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ABSTRACT 

Multiple sclerosis (MS) phenotypes provide useful disease descriptions but lack complete information regarding 

the continuing disease process. Disease activity and progression are meaningful modifiers of the MS phenotypes 

which can further guide prognosis, therapeutic decisions, and clinical trial designs and outcomes, which were 

not explicitly documented in patients’ electronic medical records (EMRs). We aimed to detect disease activity 

and progression in patients with MS from clinical notes in the EMR using Natural Language Processing and 

Machine Learning models. Using randomly selected progress notes from MS patients at the University of 

Rochester MS clinic, we integrated NLP and machine learning technologies to predict selected phenotype 

modifiers that represent disease activity and progression. The method was evaluated by the performance of 

both the NLP models and machine learning models, as well as the interpretability of the integrated method. We 

identified 460 progress notes from 287 adult MS patients. The NLP model had an average of 0.92 in precision, 

0.87 in recall, and 0.89 in F-score for entity extraction. It had an average of 0.85 in precision, 0.84 in recall, and 

0.85 in F-score for entity relation extraction. The sensitivities and specificities of the classification algorithms in 

predicting phenotype modifiers were: 67% and 93% for predicting modifier “Active”, 61% and 82% for predicting 

modifier “Worsening”, 92% and 98% for predicting modifier “Progression”, 80% and 94% for predicting modifier 

“New MRI Lesion”, respectively. We showed that the integrated method of NLP with machine learning 

classification is capable of detecting evidence of disease activity and clinical progression from clinical notes. The 

classification algorithms yielded interpretable and largely clinically relevant features (symptoms and clinical 

conditions) that were persistently associated with disease activity and progression. This method holds promise 

for facilitating the screening of MS clinical trial participants and potentially identifying early evidence of disease 

progression. 
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Author Summary 

Disease activity and progression of disability can be meaningful modifiers to base MS phenotypes which can 

further impact prognosis, therapeutic decisions, and clinical trial designs and outcomes. However, studies have 

shown that neither MS phenotypes nor their modifiers are consistently documented in electronic medical record 

(EMR) chart notes. The evidence for disease activity and progression often resides in the clinical notes, requiring 

manual chart review from clinical experts and increasing the difficulty of conducting clinical research. In this 

paper, we developed a generalized information extraction, classification and prediction pipeline, incorporating 

Natural Language Processing (NLP) technologies and shallow machine learning models, to detect MS disease 

activity and progression in clinical notes from EMR and to predict phenotype modifiers. Results demonstrated 

that this integrated method extracts clinically relevant information from progress notes that are persistently 

associated with disease activity and progression, and predicts MS phenotype modifiers with satisfactory 

performance, encouraging portability and interpretability. In the future, we aimed to apply the method in this 

study for facilitating high throughputs of MS clinical trial screening and assessing disease modifying therapy 

utilization based on disease modifiers.  
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1. Introduction 

Multiple sclerosis (MS) is an inflammatory disorder where the body’s immune system targets the central 

nervous system (CNS), causing disrupted nerve signals through demyelination and axonal degeneration. MS is 

the most common cause of nontraumatic neurologic disability in young adults [1], affecting around 900,000 

people in the United States [2]. MS is associated with significant costs, disability, and decreased quality of life for 

patients and their families [3, 4].  

MS is characterized into different clinical courses or phenotypes, including clinically isolated syndrome, 

relapsing-remitting, secondary progressive, and primary progressive. These existing MS phenotypes can be 

useful for standardizing communication about patients, selecting appropriate therapies, and identifying clinical 

trial candidates. The clinical phenotype may be assessed based on current status and historical data, with the 

understanding that MS is a dynamic process and that the initially assessed phenotype may change over time. 

Patients with a relapsing-remitting course may transition to develop more secondary progressive features. 

Conversely, patients with a progressive course may have evidence of relapsing activity, including acute attacks 

and/or new asymptomatic contrast-enhancing brain lesions, particularly earlier in the disease. Accurate clinical 

MS phenotypes as the disease course evolves are critical for individualized clinical and research decision-making 

[5]. However, the clinical course is quite variable, and the phenotypes alone may not fully describe the 

continuing disease process. In 2011, the International Advisory Committee on Clinical Trials of MS and the MS 

Phenotype Group re-examined the core MS phenotypes and recommended modifiers of these phenotypes, 

including the assessment of disease activity, as defined by clinical assessment of relapse occurrence or lesion 

activity, and determination of whether progression of disability has occurred [5]. These additional disease 

modifiers may aid physicians with prognostication and treatment adjustments to improve quality of life and slow 

disability progression. 
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Neither MS phenotypes nor modifiers are consistently documented in electronic medical record (EMR) chart 

notes [6]. The administrative coding of MS is wholly contained as a single diagnosis code (G35.0 in ICD-10-CM or 

340.0 in ICD-9-CM) that is uninformative about MS phenotypes or modifiers. There are no blood or 

cerebrospinal fluid (CSF) biological markers to date that can reliably and reproducibly differentiate between MS 

clinical phenotypes [5]. The evidence for disease activity and progression often resides in the clinical notes in the 

EMR even if not explicitly documented. Therefore, extensive chart review and abstraction from the EMR is often 

needed to collect phenotypes and modifiers information on MS patients for activities such as clinical trials and 

observational studies, thus increasing the difficulty of conducting clinical research. 

Researchers have applied natural language processing (NLP) techniques on clinical text in the EMR to identify MS 

phenotypes [6-9]. The popular approaches involve interviewing clinical experts for possible keywords and 

phrases denoting MS phenotype in order to develop a data dictionary, applying NLP methods to perform text 

search, and using the search outcomes (i.e., mentions of the dictionary terms) as input to either prediction 

models or rule-based algorithms. Nelson et al. developed possible keywords and phrases denoting MS 

phenotype contributed by clinical experts (a registered nurse, a physician therapist, and a licensed family 

counselor), and applied NLP to conduct a keyword search in clinical notes with negation detection [6]. Davis et al. 

applied keyword search and regular expression to extract four clinical subtypes from clinical notes, letters and 

problem lists that mentioned MS [8]. Xia et al. generated a list of clinician expert-defined, MS-relevant codified 

and narrative variables from the EMR data for each patient and extracted variables with 10% or more frequency 

of occurrence [10]. These approaches either aimed to develop an algorithm for classifying the disease (MS) itself 

(not the phenotype), or to determine the phenotype prevalence in clinical notes in a large patient population. A 

limitation of their works was the lack of focus on determining the MS phenotypes and/or their modifiers. 

Additionally, the approaches demonstrated in those studies required a task-specific dictionary of relevant 

phrases or a set of hand-crafted rules [11]. The development of a dictionary and rules usually requires significant 

effort and an understanding of the task from domain experts. A rule-based application may not be portable 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280951doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280951
http://creativecommons.org/licenses/by/4.0/


beyond the use case for which it is designed [12]. Lastly, the prediction models are challenging to interpret, and 

the applied NLP methods are relatively rudimentary and can be further improved. 

The objective of this study was to detect MS phenotype modifiers (i.e., disease activity and progression) in 

clinical notes from the EMR using Natural Language Processing (NLP) and Machine Learning models. To our 

knowledge, this is the first study to make use of NLP and machine learning technologies to predict these “real-

time” modifiers of MS phenotypes in a large patient population. 

 

2. Methods 

2.1 General Approach 

We integrated NLP and machine learning technologies to develop our generalized classification and prediction 

pipelines (Figure 1). A study corpus was created by randomly selecting progress notes in study subjects’ EMRs 

from their office visits during the study time window. We identified four MS phenotype modifiers, including 

“Active”, “Worsening”, “Progression”, and “New MRI Lesion”, to represent disease activity and progression. 

Each note in the study corpus was manually labeled with all four modifiers using a binary class. The natural 

language processing pipeline was developed to extract symptoms and clinical conditions from the study corpus 

that could serve as evidence of MS disease activity and progression during the assessment period. These NLP 

extractions were normalized to the standard controlled vocabulary of Unified Medical Language System (UMLS) 

from US National Library of Medicine (NLM), and were subsequently used as input features to train supervised 

machine learning classification models to predict those MS phenotype modifiers. The method was evaluated by 

the performance of both the NLP models and machine learning models, as well as the interpretability of the 

integrated method. 
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Figure 1. Integrated NLP and machine learning pipelines to predict MS phenotype modifiers for MS disease 

activity and progression 

2.2 Patient Selection  

This study used EMR data from the MS clinic at the University of Rochester Medical Center to identify candid

patients with at least one diagnosis of MS (ICD-10-CM code G35.0 or ICD-9-CM code 340.0) who were over 1

years old and received care from the MS clinic and had at least one office visit between January 1 2016 and 

December 1 2020. The selection of office visits was limited to the primary MS clinic providers which included

both physicians (attendings and fellows) and advanced practice providers. Progress notes were collected from

the completed office visits of candidate patients. Study corpus was then created by randomly selecting 

candidate patients and their progress notes which were stratified by visit year and provider.  

2.3 Progress Notes Labeling 
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To quantify disease activity and progression during the assessment period, three MS-trained physicians formed 

a review group and defined four MS phenotype modifiers to represent disease activity and progression, 

including “Active”, “Worsening”, “Progression”, and “New MRI Lesion”. “New MRI Lesion” was marked “true” 

for MRI activity, defined as a contrast-enhancing lesion and/or one or more new or unequivocally enlarging T2 

lesions. “Active” was marked “true” for either a clinical relapse (new or significantly worsened symptoms 

lasting >24 hours in the absence of other obvious precipitating factors such as underlying infection) and/or MRI 

activity as defined above. “Progression” was marked “true” if the note indicated gradual worsening of symptoms 

by history or objective worsening on exam noted by the provider. “Worsening” was a composite marker 

indicating either activity or progression; it was marked “true” if any of the other 3 modifiers were true.   

In some instances, activity was acutely detailed in a progress note (i.e., a recent MRI with a contrast-enhancing 

lesion). In other cases, the activity or progression was a relative measure compared with the last progress note 

(i.e., a new MRI lesion compared with 6 months prior). To account for this, short interval follow-up notes (i.e., < 

6 months apart) were still labeled “Active” in the setting of recent relapse, even if not “new” compared to prior 

follow up. Conversely, “Progression” or “New MRI Lesion” may not have been marked “true” if the comparison 

note was remote or unclear. To account for this variability as well as the subjectivity in classifying 

relapses/progression, multiple clinicians reviewed the progress notes. The first 150 progress notes were 

reviewed by all three clinicians and then reviewed as a group for consensus.  Subsequent notes were reviewed 

by a single clinician, but any potential discrepancies were flagged and then reviewed again by the group for 

consensus. Additionally, notes that were mislabeled as MS (i.e., patients with other neuroimmunologic diseases) 

or notes that were not true progress notes (i.e., therapy monitoring appointments) were excluded. A total of 

21.4% of notes were excluded from the study corpus. 

2.4 Natural Language Processing (NLP) pipeline 
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To assess disease activity and to determine disease progression, we extracted MS-related symptoms and clinical 

conditions from progress notes which were either newly developed since the last visit or represented the 

disease progression during the visit intervals. The extractions were used as input features in the subsequent 

machine learning classifier to predict phenotype modifiers. The appropriate clinical feature representation has 

been shown to improve the performance of machine learning classifiers [13]. To do this, we adopted an NLP 

toolkit Clinical Language Annotation, Modeling, and Processing (CLAMP) [14], and used the UMLS 

Metathesaurus to normalize clinically-relevant UMLS concepts in progress notes.  

The outpatient progress notes are parts of EMRs where healthcare providers document patient’s clinical status 

over the course of an outpatient visit. These notes do not always have a consistent template or documentation 

pattern and usually consist of many sections, including Disease Summary, History of Present Illness, Interval 

History, Past Medical History, Current Outpatient Prescriptions, Review of Systems, Physical Exam, Assessment, 

and Plan. Each section may start with a section header, but the wording of the section header and position of 

each section within progress notes was not always consistent. The evidence of disease activity and progression 

was available in the progress note sections of Interval History, HPI, Subjective, and MS History, presented here in 

the order of precedence. We analyzed the documentation patterns and developed regular expression algorithms 

to section the progress notes, and removed the un-relevant sections in each progress note as we were only 

interested in the part of progress notes that represented the disease activity and progression during the 

assessment period. 

The NLP process we built in CLAMP included the following major modules: Sentence detector, Tokenizer, POS 

tagger, Chunker, Named Entity Recognizer, Assertion and negation. We developed annotation guidelines, 

annotated progress notes with 8 entities and 7 entity relations (see Table 1), and re-trained the Named Entity 

Reorganization (NER) model with 5-fold cross-validation.  

Semantic

: Entity  

Semantic Description Semantic : 

Entity 

Semantic 

Description 
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Relations 

Problem symptoms, such as “enhancing lesion”, 

“stiffness/spasticity in the lower extremities”, “urinary 

urgency”, “new neurologic symptoms”, etc. 

-- -- 

NEG negation, such as “denies”, “did not have”, “no 

evidence of”, etc. 

NEG_Of negation of the 

problem 

SEV severity, such as “mild”, “severe”, “acute”, etc. SEV_Of severity of the 

problem 

BDL body location such as “both legs”, “Rt knee”, etc. BDL_Of body location 

of the problem 

SUB subject, such as “her mother”, “her aunt”, etc. SUB_Of subject of the 

problem 

COU course, such as “worsening”, “improved”, “resolved”, 

etc. 

COU_Of course of the 

problem 

UNC uncertainty, such as “does not recall”, “may have”, 

etc. 

UNC_Of uncertainty of 

the problem 

temporal temporal expression, such as “in 2016”, “the fall of 

2012”, “12/01/16”, etc. 

hasTemporal temporal 

expression of 

the problem 

Table 1. Entity and Entity Relations in Progress Note Annotation 

The NER model extracted symptoms and clinical conditions that represented the patient’s clinical status during 

the assessment period. As previously noted, we identified only those that were either newly developed since the 

last visit or represented the disease progression during the visit intervals. We examined NER extractions and 

developed Entity Parser to parse the NER outputs and to exclude the non-eligible symptoms. The symptoms 

were considered not eligible if they were negated, or were uncertain, or were related to other family members 

rather than patients themselves, or were reported as part of medical history, or were resolved, gone, or 

improved in the assessment period. 

Extracted symptoms often consist of multiple words and have variations of how they are worded and 

documented by different providers or by the same provider at different time. For example, the following 

phrases have the same semantic interpretation but appeared equally in the progress notes: “poor short-term 

memory”, “short term memory issues”, “short-term memory difficulty”, “mild difficulty short-term memory”. 
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After identifying the eligible symptoms, they were then encoded to the controlled biomedical vocabulary of 

NLM's UMLS. Each term in the UMLS metathesaurus is presented by a unique concept identifier (CUI). The 

abovementioned four-symptom phrases were encoded and normalized to a single UMLS concept “Poor short-

term memory” with CUI C0701811. 

2.5 Machine Learning Model Development 

The extracted symptoms and clinical conditions from the NLP pipeline were normalized and encoded to 

standard UMLS CUI. The CUIs were transformed to dichotomous CUI variables using one-hot encoding. Six 

supervised machine learning models with feature selection were developed to predict those four MS phenotype 

modifiers individually, using the dichotomous CUI variables as input features and MS phenotype modifiers as 

outcomes. The machine learning models included L1-regulated logistic regression (LASSO), regularized SVM with 

linear kernel, random forest, decision tree, linear Discriminant Analysis (LDA), and Naïve Bayes (NB). Five-fold 

cross-validation was applied in each model to reduce overfitting and to evaluate model performance. Since all of 

the modeling processes were developed independently for every phenotype modifier, each model is a binary 

classifier instead of multi-class classifier, which reduces the evaluation complexity [13].  

2.6 Evaluation 

The evaluation consisted of three parts. Firstly, the NLP pipeline was evaluated on the notes comprising the test 

set. The primary outcome of the NLP pipeline was the performance of abstracting entities and entity relations 

from notes. We calculated Precision, Recall and the F1 score for each one of entities and entity relations 

compared with the reference standard, which was the manually annotated entities and entity relations in the 

test set. Precision is the ratio of correctly predicted positive observations to the total predicted positive 

observations, whereas recall is the ratio of correctly predicted observations to the all actually positive 

observations. Precision represents what percent of entities or entity relations predication were correct. Recall 

represents what percent of the real entities or entity relations the NLP model caught. The F1 score is the 
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weighted average of Precision and Recall. This score takes both false positives and false negatives into account. 

It is the harmonic mean of the both Precision and Recall. Secondly, the machine learning classification models 

were evaluated by their performance of predicting the MS phenotype modifiers. We determined the sensitivity 

and specificity of each model and modifier compared with the reference standard, which was the manually 

labeled modifiers on progress notes. To determine sensitivity and specificity, each modifier is considered as a 

binary class, so that we obtained true positive, false positive, true negative, and false negative for each class. 

Finally, we evaluated the interpretability by selecting input features with high coefficients and discussed how 

relevant they were in clinical settings to assess disease activity and to determine disease progression.  

2.7 Ethics Statement 

All relevant ethical safeguards have been met in relation to patient privacy protection. Institutional review board 

(IRB) approval for this study was obtained through the University of Rochester’s Research Subjects Review Board 

(RSRB) under the Office of Human Subject Research. The approval number is STUDY00005629. The RSRB granted 

waiver of Informed Consent and waiver of HIPAA authorization to this study because the research involves 

medical record review only and is no greater than minimal risk and there is no recruitment or intervention 

performed. 

 

3. Results 

3.1 Dataset and Study Corpus  

A total of 1,265 patients with MS diagnoses had visits listed at the UR MS clinic with office visits between 

January 1 2016 and December 1 2020. “No Show” or “Canceled” office visits were excluded. A total of 4,095 

office visits were identified in which neurology progress notes were available and documented by the selected 

types of clinicians. Visits with other providers (such as nurses, therapists) were excluded because the clinical 
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notes from those visits did not always have complete information on patients’ clinical status. The study corpus 

included 460 progress notes from 287 MS patients which were randomly selected from the candidate patient 

cohort, stratified on visit year and provider, to maximize the independence among the observations. Each 

progress note was manually labeled on those four phenotype modifiers. The demographic characteristics of 

study subjects and study corpus are listed in Table 2a and Table 2b. 

Category Items Patient Count 

Total # of patients 287 

Gender Female 205 (71.4%) 

Male 82 (28.6%) 

Race Black or African American 28 (9.8%) 

White 236 (82.2%) 

Other / Unknown / Patient Refused 23 (8.0%) 

Ethnicity Hispanic or Latino 12 (4.2%) 

Not Hispanic or Latino 228 (79.4%) 

Unknown 47 (16.4%) 

Age at office visit 18-20 2 (0.7%) 

21-40 100 (34.8%) 

41-60 144 (50.2%) 

61-80 43 (15.0%) 

80+ 1 (0.3%) 

Table 2a. Demographic characteristics of study subjects 

Label Modifier “Active” Modifier “Worsening” Modifier “Progression” Modifier “New MRI Lesion” 

True 164 218 61 116 

False 292 238 398 240 

N/A 4 4 1 104 

Table 2b. Distribution of phenotype modifiers in study corpus 

3.2 NLP Pipeline including Text Sectioning, Annotation, NER, Entity Parsing, and CUI Encoder 

Progress notes in the study corpus were sectioned and only have the section(s) of Interval History, HPI, 

Subjective, and MS History retained. They were then annotated individually with study defined 8 entities and 7 

entity relations (Figure 2) using CLAMP. 
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Figure 2. MS progress note annotation with study defined entities and entity relations using CLAMP 

After re-training the NLP model with 5-fold cross-validation on annotated notes, a total of 4726 semantic 

entities and 2331 entity relations were extracted from the study corpus. The NLP model had an average of 0.

in precision, 0.87 in recall, and 0.89 in F-score for entity extraction. The model had an average of 0.85 in 

precision, 0.84 in recall, and 0.85 in F-score for (entity) relation extraction. Breakdown of model performance

individual entity and entity relation are listed in Table 3a and Table 3b.  

Semantic Precision Recall F1 score 

Problem 0.805 0.701 0.750 

NEG 0.983 0.987 0.985 

SUB 0.833 0.833 0.833 

SEV 1.000 0.818 0.900 

COU 1.000 0.991 0.996 

BDL 1.000 0.983 0.991 

UNC 1.000 0.971 0.986 

temporal 1.000 1.000 1.000 

Overall entity extraction 0.921 0.866 0.892 

Table 3a. NLP performance on entity extraction 

Semantic Precision Recall F1 score 

NEG_Of 0.852 0.783 0.816 

.92 

e on 
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SUB_Of 0.847 0.655 0.738 

SEV_Of 0.967 0.853 0.906 

COU_Of 0.909 0.946 0.927 

BDL_Of 0.784 0.967 0.866 

UNC_Of 1.000 0.500 0.667 

hasTemporal 0.711 0.815 0.759 

Overall entity relation extraction 0.850 0.842 0.846 

Table 3b. NLP performance on entity relation extraction 

The extracted entities and entity relations were run through the Entity Parser to identify eligible symptoms. 

Extracted entities were considered not eligible symptoms if they were negated, or were uncertain, or were 

related to other family members rather than patients themselves, or were reported as part of medical history, 

or were resolved, gone, or improved in the assessment period. Out of extracted semantic entities from the 

notes, 2404 were eligible symptoms for representing as evidence of the MS disease activity and/or progression 

over the assessment period. These symptoms were encoded and normalized to 787 unique UMLS CUIs, which 

were then transformed to dichotomous variables.  

3.3 Machine Learning Classification and Algorithm Interpretability 

Four datasets were built using the 787 binary CUI variables and each one of those 4 MS phenotype modifiers. 

Each dataset was a 460x788 sparse matrix, with one progress note per row. Each dataset was randomly split to 

the training (70%) and testing (30%) data sets. Six shallow machine learning classification models were trained 

using the training dataset and validated on the testing dataset. The best performance of sensitivity and 

specificity was achieved with L1-regulated logistic regression (LASSO) with feature selection (Table 4). The 

sensitivities and specificities of the classification algorithms were: 67% and 93% for predicting modifier “Active”, 

61% and 82% for predicting modifier “Worsening”, 92% and 98% for predicting modifier “Progression”, 80% and 

94% for predicting modifier “New MRI Lesion”, respectively. 

Model 

Modifier  

“Active” 

Modifier  

“Worsening” 

Modifier 

“Progression” 

Modifier  

“New MRI Lesion” 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
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Logistic 

Regression – 

Lasso 

0.67 0.93 0.61 0.82 0.92 0.98 0.80 0.94 

Random Forest 0.67 0.89 0.62 0.77 0.91 0.97 0.76 0.88 

SVM (Linear) 0.70 0.87 0.62 0.74 0.86 0.93 0.75 0.88 

Decision Tree 0.68 0.71 0.60 0.66 0.80 0.86 0.73 0.83 

Linear 

Discriminant 

Analysis 

0.64 0.78 0.55 0.71 0.86 0.92 0.73 0.86 

Naïve Bayes 0.61 0.75 0.55 0.78 0.43 0.40 0.80 0.96 

Table 4. Machine learning classification performance for MS phenotype modifiers 

To evaluate the algorithm interpretability, we further examined the selected input features (i.e., CUI variables 

representing the MS symptom and clinical conditions) and their coefficients out of the LASSO regression model. 

Since the datasets are all sparse, the LASSO regression model performs feature selection by adding penalization 

to weak predictors, hence eliminating them from the model. The coefficient represented how strongly each 

selected predictor (i.e., CUI variable) is correlated with the prediction outcome (i.e., the phenotype modifiers). 

Since the coefficients can’t be compared across models, we ranked them by their absolute values to represent 

how CUI variables were correlated with individual modifier and were associated among multiple modifiers. 

Higher absolute values of coefficients were associated with lower rank. The top selected input features with 

highest absolute value of coefficients and their ranking within each MS phenotype modifier were listed in Table 

5. 

CUI Variable UMLS Concept Name 
Modifier 

“Active” 

Modifier 

“Worsening” 

Modifier 

“Progression” 

Modifier “New 

MRI Lesion” 

CUI_C0520966 Abnormal coordination 6 

CUI_C0877609 Alertness decreased 1 

CUI_C0002170 Alopecia 12 7 

CUI_C0003467 Anxiety 5 

CUI_C0239377 Arm Pain 23 19 

CUI_C1261512 Attack behavior 22 

CUI_C0376175 Bell Palsy 13 

CUI_C2881980 Bilateral tinnitus 3 13 

CUI_C0232841 Bladder dysfunction 8 

CUI_C0010201 Chronic cough 18 
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CUI_C0518656 Chronic fatigue 17 

CUI_C1299636 Cognitive safety issue 16 3 

CUI_C0237333 
Difficulty emptying 

bladder 
2 6 

  

CUI_C0311394 Difficulty walking 7 

CUI_C0012569 Diplopia 9 

CUI_C0281825 Dysequilibrium 7 23 

CUI_C0392699 Dysesthesia 14 

CUI_C3830314 Enhancing Lesion 6 3 1 

CUI_C0016770 Frustration 26 4 

CUI_C1836150 Gait imbalance 20 4 

CUI_C2242996 Has tingling sensation 13 

CUI_C0848765 Hearing disability 1 2 

CUI_C4551516 Hip pain 11 18 

CUI_C0020517 Hypersensitivity 15 14 

CUI_C0020538 Hypertensive disease 8 6 

CUI_C0338656 Impaired cognition 2 

CUI_C2673338 Increased fatigue 18 22 

CUI_C3887486 Interstitial lung fibrosis 12 

CUI_C0022104 Irritable Bowel Syndrome 9 

CUI_C4728107 Leg spasm 3 

CUI_C0221198 Lesion 25 16 

CUI_C0271051 Macular retinal edema 22 24 8 

CUI_C1843862 Memory difficulties 16 

CUI_C0085633 Mood swings 4 

CUI_C0436540 MRI scan abnormal 9 8 

CUI_C0235962 
Multiple sclerosis 

aggravated  
10 11 

 

CUI_C0026838 Muscle Spasticity 27 19 

CUI_C0027497 Nausea 14 

CUI_C3641258 New Lesion Progression 2 

CUI_C0239649 Numbness of foot 19 7 15 10 

CUI_C0030193 Pain 21 19 23 

CUI_C0030252 Palpitations 4 

CUI_C0587058 Paresthesia upper limb 15 12 

CUI_C0424323 Physical aggression 11 

CUI_C0234964 Poor balance (finding) 17 

CUI_C0033860 Psoriasis 5 5 5 

CUI_C0035020 Relapse 13 

CUI_C0423551 Sensory symptoms 18 

CUI_C0241224 Spinal cord lesion 15 

CUI_C0558192 Stiff legs 20 9 

CUI_C0038435 Stress 21 
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CUI_C0444344 Stride long-standing 17 1 

CUI_C2116342 tingling of both feet 21 

CUI_C2116348 tingling of both hands 17 

CUI_C3897214 Urinary Leakage 10 

CUI_C0042029 Urinary tract infection 14 

CUI_C0042571 Vertigo 20 11 

CUI_C3258317 
Walking - long distance - 

difficulty 
10 21 

  

CUI_C3714552 Weakness 18 12 

 Table 5. Top selected features (symptoms) and their coefficients ranking associated with each MS phenotype 

modifier. 

The results demonstrated encouraging interpretability given lots of the selected features were persistently 

correlated to corresponding phenotype modifiers, such as “increased fatigue”, “mood swings”, “numbness of 

foot”, etc. However, the clinical relevance seems still incomplete with this method. For example, the highest 

ranked symptom associated with the “Active” modifier is not considered a widely common MS symptom. 

“Alopecia” is not a sign of MS but an adverse effect of several disease-modifying MS therapies. There are other 

seemingly unrelated symptom terms could be explained by an association with some of the more potent MS 

treatments, which may be used when a patient has activity or disease worsening. For example, Gilenya 

(fingolimod) and Tecfidera (dimethyl fumarate) are FDA approved oral MS disease modifying therapies that can 

be linked to the concepts “Macular retinal edema” (adverse effect of fingolimod) and “Psoriasis” (dimethyl 

fumarate has a similar structure to treatments for psoriasis).  

 

4. Discussion 

The integrated method of NLP and shallow machine learning models in this study extracts largely relevant 

clinical information from progress notes and predicts MS phenotype modifiers with satisfactory performance, 

encouraging portability and interpretability.  
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The progress notes in the EMR include a wealth of information relating to disease activity and progression. 

Previous studies showed that there was no clear difference in case-detection algorithm accuracy between rule-

based and machine learning methods of extraction [15]. However, the large variations in local context in the 

clinical notes (e.g., wording, documentation habits, note structure, etc.) demand excessive efforts in forming 

those rules and make the rule-based approaches less feasible and portable. The modern text classification 

methods that utilize deep neural network models do not require heavy annotation, but are often regarded as 

black-boxes and criticized by the lack of interpretability since these models cannot provide meaningful 

interpretation on how a certain prediction is made [16]. The method used in this study did not require hand-

crafted rules or custom developed dictionary to determine phenotype modifiers. Instead, it leveraged the local 

context in progress notes by analyzing the note structure and used advanced NLP technologies to detect the 

evidence of disease activity and progression, which were used to predict phenotype modifiers with shallow 

machine learning method. These advantages made this method applicable, although not in plug-and-play 

manner, in other data environment with consideration of its local context during the deployment. 

In other studies of text classification using machine learning based NLP in building phenotype systems, 

distributed word representation modeling (e.g., word2vec) was commonly used to process raw texts for deep 

learning models, including convolutional neural network (CNN), recurrent neural networks (RNNs), long short-

term memory (LSTM), etc. [17, 18]. The deep learning architecture provides good generalizability and reduce 

annotation complexity for clinical domain experts [11], a major drawback is the lack of interpretability. It can be 

difficult to understand how the predictions were made from the input features even though they can train a 

classifier with good performance [19]. Furthermore, unsupervised clustering models are getting increasingly 

adapted in biomedical domains, which helps to discover novel phenotypes. The meaningful interpretations are 

still challenging. The method in this study generally demonstrated appropriate clinical relevance, thus enhanced 

the interpretability of the prediction model. 
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Analyzing the inclusion/exclusion of clinical trials for MS showed that 40% of MS trials require characteristics of 

disease activity and progression only, rather than the base phenotypes. In this context, the methods 

demonstrated in this paper could be used to study the efficacy of screening patients for clinical trials using a 

machine learning based method versus manual selection. This method could also be utilized to study whether 

patients are receiving disease modifying therapy consistent with their MS characteristics. It can be very 

challenging to identify when patients transition from relapsing remitting to secondary progressive MS. One 

exciting potential application of this method is to see whether it can help categorize MS patients in a way that 

allows for early identification of this transition. 

In addition to the positive aspects of this study, there are some limitations. It was conducted exclusively within 

the MS clinic at the University of Rochester. The MS patient population at UR has similar characteristics to the 

general MS population, but there may still be site-specific nuances to study cohort. Additionally, the volume of 

patient data in this study is relatively low, largely due to the time-consuming nature of labeling patient notes. A 

small study cohort has negative impacts on the overall performance of both NLP model and machine learning 

classification. It also leads to another major limitation in that a small study corpus likely has an imbalanced data 

issue not easily resolved. For example, the overall sensitivity and specificity of modifier “Progression” are higher 

than the others; this is very likely because the labels of progression are imbalanced, meaning the number 

positive labels (=Yes) are much lower than the number of negative labels (=No), compared with the positive to 

negative ratio in other labels of modifiers. 

Local context in clinical notes in EMR imposes challenges in generalizability of information extraction (IE) 

methods involving NLP and/or rule-based approaches. Pre-analyzing the context and incorporating them in the 

overall design could help make the IE methods more portable, there may still be culture differences at each 

health care organization that influence the clinical note structure, documentation habits, language used that 

could have unexpected impacts on and further limits the generalizability of the IE method. 
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5. Conclusion 

This study demonstrated that the integrated method of NLP with machine learning classification is capable of 

detecting evidence of disease activity and clinical progression from clinical notes in EMR. The classification 

algorithms are relatively simple but yield interpretable and largely clinically relevant features (symptoms and 

clinical conditions) that are persistently associated with disease activity and progression. Incorporation of a 

larger volume of labeled progress notes or involvement of additional clinical sites may further improve model 

performance and generalizability. Future applications for this work include facilitation of high throughput of MS 

clinical trial screening, refinement of disease modifying therapy utilization, and deeper analysis of the transition 

from relapsing to progressive MS phenotype. 
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