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Highlights 

- In 2018, about 8,883,931 and 12,566,478 children aged under 5 years old in Nigeria had not 

received routine DTP1 and MCV1, respectively. 

- MCV and DTP zero-dose prevalence shared similar patterns, with highest prevalence districts 

concentrated in the northeast and northwest but also found elsewhere 

- Measles incidence, though mitigated by campaigns, is related to subnational routine MCV1 

coverage  

- Residual zero-dose prevalence following vaccination campaigns should be analysed and 

reported 

- Targeted campaigns or routine immunization interventions in higher zero-dose prevalence 

districts are needed to reduce disease risk 

 

Abstract 

Geographically precise identification and targeting of populations at risk of vaccine-preventable 

diseases has gained renewed attention within the global health community over the last few years. 

District level estimates of vaccination coverage and corresponding zero-dose prevalence constitute a 

potentially useful evidence base to evaluate the performance of vaccination strategies. These 

estimates are also valuable for identifying missed communities, hence enabling targeted 

interventions and better resource allocation. Here, we fit Bayesian geostatistical models to map the 

routine coverage of the first doses of diphtheria-tetanus-pertussis vaccine (DTP1) and measles-

containing vaccine (MCV1) and corresponding zero-dose estimates at 1x1 km resolution and the 

district level using geospatial data sets. We also map MCV1 coverage before and after the 2019 

measles vaccination campaign in the northern states to further explore variations in routine vaccine 

coverage and to evaluate the effectiveness of both routine immunization (RI) and campaigns in 

reaching zero-dose children. Additionally, we map the spatial distributions of reported measles cases 

during 2018 to 2020 and explore their relationships with MCV zero-dose prevalence to highlight the 

public health implications of varying performance of vaccination strategies across the country. Our 

analysis revealed strong similarities between the spatial distributions of DTP and MCV zero dose 

prevalence, with districts with the highest prevalence concentrated mostly in the northwest and the 

northeast, but also in other areas such as Lagos state and the Federal Capital Territory. Although the 

2019 campaign reduced MCV zero-dose prevalence substantially in the north, pockets of 

vulnerabilities remained in areas that had among the highest prevalence prior to the campaign. 

Importantly, we found strong correlations between measles case counts and MCV RI zero-dose 

estimates, which provides a strong indication that measles incidence in the country is mostly 

affected by RI coverage.  Our analyses reveal an urgent and highly significant need to strengthen the 

country’s RI program as a longer-term measure for disease control, whilst ensuring effective 

campaigns in the short term.  

 

Keywords: MCV1 coverage; DTP1 coverage; Zero-dose prevalence; Measles incidence; Bayesian 

geostatistical modelling 
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Introduction 

Achieving high rates of vaccination coverage is vital for disease control, elimination and eradication.  

Since the introduction of the WHO Expanded Programme on Immunization (EPI) in 1974, substantial 

gains in vaccination coverage have been made globally through a combination of routine 

immunization (RI) and campaign strategies. However, within the last decade, coverage levels have 

stalled or regressed in many countries [1-3]. This situation is further exacerbated by the ongoing 

COVID-19 pandemic, which has caused severe disruptions to vaccination services globally, leading to 

postponement of campaigns and inadequate routine immunization service delivery [4-6]. In 2020, it 

was estimated that 22.7 million children missed out on routine immunization – a 19.5% increase 

from 2019, with the number of children who had received no vaccines increasing from 13.6 million 

in 2019 to 17.1 million in 2020 [5].  This implies that countries, districts and communities where 

these un- and under-immunized populations reside continue to be at risk of vaccine-preventable 

diseases (VPDs). 

Inequities in vaccination coverage and vulnerabilities to VPDs most often occur because of 

suboptimal RI performance and/or ineffective vaccination campaigns. To identify these vulnerable 

populations, spatially detailed data are required, beyond the large-area summaries reported from 

household surveys. Such data are crucial for mapping areas that are un- or under-vaccinated via 

each delivery method [7, 8] and understanding which strategies to adopt to fill gaps and boost 

coverage. Geospatial analyses have now gained traction as a vital tool for creating high-resolution 

and district level maps of health and demographic indicators [1, 7-11]. In the case of vaccination 

coverage, these maps are integrated with relevant gridded population data to produce estimates of 

numbers of un-vaccinated (i.e., zero-dose prevalence) and under-vaccinated populations at various 

spatial scales, thus helping with identifying and delineating clusters of vulnerabilities within 

countries and better allocation of resources. Such spatially detailed data also enable integration with 

other data sources such as health facility catchment maps and locations of vaccination posts, to give 

more complete health metrics or decision-making information. The programmatic relevance of 

spatially detailed data for immunization is well recognized by global health policy frameworks such 

as the WHO Immunization Agenda 2030 [12] which has a target of achieving a 50% reduction in 

numbers of “zero-dose” children by 2030, and Gavi Strategy 5.0 [13] which aims to achieve equity in 

vaccination coverage and a 25% reduction in the number of zero-dose children by 2025 through 

reaching missed communities.  Furthermore, the distribution of zero-dose populations, when 

combined with disease incidence, could present a fuller picture to evaluate the relative performance 

of RI and campaigns. Where disease surveillance systems have consistent reporting rates over time 

[14], decreases in both reported incidence and zero-dose prevalence following a campaign are a 

more compelling demonstration of the impact of the campaign. Also, hotspots of susceptibility as 

evidenced by high zero-dose prevalence and high incidence, are most likely indicative of poor RI 

performance, suboptimal campaigns or the failure of RI to sustain and improve upon gains made 

through campaigns, particularly in high birth rate settings. 

In 2019 and 2020, Nigeria was identified as being among the top 3 countries with the most un- or 

under-vaccinated children globally [2]. WHO and UNICEF estimates of national immunization 

coverage (WUENIC) show that the coverage of basic vaccines such as DTP3 and MCV1 has not 

improved much in recent years, standing at 57% and 54% respectively in 2020 [2]. Geospatial 

analyses of data from various surveys conducted in the country since 2013 [1, 8, 10, 15] have shown 

a persistent north-south divide in coverage, with the northern states having relatively low coverage 

levels despite concerted efforts to improve coverage levels across the country. A recent analysis of 
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measles case-based surveillance data also found higher incidence rates in the north, in addition to a 

high proportion of MCV zero-dose individuals (70.8%) among confirmed cases during 2008-2018 

[16]. Several studies have identified different demand- and supply-side factors, such as maternal 

access to and utilization of health services, maternal education, religion, ethnicity, wealth, maternal 

age, mobile phone usage, poor attitude of health workers and vaccine stockouts as being 

responsible for the slow rate of progress within the country [17-19]. All of this points to an urgent 

need to identify and prioritize high-risk areas for effective follow up through appropriate routine and 

campaign strategies and robust disease surveillance[14], to put the country on a path to achieving its 

disease control and elimination targets. 

Our subnational assessments of the relative effectiveness of RI and campaigns have typically focused 

on comparing maps of DTP3 and MCV1 coverage [7] or analyzing coverage maps of post-campaign 

coverage survey (PCCS)  indicators [8]. Here, we focus on the subnational distributions of DTP and 

MCV zero-dose children. We use the term ‘zero-dose’ to refer independently to non-receipt of DTP 

(i.e., DTP zero-dose) and non-receipt of MCV (i.e., MCV zero-dose) vaccines. Specifically, we examine 

the performance of RI in 2017-2018 using the spatial distributions of DTP and MCV zero-dose 

estimates produced using the 2018 Nigeria Demographic and Health Survey (NDHS). We also assess 

the specific and combined performance of RI and the 2019 measles campaign (northern states only) 

using MCV zero-dose estimates produced through mapping MCV1 coverage before and after the 

campaign using the 2019 PCCS. Finally, we triangulate the zero-dose estimates with aggregate 

measles case-based surveillance data during 2018 – 2020 to explore the spatial relationships 

between RI and post-campaign MCV zero-dose prevalence and measles incidence. 

 

Methods 

 

Vaccination coverage data from the 2018 NDHS and 2019 PCCS 

Routine immunization coverage data for DTP1 and MCV1 were obtained from the 2018 NDHS for 

children aged 12-23 months [20]. The 2018 NDHS used a stratified, two-stage sampling design to 

produce estimates of health and demographic indicators, including vaccination coverage, at the 

national, regional and state levels and for urban and rural areas. Stratification was achieved by 

separating each of the 36 states and the Federal Capital Territory (FCT) into urban and rural areas. 

Samples were drawn from within each stratum in two stages: the first stage involved the selection of 

survey clusters (enumeration areas) from a national sampling frame using a probability proportional 

to size sampling scheme, while the second stage involved selecting households randomly from 

household lists within the selected clusters. In all, the survey was implemented in a total of 1389 

clusters, with 11 of the 1400 clusters selected initially dropped due to security reasons. Fieldwork 

took place between August and December 2018.  This was within one year of completion of the 

2017-18 national follow-up measles vaccination campaign targeting children aged 9 to 59 months 

[20], which was conducted during October - December 2017 in the northern states and February - 

March 2018 in the southern states [8].  As discussed later, there could be some misclassification of 

campaign doses as RI for children without documentation of RI vaccination hence we consider our 

estimate of routine MCV1 coverage for children aged 12-23 months “an upper bound estimate”.     

For each vaccine, we used information obtained from both home-based records and 

maternal/caregiver recall. Hence, our analysis captures crude estimates of coverage [21]. At the 
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cluster level, we aggregated the individual level data to produce numbers of children surveyed, 

numbers vaccinated and empirical proportions of children vaccinated.  

The 2019 measles campaign in Nigeria was conducted between September and December 2019 in 

the 20 northern states only. Post-campaign coverage surveys (PCCS) were implemented in each state 

within two weeks of conclusion of the campaigns. However, at the time of analysis, data were not 

available for Niger and Kogi states, leaving only 18 states for the analysis. Information on receipt of 

MCV1 was based on campaign cards or maternal/caregiver recall, and data were collected for all 

eligible children aged 9-59 months. However, our analysis is restricted to children aged 9-35 months 

to exclude those that may have participated in the previous campaign. We followed the 

methodology implemented in a previous analysis and extracted data for six PCCS indicators [8], 

although we report here only MCV coverage before the campaign and coverage with at least one 

dose of MCV by the end of the campaign.   

All the extracted cluster-level vaccination coverage data are displayed in Figure 1, showing where 

lower and higher coverage levels were observed at the cluster level for each indicator.   

 

[Figure 1 about here] 

 

Geospatial covariate data, covariate selection and population data 

Geospatial covariates are essential in geostatistical modelling to explain and predict the outcome 

variable, although the latter rationale is paramount. As in previous work [7, 8, 10], we assembled a 

suite of geospatial socio-economic, environmental, and physical covariates for the analyses. These 

included travel time to the nearest health facility (providing routine immunization services), poverty, 

economic index, nightlight intensity, livestock density, distance to conflicts and land surface 

temperature (see [7, 8, 10]). These covariates were processed as detailed in previous work to 

produce 1x1 km raster data sets and cluster level data using the geographical coordinates from each 

of the surveys.  

Following previous work [7, 8, 10], covariate selection was carried out to determine the best subset 

of covariates for modelling each indicator.  The covariate selection process involved checking the 

relationships between the covariates and (empirical logit transform of) vaccination coverage  and 

applying the log transformation where necessary to improve linearity; fitting of single covariate 

models and ranking the covariates based on their predictive ability (i.e. using predictive R2 values); 

checking for multicollinearity and selecting between highly correlated covariates (correlation > 0.8 or 

variance inflation factor > 4.0) using their ranks; and using stepwise regression (backward 

elimination based on Akaike Information Criterion (AIC)) to choose the best model/combination of 

covariates for modelling the indicator in a non-spatial framework using binomial regression models. 

For the analysis using PCCS data, we additionally created a uniform set of covariates for the 

modelled outcome indicators – see Utazi et al [8]. 

To enable the production of coverage estimates for different administrative areas, as is required in 

geospatial estimation of health and demographic indicators, we obtained population estimates for 

children aged under 5 years from WorldPop (www.worldpop.org) [22]. The data were also used to 

produce estimates of numbers of children under 5 years who had not received DTP1 or MCV1, 

otherwise known as DTP and MCV zero-dose children. 
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Measles case-based surveillance data 

Laboratory-supported measles surveillance has been in place in Nigeria since 2006 [16].  Routine 

measles case-based surveillance data are collected at the health facility level and then transmitted 

to the district (or local government area (LGA)), state and national levels. As recommended by WHO, 

suspected cases of measles are classified as confirmed by one of: a laboratory assay 

(Immunoglobulin M (IgM)) positive for measles, an epidemiologic linkage to a laboratory-confirmed 

case, or clinical signs and symptoms meeting the measles clinical case definition [23].  The data were 

obtained for the years 2018 to 2020 and then summarized at both the district and state levels.  

Relevant variables included in the data for each suspected case were date of birth/age, sex, 

vaccination status/number of doses of MCV received, case address (ward, district and state), date of 

onset of illness, urban/rural, final classification (laboratory confirmed or laboratory-discarded, 

epidemiological linkage, or clinically compatible) and outcome (survived or died). The confirmed 

measles case counts (i.e., excluding discarded cases) are displayed in Figure 4. Other summaries of 

the data are included in supplementary materials. 

 

Geospatial model fitting, validation and prediction 

To model and predict vaccination coverage at 1x1 km resolution, we fitted geostatistical models with 

binomial likelihoods. For � � 1, … , � and a given indicator, where � is the number of survey 

locations, let ��	�
 denote the number of children vaccinated at survey location 	� and ��	�
 the 

number of children sampled at the location. The first level of the model assumes that 

                       ��	�
|��	�
, 
���
 � Binomial���	�
, 
�	�
�,                                                                     (1) 

where 
�	�
 �0 � 
���
 � 1
 is the true vaccination coverage at location 	� . We model 
���
 using 

the logistic regression model as  

                logit�����		 
 ����	
��
 ����	 
 ����	,                                                                       (2) 

where ��	�
 is the vector of covariate data associated with 	�, � is a vector of the corresponding 

regression coefficients, ��	�
 is an independent and identically distributed (iid) Gaussian random 

effect with variance,  ��, used to model non-spatial residual variation, and !�	�
 is a Gaussian spatial 

random effect used to capture residual spatial correlation in the model. That is, 

" � �!�	�
, … , !�	�
 
� � #�0, Σ�
.  Σ� is assumed to follow the Matérn covariance function [24] 

given by Σ��	� ,  	�
 � 	�

����
��

�% & 	� ' 	� &�

�
 (�  �% & 	� ' 	� &
, where &. & denotes the Euclidean 

distance between cluster locations 	� and 	� ,  � ) 0 is the marginal variance of the spatial process, 

% is a scaling parameter related to the range *�* � √��

�

 – the distance at which spatial correlation is 

close to 0.1, and (� is the modified Bessel function of the second kind and order + ) 0. Further, for 

identifiability reasons, we set the smoothing parameter, + � 1, see [25]. 

For the PCCS indicators – MCV1 coverage before the campaign and coverage with at least one dose 

of MCV by the end of the campaign - we adopted the conditional probability modelling framework 

described in [8] to ensure that the modelled estimates were consistent with those of other 
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indicators. We also note that a similar approach proposed in [26] could be used for estimating the 

coverage of the DTP dose series, but we did not consider this necessary here as we were only 

interested in the coverage of the first dose, DTP1. 

 In each case, the model described in equations (1) and (2) was fitted in a Bayesian framework using 

the integrated nested Laplace approximation – stochastic partial differential equation (INLA-SPDE) 

approach (INLA-SPDE) approach [25, 27]. Using the fitted models, we obtained predictions at 1x1 km 

resolution. Further, using the posterior samples of the 1x1 km predictions, we obtained the district 

and state level predictions as population-weighted averages taken over the 1x1 km grid cells falling 

withing each district or state. 

Methods for assessing the out-of-sample predictive performance of the fitted model are detailed 

elsewhere [8-10]. Here, we rather focus on describing the patterns in the modelled estimates. All 

analyses were carried out in R [28] and through using the R-INLA package [29]. 

 

 

Results 

 

DTP1 and MCV1 Coverage maps and zero-dose estimates 

In Figure 2(a), we present the DTP1 and MCV1 coverage estimates (including documented and verbal 

recall evidence of vaccination) at 1x1 km and the district and state levels to examine routine 

vaccination coverage in children aged 12-23 months in 2018. The corresponding uncertainty 

estimates are presented in the supplementary Figure 1. The patterns in the routine coverage of both 

vaccines are very similar, although MCV1 coverage estimates are generally lower than DTP1 

coverage estimates as expected, due to the dropouts that often occur between the two vaccines. 

There are visible spots of higher coverage in more urban areas, especially in the southern regions 

(see Aheto et al [18]), but MCV1 coverage appears more heterogenous in the south compared to 

DTP1 coverage. Supplementary Figure 2 shows that the dropout rates between both vaccines 

(relative to DTP1 coverage) varied substantially across the country. Areas with the highest positive 

dropout rates are spread across the six regions (e.g., Taraba, Plateau, Cross River, Akwa Ibom, Kogi 

and Oyo states); whereas areas with the most negative dropout rates (i.e., MCV1 coverage was 

higher than DTP1) are located mostly in the northwest, the northeast and some coastal areas of the 

south-south region (Bayelsa and Delta states). Interestingly, some of the areas with the highest 

positive dropout rates were also areas where higher DTP1 coverage was estimated (e.g., Akwa Ibom, 

Cross-River and Plateau states). Also, as was shown in previous studies [7, 8, 10], there is an 

apparent north-south divide in the routine coverage of both vaccines, with poorer coverage levels 

more pronounced in the northwest and northeast. At the district level, the lowest coverage areas 

(�20%) are concentrated in Sokoto and Zamfara states for both vaccines. Both states also have the 

lowest coverage rates for both vaccines.   

 

[Figure 2 about here] 
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Patterns of MCV coverage before the 2019 measles campaign (Figure 2(b)) were similar to those for 

the 2018 DHS although in some states, e. g., Sokoto, Taraba, Yobe and Zamfara states, coverage was 

higher in the former perhaps reflecting recall bias or inclusion of doses received during outbreak 

response activities. The spatial distribution of MCV1 coverage by the end of the 2019 campaign 

(coverage with at least one dose of MCV) shows marked improvements in these northern states. 

However, some heterogeneities still exist as evidenced by the occurrence of pockets of low coverage 

areas. Notably, some states with lower RI coverage levels in 2018 (e.g., Sokoto and Zamfara) also 

had among the lowest coverage after the campaign. The patterns in the uncertainties associated 

with these coverage estimates (supplementary Figure 1) mostly reveal lower precision in areas 

where data are sparse. These also show that the precision of the estimates increases substantially 

with decreasing spatial detail. 

 

[Figure 3 about here] 

 

To enable a fuller assessment of disease risk, we present the estimated distributions of numbers of 

zero-dose children at the district level in Figure 3 corresponding to the coverage estimates 

presented earlier (state level zero-dose estimates are shown in supplementary Figure 3). These 

figures show strong similarities between MCV and DTP zero-dose estimates in 2018, with high-

prevalence districts concentrated mostly in the northeastern and northwestern regions, generally 

mimicking the patterns observed in the coverage maps (Figure 2). However, there are also high-

prevalence districts in other areas such as the FCT and the southwestern states of Lagos and Ogun. 

Districts with the highest DTP zero-dose prevalence (, 50,000 unvaccinated children aged under 5 

years or under 5s) were in Zamfara, Kebbi and Gombe states; and for MCV, Zamfara, Kebbi, Gombe, 

FCT, Bauchi, Kaduna and Yobe states. Importantly, for both vaccines, these districts with the highest 

zero-dose prevalence do not include some of the lowest coverage districts identified earlier (e.g., 

some districts in Sokoto state), which had low population density, and vice versa.  

Figures 3(d) and (e) reveal the extent to which the 2019 measles vaccination campaign had been 

successful in reducing MCV zero-dose prevalence that had accumulated across the northern states. 

District-level MCV zero-dose estimates post-campaign are below 20, 338 children as against 76, 617 

children prior to the campaign in 2018, revealing large reductions particularly in high zero-dose 

prevalence districts. However, some areas with relatively high zero-dose prevalence () 16, 000 

under 5s) remained after the campaign and these are in Kano (Ugongo), Bauchi (Bauchi), Kebbi 

(Birnin Kebbi) and FCT (Municipal Area Council). Some districts in Bauchi (e.g., Bauchi, Darazo and 

Ningi) were consistently high-prevalence districts in 2018 and before and after the campaign. There 

were also a few districts where it appeared that the campaign was not effective in reaching zero-

dose children (Figure 3(e)), although these had lower zero-dose prevalence in 2018 (/ 10, 000 zero-

dose children).       

 

Trends in measles incidence and relationships with MCV zero-dose estimates   

In Figure 4, we show the spatial distributions of confirmed measles case counts for all age groups at 

the district and state levels from 2018 to 2020. Our analysis revealed a total of 7,603, 28,440 and 

9,394 confirmed cases of measles in the respective years, most of which occurred in children aged 

under 5 years (see supplementary Figures 4 and 5). The larger number of cases reported in 2019 was 
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due to large measles outbreaks in some districts in Borno state (Maiduguri, Jere and Bama) [30], 

much of which were either clinically diagnosed or epidemiologically-linked (supplementary Figure 4). 

There were also spikes in case numbers in some districts in Katsina (Katsina district) in 2018 and 

2019.   

 

[Figure 4 about here] 

 

The distribution of cases according to the number of vaccine doses received (supplementary Figure 

6) shows that irrespective of method of diagnosis, most of the confirmed cases occurred in MCV 

zero-dose individuals, suggesting that poor vaccination coverage rather than decreased vaccine 

efficacy would have been responsible for these cases. For all three years, the patterns in these maps 

closely resemble the spatial distribution of RI coverage in 2018 and the corresponding zero-dose 

estimates (Figures 2 and 3). Notably, there is a marked, persistent north-south divide in case 

distribution over the years, with a concentration of higher case numbers in districts in the north. The 

same pattern can also be seen in the measles incidence rates shown in supplementary Figure 7, 

although there are some minor differences.  

 

[Figure 5 about here] 

 

At the state level (Figure 5), we estimated correlations of 0.55, 0.60 and 0.57 (Spearman’s 

correlation coefficient, excluding the outlying observations) between the case counts and MCV zero-

dose estimates in 2018 (nationwide) and 2019 (northern states only) – before and after the 

campaign, respectively. These show strong relationships between measles incidence and the zero-

dose estimates obtained through using MCV1 RI coverage and a combination of RI and campaign 

coverage. In 2018, areas with a combination of higher case counts (between 154 and 1,914 

individuals) and higher zero-dose estimates (between 461,091 and 954,963 under 5s) were 

concentrated in the northern states of Borno, Bauchi, Jigawa, Kano, Katsina, Kaduna, Niger and 

Kebbi, and the southwestern state of Oyo. In 2019 before the campaign, these areas were in Kano, 

Kaduna, Katsina, Borno and Sokoto states (zero dose estimate range: 461,557 - 1,146,982 under 5s; 

case count range: 356 - 15,432 individuals); while after the campaign, these were in Kano, Katsina, 

Sokoto and Kebbi states (zero-dose estimate range: 116,633 - 230,449 under 5s). Thus, while the 

campaign was successful in reducing the numbers of zero-dose children in the northern states as 

demonstrated earlier, considerable numbers of under 5s remained unvaccinated in some areas. We 

note that the reported case count for Sokoto state was lower in 2018 even though it had a higher 

zero-dose estimate for the same year.  

At the district level (supplementary Figure 8), the estimated correlations were poorer for both years 

(0.36 in 2018, and 0.29 (before campaign) and 0.20 (after campaign) in 2019), with most of the cases 

occurring in districts where the zero-dose estimates fall between 10,000 and 50,000 under 5s for RI 

coverage and ≤ 10,000 under 5s for campaign coverage.  

 

[Figure 6 about here] 
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In Figure 6, we compare the spatial distribution of measles case counts in 2020 with MCV zero-dose 

estimates in 2018 due to lack of survey coverage estimates in 2020 at the time of analysis. First, we 

observe that despite the measles vaccination campaign in the northern states in 2019, the spatial 

distribution of the case counts in 2020 reveals higher incidence in the north (Figure 4) and this 

correlates strongly with the distribution of cases in 2018 (correlation = 0.61 at the state level and 

0.39 at the district level), suggesting a replay of the 2018 scenario. In particular, all the states 

designated as high risk by virtue of higher zero-dose estimates with or without higher confirmed 

case counts, by the end of the campaign in 2019 (except Nasarawa state), had higher numbers (≥ 

200) of confirmed cases in 2020. Further, we estimated correlations of 0.82 and 0.42 between the 

case counts in 2020 and zero-dose estimates in 2018 at the state and district levels respectively, 

which points to the failure of the routine immunization system in these areas to maintain the gains 

achieved via campaigns. We also observe that almost all the northeastern and northwestern states 

(except Gombe, Adamawa and Taraba) and Niger state had a combination of higher case counts 

(between 196 and 1,591 confirmed cases) and higher zero dose estimates. At the district level, there 

are visible clusters of high-risk areas (i.e., areas with a combination of higher case counts and higher 

zero-dose estimates) within the high-risk states.  

 

 

Discussion 

Immunization Agenda 2030 [12] has a target of reducing the number of zero-dose children 

substantially by reaching high and equitable coverage levels by 2030. To interrupt measles 

transmission and prevent outbreaks, this means reaching at least 95% coverage with both 

recommended doses of MCV. Our analyses revealed that Nigeria is far from reaching these targets 

due to suboptimal RI performance and the failure of frequent campaigns to achieve or maintain such 

high coverage levels, resulting in the persistence of highly heterogeneous coverage levels across the 

country. The lower coverage in northern states is especially concerning for measles transmission [31] 

because these states also have higher birth rates [20, 32], which facilitates transmission as well as 

increasing the challenge of sustaining RI coverage for a generally weaker health system and 

infrastructure [33]. 

Our work demonstrates the utility of geospatial analysis for uncovering areas with suboptimal 

routine immunization systems and where campaigns have been less effective in terms of reaching 

previously unvaccinated children, both of which are crucial for designing effective strategies to reach 

missed communities and high-risk areas. We found that districts where RI performance had been 

significantly lower and which had among the highest zero-dose prevalence were mostly located in 

the northeastern and northwestern parts of the country, although some high RI zero-dose 

prevalence districts were found in other parts of the country which had high population densities, 

e.g., Lagos and Ogun states. We also estimated that some of these districts (e.g., Municipal Area 

Council in the FCT and Bauchi in Bauchi state) had some of the highest residual MCV zero-dose 

prevalence after the 2019 measles vaccination campaign, although the campaign was shown to 

reduce pre-campaign MCV zero-dose prevalence substantially. The persistence of these clusters of 

vulnerabilities pose significant risk to disease control [8]. Hence, the estimation of residual zero-dose 

prevalence following vaccination campaigns should be analysed and reported by PCCS and can 

contribute to the design of follow-up activities.  Unfortunately, this has been done infrequently to 
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date and in countries with higher RI coverage than Nigeria, it can be difficult and costly to undertake 

PCCS with the goal of estimating coverage among previously unreached children [34].  

Our analyses further revealed that despite SIAs reducing predicted measles incidence in Nigeria [35], 

they have not interrupted transmission and incidence continues to be related to routine 

immunization coverage. For both non-campaign years that we analysed – 2018 and 2020, we found 

strong correlations between confirmed measles case counts and MCV zero-dose estimates. In 2019, 

we also observed strong correspondence between the case counts and the zero-dose estimates, 

both before and after the 2019 measles campaign in the northern states. Although the SIA 

substantially improved coverage levels relative to RI, only Plateau state and very few districts 

achieved ≥ 95% coverage, and 147 districts (out of 373) had below 90% coverage.  Furthermore, the 

PCCS (like DHS) omitted the most insecure areas from the sampling frame and a small number of 

selected clusters in the survey could not be visited due to conflict. Areas omitted are likely to have 

lower RI and SIA coverage [36, 37].  Thus, it is not surprising that the campaign had not been fully 

effective in controlling the spread of measles, especially in the north. Gains from SIAs are shorter-

lived in northern than southern states, due to the higher birth rate and lower RI coverage in the 

north. Recognising this, Nigeria scheduled SIAs in the north 2 years after the previous SIA while an 

SIA was planned in 2020 in the south but postponed due to the COVID-19 pandemic. While RI 

coverage is so low in the north, however, an annual SIA in northeast and northwestern states could 

be a more effective strategy, though more costly [35]. Alternatively, where there is evidence that 

frequent SIAs reach more previously vaccinated children, then the implementation of targeted SIAs 

or RI interventions such as multi-antigen periodic intensification of routine immunization in districts 

with higher zero-dose prevalence could be an even more effective option for disease control. Our 

analyses also revealed strong similarities between the spatial distributions of MCV and DTP zero-

dose estimates in 2018, further pointing to weaker RI systems in the northern parts of the country.  

We found that the dropout rates between the routine coverage of DTP1 and MCV1 (relative to DTP1 

coverage) in the 2018 NDHS varied substantially across the country. Some areas with the highest 

(positive) dropout rates such as Akwa Ibom, Cross-River and Plateau states also had higher DTP1 

coverage, suggesting that factors other than access to vaccination services may have been 

responsible for the low uptake of MCV1 in these areas – see Aheto et al [18]. In the northeast and 

northwest, where DTP1 coverage was lowest, some areas had higher MCV1 coverage which may 

reflect inadvertent classification of SIA or outbreak response campaign doses as RI doses for MCV. 

Vaccination records were only seen for 40% of children in the 2018 NDHS (and only 33.9% and 28.5% 

in northeast and northwest regions, respectively), hence reliance was placed on the mother’s ability 

to correctly state whether the child had received MCV and to distinguish between routine and 

campaign doses. Importantly, others have found that opportunities to administer MCV1 when 

eligible children attend health facilities for other vaccines are more frequently missed in northern 

states than southern, although missed opportunities for simultaneous vaccination have decreased 

over time [38]. These findings point to the need for regional or subnational approaches when 

investigating/analysing the drivers of vaccination coverage in the country. Such analyses are also 

likely to be beneficial for designing effective strategies to reach zero-dose children.  

Our work revealed stronger correlations between MCV zero-dose estimates and measles case counts 

at the state level compared to the district level. This may be due to data quality issues such as 

diagnosis occurring outside a patient’s district of residence, non-reporting of cases, likely variation in 

the accuracy of clinical diagnosis of measles by time and place which may have affected the 

distribution of the reported case counts at the district level. Also, the uncertainties associated with 

coverage estimates underlying the zero-dose estimates are generally higher at the district level than 
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the state level. Hence, although the importance of spatially detailed estimates of health and 

demographic indicators for health policy and decision-making and resource allocation is well 

recognized, there is a need for greater investments to boost the quality of data available at smaller 

geographical units. 

Our analyses are subject to some limitations. Our vaccination coverage estimates are based on 

information obtained from vaccination cards as well as via caregiver recall and are hence subject to 

information/recall bias [39]. The sampling frames used for the surveys analysed may have missed 

important hard-to-reach/disadvantaged populations such as those living in conflict areas or urban 

slums. This may have led to an underestimation of the zero-dose prevalence in some areas. The 

estimation of vaccination coverage and associated zero-dose prevalence for these at-risk 

populations can be much improved in future analysis through using more accurate data from 

targeted surveys. Geospatial data from the 2018 NDHS and 2019 PCCS analyzed in our work were 

based on displaced geographical coordinates at the cluster level. Although these displacements do 

not generally result in the coordinates being positioned outside their districts of origin, it is likely 

that these may have had some effect on the coverage estimates and resulting zero-dose estimates 

particularly at more granular levels where clear distinctions between types of residence (formal 

urban, urban slums and rural settlements) may be required [40]. The accuracy of the zero-dose 

estimates presented in our work depends largely on the accuracies of the underlying population and 

coverage estimates. We did not account for the uncertainties in the population (and coverage) 

estimates [41, 42] when producing the zero-dose estimates. In practice, this could be best done 

using a joint modelling approach which is beyond the scope of our work. We did not obtain an 

official endorsement from the Nigerian government to use WorldPop data for producing the zero-

dose estimates, although these data have been used widely in similar contexts [22, 43]. Also, by 

using the distribution of zero-dose children to assess the performance of vaccine delivery strategies, 

our study precludes scenarios where certain demand-side barriers to immunization cannot be 

overcome through effective and efficient immunization service delivery.  Our study did not assess 

the timeliness of vaccination vis-à-vis the distribution of zero-dose children, considering that these 

children are right-censored in our analysis and may be vaccinated at a later time. Nevertheless, the 

best framework to evaluate the effect of timeliness of vaccination on zero-dose prevalence is a 

longitudinal study. 

Furthermore, the measles case-based surveillance data analysed here are an underestimate of 

measles incidence, since most cases may not have been reported [16]. Only a small proportion 

(16.4% overall; and 22.8%, 11.3% and 27% for 2018, 2019 and 2020, respectively) of the confirmed 

cases included in our study were confirmed by a laboratory, signalling additional data quality issues. 

Stockouts of measles laboratory test kits, loss of accreditation in 2018 of the measles regional 

reference laboratory in Gombe, staffing shortages and sample transportation challenges have 

contributed to poor measles serum sample testing rates.  Overall, VPD surveillance was additionally 

impacted during 2020 by the COVID-19 pandemic, particularly due to significant shifts of resources 

and priorities from VPD surveillance to COVID-19 response, and lockdowns and bans on interstate 

movement reducing access to health facilities and uptake of health services, and hindering sample 

transport. Also, the preponderance of missing age information in the data hindered our ability to 

undertake any meaningful age-dependent analysis of the confirmed cases. Hence, we undertook 

comparisons of all-age case counts with the zero-dose estimates. We did not investigate the role of 

migration (e.g., rural-urban migration) and conflict on measles incidence. However, we note that the 

spike in case counts observed in Borno state in 2019 (Figure 5) is likely due to the disruption to 

vaccination services caused by insurgency. Also, higher confirmed case counts recorded in urban 

districts (e.g., Maiduguri and Katsina districts – see supplementary Figure 8) may have been due to 
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rural-urban migration, including those fleeing to the urban areas due to high spate of insurgency 

within the mostly remote rural areas, as well as other contributory factors such as better 

surveillance and slum areas [44]. Lastly, the stark differences in estimated MCV RI coverage from the 

2018 DHS and the pre-campaign data recorded in the 2019 PCCS calls for improvements in data 

quality, particularly improved retention of up-to-date HBRs from which more accurate data can be 

obtained.  

Nigeria has committed to a target of 30% reduction in the number of zero-dose children by 2025. 

The estimated number of routine zero-dose children could be an indication of health system 

performance and a proxy measure for broader health outcomes of communities that have clusters 

of zero-dose children. Further analyses categorizing the estimated distribution of zero-dose children 

as unreached (programme delivery failure), far-to-reach (distance, easily solvable through additional 

mobility support), hard-to-reach (insecurity, difficult terrain), and never reached (unmapped, 

unknown), could help with the selection and resourcing of appropriate programmatic interventions. 

Nigeria is currently developing a zero-dose and unreached strategy for routine immunization which 

is building on the above categorization and could become a part of its broader health and 

immunization strategy. During the recent SIAs, a zero-dose reduction operation plan (zero-drop 

initiative) was launched by the involvement of supplementary immunization officers and supporting 

them to reach more unreached settlements and zero-dose children. The challenges to VPD 

surveillance due to COVID-19 pandemic described previously also impacted RI coverage in Nigeria 

during 2020-22. COVID-19 vaccine hesitancy affected the uptake of routine vaccines, due to fear that 

a COVID-19 vaccine would be administered instead of or in addition to other antigens being offered 

during RI or SIAs. The nationwide measles vaccination campaign that had been planned for early 

2021 was postponed due to the pandemic and global supply shortage. Only 13 northern states 

implemented the campaign during the fourth quarter of 2021, and implementation in the remaining 

states was postponed to June 2022 in three states and September-October 2022 in 21 states. 

Combined with the reduction in RI coverage, the delayed campaigns resulted in a build-up of a large 

cohort of susceptible children and increased measles outbreaks and related deaths [45]. Also, 

economic impacts arising from the pandemic and other factors have led to an increase in insecurity 

and insurgency in Nigeria, including areas not previously affected, further impacting vaccination 

coverage. 

In future work, we will explore the utility of the zero-dose estimates for optimizing the placement 

and improvement of vaccination posts both for outreach RI activities and SIAs, as well as integration 

with health facility catchments to facilitate the design and implementation of localized interventions 

to improve vaccination services. We will also explore alternative definitions of “zero dose” such as 

non-receipt of any of the four basic vaccines (bacille Calmette-Guérin vaccine (BCG), DTP, oral polio 

vaccine (OPV) and MCV). Although our work has revealed interesting similarities between MCV and 

DTP zero-dose, it will be informative to understand how these compare with the spatial distribution 

of children who had not received any of the basic vaccines. We will conduct multi-level analyses 

similar to Aheto et al [18]  and Utazi et al [37] , but at the regional level, to better understand 

regional differences in the major drivers of poor vaccine uptake. Beyond the descriptive analysis 

using measles case-based surveillance data presented here, we will explore different options to 

model and refine the data using geospatial approaches. These data can also be incorporated into 

geostatistical models of vaccination coverage in a fusion modelling framework to improve coverage 

estimation. We will also examine how the spatial distribution and frequency of measles outbreaks 

(and those of other diseases such as yellow fever, cholera and circulating vaccine-derived polio 

virus), as against the case counts used in this work, relate to the distribution of zero-dose children, 

and also possibly develop a framework for predicting outbreaks. This will be useful for 

understanding where health systems require strengthening. We will consider developing an online 
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data visualization tool to facilitate access to and utility of the outputs of the current work and other 

future work by policy makers and other researchers. Finally, we will seek an expansion of the work 

presented here and other follow-on analyses to other countries. 

 

 

 

 

Acknowledgements 

This work was supported by funding from the Bill & Melinda Gates Foundation (Investment 

ID INV-003287). 

 

Competing interests 

The authors declare no competing interests. 

 

References 

1. Sbarra AN, Rolfe S, Nguyen JQ, Earl L, Galles NC, Marks A, et al. Mapping routine measles 

vaccination in low- and middle-income countries. Nature. 2021;589(7842):415-9. 

2. WHO/UNICEF Estimates of National Immunization Coverage (WUENIC); 2021. Available 

from: https://www.who.int/teams/immunization-vaccines-and-biologicals/immunization-

analysis-and-insights/global-monitoring/immunization-coverage/who-unicef-estimates-of-

national-immunization-coverage. [Accessed on 21 July 2021]. 

3. Shet A, Carr K, Danovaro-Holliday MC, Sodha SV, Prosperi C, Wunderlich J, et al. Impact of 

the SARS-CoV-2 pandemic on routine immunisation services: evidence of disruption and 

recovery from 170 countries and territories. The Lancet Global Health. 2022;10(2):e186-e94. 

4. Abbas K, Procter SR, van Zandvoort K, Clark A, Funk S, Mengistu T, et al. Routine childhood 

immunisation during the COVID-19 pandemic in Africa: a benefit-risk analysis of health 

benefits versus excess risk of SARS-CoV-2 infection. The Lancet Global Health. 

2020;8(10):e1264-e72. 

5. WHO and UNICEF. Progress and challenges with sustaining and advancing immunization 

coverage during the covid-19 pandemic: 2020 WHO/UNICEF estimates of national 

immunization coverage (WUENIC 2020); 2021. Available from: 

https://cdn.who.int/media/docs/default-

source/immunization/progress_and_challenges_final_20210715.pdf?sfvrsn=787f03ad_5. 

[Accessed. 

6. Ho LL, Gurung S, Mirza I, Nicolas HD, Steulet C, Burman AL, et al. Impact of the SARS-CoV-2 

pandemic on vaccine-preventable disease campaigns. International Journal of Infectious 

Diseases. 2022;119:201-9. 

7. Utazi CE, Thorley J, Alegana VA, Ferrari MJ, Takahashi S, Metcalf CJE, et al. Mapping 

vaccination coverage to explore the effects of delivery mechanisms and inform vaccination 

strategies. Nature Communications. 2019;10(1):1633. 

8. Utazi CE, Wagai J, Pannell O, Cutts FT, Rhoda DA, Ferrari MJ, et al. Geospatial variation in 

measles vaccine coverage through routine and campaign strategies in Nigeria: Analysis of 

recent household surveys. Vaccine. 2020;38(14):3062-71. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.22280894doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.10.22280894
http://creativecommons.org/licenses/by-nc-nd/4.0/


9. Utazi CE, Nilsen K, Pannell O, Dotse-Gborgbortsi W, Tatem AJ. District-level estimation of 

vaccination coverage: Discrete vs continuous spatial models. Stat Med. 2021;40(9):2197-

211. 

10. Utazi CE, Thorley J, Alegana VA, Ferrari MJ, Takahashi S, Metcalf CJE, et al. High resolution 

age-structured mapping of childhood vaccination coverage in low and middle income 

countries. Vaccine. 2018;36(12):1583-91. 

11. Mosser JF, Gagne-Maynard W, Rao PC, Osgood-Zimmerman A, Fullman N, Graetz N, et al. 

Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000-2016: a spatial and 

temporal modelling study. Lancet. 2019;393(10183):1843-55. 

12. Immunization Agenda 2030: A global strategy to leave no one behind; 2020. Available from: 

https://www.who.int/immunization/immunization_agenda_2030/en/. [Accessed on 

25/06/2020]. 

13. Gavi The Vaccine Alliance. Gavi Strategy 5.0, 2021-2025; 2020. Available from: 

https://www.gavi.org/our-alliance/strategy/phase-5-2021-2025. [Accessed on 25 June 

2021]. 

14. Cutts FT, Dansereau E, Ferrari MJ, Hanson M, McCarthy KA, Metcalf CJE, et al. Using models 

to shape measles control and elimination strategies in low- and middle-income countries: A 

review of recent applications. Vaccine. 2020;38(5):979-92. 

15. Dong TQ, Wakefield J. Modeling and presentation of vaccination coverage estimates using 

data from household surveys. Vaccine. 2021;39(18):2584-94. 

16. Jean Baptiste AE, Masresha B, Wagai J, Luce R, Oteri J, Dieng B, et al. Trends in measles 

incidence and measles vaccination coverage in Nigeria, 2008–2018. Vaccine. 2021;39:C89-

C95. 

17. Akwataghibe NN, Ogunsola EA, Broerse JEW, Popoola OA, Agbo AI, Dieleman MA. Exploring 

Factors Influencing Immunization Utilization in Nigeria—A Mixed Methods Study. Frontiers 

in Public Health. 2019;7. 

18. Aheto JMK, Pannell O, Dotse-Gborgbortsi W, Trimner MK, Tatem AJ, Rhoda DA, et al. 

Multilevel analysis of predictors of multiple indicators of childhood vaccination in Nigeria. 

PLoS One. 2022;In press. 

19. Oku A, Oyo-Ita A, Glenton C, Fretheim A, Eteng G, Ames H, et al. Factors affecting the 

implementation of childhood vaccination communication strategies in Nigeria: a qualitative 

study. BMC Public Health. 2017;17(1):200. 

20. National Population Commission - NPC, ICF. Nigeria Demographic and Health Survey 2018 - 

Final Report. Abuja, Nigeria: NPC and ICF; 2019. 

21. World Health O. World Health Organization vaccination coverage cluster surveys: reference 

manual. Geneva: World Health Organization; 2018 2018.  Contract No.: WHO/IVB/18.09. 

22. Tatem AJ. WorldPop, open data for spatial demography. Scientific Data. 2017;4(1):170004. 

23. WHO Regional Office for Africa. African Regional Guideline for Measles and Rubella 

Surveillance; 2015. Available from: http://www.afro.who.int/sites/default/files/2017-

06/who-african-regional-measles-and-rubella-surveillance-guidelines_updated-draft-

version-april-2015_1.pdf. [Accessed. 

24. Matérn B. Spatial Variation. 2nd ed. Berlin, Germany: Springer-Verlag; 1960. 

25. Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov 

random fields: the stochastic partial differential equation approach. J Roy Stat Soc Series B 

(Stat Methodol). 2011;73(4):423-98. 

26. Utazi CE, Aheto JMK, Chan HMT, Tatem AJ, Sahu SK. Conditional probability and ratio-based 

approaches for mapping the coverage of multi-dose vaccines. Statistics in Medicine. 

2022;https://doi.org/10.1002/sim.9586. 

27. H. Rue SM, N. Chopin. Approximate Bayesian inference for latent Gaussian models by using 

integrated nested Laplace approximations. J Roy Stat Soc: Series B (Stat Methodol). 

2009;71(2):319-92. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.22280894doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.10.22280894
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. R Core Team. A Language and Environment for Statistical Computing. Vienna, Austria2021. 

29. Lindgren F, Rue H, Lindström J. Bayesian Spatial Modelling with R-INLA. Journal of Statistical 

Software. 2015;63(19):25. 

30. Jean Baptiste AE, Wagai J, Luce R, Masresha B, Klinkenberg D, Veldhuijzen I, et al. Measles 

outbreak in complex emergency: estimating vaccine effectiveness and evaluation of the 

vaccination campaign in Borno State, Nigeria, 2019. BMC Public Health. 2021;21(1):437. 

31. Prada JM, Metcalf CJE, Takahashi S, Lessler J, Tatem AJ, Ferrari M. Demographics, 

epidemiology and the impact of vaccination campaigns in a measles-free world – Can 

elimination be maintained? Vaccine. 2017;35(11):1488-93. 

32. Pezzulo C, Nilsen K, Carioli A, Tejedor-Garavito N, Hanspal SE, Hilber T, et al. Geographical 

distribution of fertility rates in 70 low-income, lower-middle-income, and upper-middle-

income countries, 2010&#x2013;16: a subnational analysis of cross-sectional surveys. The 

Lancet Global Health. 2021;9(6):e802-e12. 

33. Abubakar I, Dalglish SL, Angell B, Sanuade O, Abimbola S, Adamu AL, et al. The Lancet Nigeria 

Commission: investing in health and the future of the nation. The Lancet. 

2022;399(10330):1155-200. 

34. Cutts FT, Danovaro-Holliday MC, Rhoda DA. Challenges in measuring supplemental 

immunization activity coverage among measles zero-dose children. Vaccine. 

2021;39(9):1359-63. 

35. Zimmermann M, Frey K, Hagedorn B, Oteri AJ, Yahya A, Hamisu M, et al. Optimization of 

frequency and targeting of measles supplemental immunization activities in Nigeria: A cost-

effectiveness analysis. Vaccine. 2019;37(41):6039-47. 

36. Sato R. Effect of armed conflict on vaccination: evidence from the Boko haram insurgency in 

northeastern Nigeria. Conflict and Health. 2019;13(1):49. 

37. Utazi CE, Pannell O, Aheto JMK, Wigley A, Tejedor-Garavito N, Wunderlich J, et al. Assessing 

the characteristics of un- and under-vaccinated children in low- and middle-income 

countries: A multi-level cross-sectional study. PLOS Global Public Health. 

2022;2(4):e0000244. 

38. Rhoda DA, Prier ML, Clary CB, Trimner MK, Velandia-Gonzalez M, Danovaro-Holliday MC, et 

al. Using Household Surveys to Assess Missed Opportunities for Simultaneous Vaccination: 

Longitudinal Examples from Colombia and Nigeria. Vaccines. 2021;9(7):795. 

39. Cutts FT, Izurieta HS, Rhoda DA. Measuring Coverage in MNCH: Design, Implementation, and 

Interpretation Challenges Associated with Tracking Vaccination Coverage Using Household 

Surveys. PLOS Medicine. 2013;10(5):e1001404. 

40. Gething P, Tatem A, Bird t, Burgert-Brucker CR. Creating spatial interpolation surfaces with 

DHS data. Rockville, Maryland, USA: ICF International; 2015. 

41. Leasure DR, Jochem WC, Weber EM, Seaman V, Tatem AJ. National population mapping 

from sparse survey data: A hierarchical Bayesian modeling framework to account for 

uncertainty. Proc Natl Acad Sci U S A. 2020;117(39):24173-9. 

42. WorldPop and National Population Commission of Nigeria. Bottom-up gridded population 

estimates for Nigeria, version 2.0. In: WorldPop UoS, editor. 2021. 

43. Tatem AJ. Small area population denominators for improved disease surveillance and 

response. Epidemics. 2022;40:100597. 

44. Ori PU, Adebowale A, Umeokonkwo CD, Osigwe U, Balogun MS. Descriptive epidemiology of 

measles cases in Bauchi State, 2013–2018. BMC Public Health. 2021;21(1):1311. 

45. Nigeria Center for Disease Control. Measles situation reports; 2020-22. Available from: 

www.ncdc.gov.ng [Accessed on 01 July 2022]. 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.22280894doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.10.22280894
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Figures 

 

 

Figure 1: Cluster-level maps of MCV1 and DTP1 coverage (a and b, from DHS), and MCV1 coverage 

before the campaign and coverage with at least one dose of MCV by the end of the campaign (c and 

d, from 2019 PCCS) 
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Figure 2: (a) Modelled estimates of crude routine DTP1 and MCV1 coverage for 2018, children aged 

12-23 months, 2018 NDHS. (b) MCV coverage before the 2019 campaign and coverage with at least 

one dose of MCV by the end of the 2019 campaign, children aged 9-35 months, produced using the 

2019 PCCS for northern states. Corresponding uncertainty estimates are shown in supplementary 

Figure 1. 
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Figure 3: District-level estimates of numbers of zero-dose children among under-5s for (a) DTP and 

(b) MCV in 2018 (produced using the 2018 NDHS), and MCV in 2019 (c) before and (d) at the end of 

the 2019 measles campaign (produced using the 2019 PCCS). The insets in panels (c) and (d) show 

the distributions of zero-dose prevalence at the ward level. Panel (e) shows percentage change in 

MCV zero-dose prevalence between 2018 and after the 2019 measles campaign in the districts in the 

northern region.   

 

Figure 4: Spatial distribution of confirmed cases of measles in Nigeria reported between 2018 and 

2020 at the district (top row) and state (bottom row) levels (all ages). 
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Figure 5: Top row: Joint spatial distribution of confirmed measles case counts (all ages, in blue) and 

MCV zero-dose estimates (in red) at the state level in 2018 and 2019. Bottom row: Plots showing the 

relationships between confirmed measles case counts (all ages) and MCV zero-dose estimates in 

2018 and 2019 at the state level. The black lines are simple least square fits to the data. 
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Figure 6: Relationships between confirmed measles cases in 2020 and MCV zero-dose estimates in 

2018 at the state (left panels) and district (right panels) levels. In the bottom panels, the red lines 

and grey coloured bands are natural splines fits and corresponding uncertainty intervals while the 

black lines are simple least square fits to the data.  
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