized to the population at large. Second, the GWASs on PD progression parameters are 

underpowered (<80%). Thus, additional replication is required whenever larger GWASs on PD 

progression is available. Lastly, MR could be influenced by the quality of selected GWASs that 

are used for the MR analysis. We therefore used different GWASs for exposure and non-

overlapping cohorts in the outcome to partially account for this limitation.  

To conclude, our results support a protective effect of T1D on PD risk and progression, 

that could be driven by potential pleiotropy. Larger comprehensive epidemiological studies are 

required to support further explore this association.  
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Table 1. MR analysis between exposure T1D and outcome PD risk and progression. 

Outcome 
N, SNPs 
included 

Power, 
% 

F-
statistics 

Inverse variance weighted MR Egger 

OR (95% CI) P OR (95% CI) P 
PD risk 58 100 22 0.97 (0.94-0.99) 0.039 0.96 (0.91-1.01) 0.115 
UPDRS 3 42 32.8 34 0.94 (0.88-0.99) 0.044 1.03 (0.88-1.20) 0.721 
MMSE 39 31.4 37 1.11 (0.99-1.25) 0.060 1.13 (0.85-1.50) 0.418 
MoCA 38 24.8 39 1.50 (1.08-2.09) 0.015 2.00 (0.85-4.72) 0.121 

 
PD, Parkinson’s disease; T1D, type 1 diabetes; P, P-value; MR, Mendelian randomization; 
UPDRS3, unified Parkinson's disease rating scale part 3; MMSE, Mini Mental State 
Examination; MoCA, Montreal Cognitive Assessment; OR, odds ratio; 95%CI- 95% confidence 
interval. 
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Table 2. Genes associated with both T1D and PD in cross-tissue transcriptomic gene-trait 
association analysis. 

 

Pfdr, P-value after false discovery rate correction; T1D, type 1 diabetes; PD, Parkinson’s disease 

 

 

Gene 
T1D PD 
Pfdr Pfdr 

AAR2 0.030 0.041 
CTSB 8.06E-05 0.028 
LAT 0.026 0.009 
LRRC37A 5.25E-04 0.0001 
LRRC37A2 8.21E-04 4.36E-08 
R3HDM1 0.046 0.001 
RAB7L1 0.001 1.65E-05 
RNF40 0.027 0.002 
WNT3 0.010 2.24E-08 
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