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Abstract
Abundant volumes of clinical laboratory test results available within Electronic health records
(EHRs) are essential for differential diagnosis, treatment monitoring, and outcome evaluation.
LOINC2HPO is a recently developed deep phenotyping approach to transform laboratory test
results into the Human Phenotype Ontology (HPO) terms. Here, we deployed the approach on a
large EHR dataset from the Sema4 Data Warehouse to build patient phenotypic journeys at
scale. Among 1.07 billion laboratory test results, we successfully transformed 774 million
(72.5%) into HPO-coded phenotypes and built a patient phenotypic journey for over 2.2 million
patients. First, a global analysis of patient phenotypic journeys revealed a longitudinal increase
in patients with genitourinary system abnormality. The analysis also revealed abnormal
phenotypes with strong racial patterns. Second, using severe asthma as an example case, we
identified abnormal phenotypes in the past three years that were correlated with asthma
progression to severe state. Lastly, we demonstrated that converting laboratory test results into
HPO terms resulted in limited information loss. Our study demonstrated that the phenotypic
journey framework opens the way to characterize phenotypic trajectories in population level
and screen biomarkers for translational research.
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Introduction
Electronic health records (EHRs) have been widely adopted across the world in the past
decades. EHRs have been  used to build  individual patient journeys, which visualize a patient’s
progression across the care continuum for a specific disease or condition 1. The patient journeys
contain narrative timelines of many data elements such as office visits, medical procedures,
laboratory tests, diagnoses, and treatments 2. Comprehensive patient journeys provide the
foundation to identify unmet medical needs for healthcare providers to improve care delivery.
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They also reveal the opportunities for the pharmaceutical industry to develop new medical
interventions, which may ultimately improve the patient outcome 1. The granular “phenotypes”,
which we define in this report as those that describe patient symptoms that deviate from the
normal states, are critical components of a patient journey and provide the foundation for
numerous topics in clinical-genomic research 3–5. There have been previous efforts in extracting
patient phenotypes from clinical notes 6,7, or mapping patient phenotypes from diagnosis codes
8. However, it is still challenging to systematically extract phenotypes, especially at a large scale
of population, from EHRs.  Developing automated approaches can fasten the extraction of
phenotypes from EHRs and support the building of patient journeys for translational research.

Laboratory tests are increasingly identified with Laboratory Observation Identifier Names and
Codes (LOINC). For laboratory tests in legacy EHR datasets, retrospectively mapping them
from institutional-specific codeset into LOINC can significantly improve interoperability 9. Despite
this, LOINC codes still have their own limitations when utilized for translational research 10. In
particular, there are multiple LOINC codes for similar laboratory tests. For example, for urine
nitrite measurements, some tests use automated equipment, whereas others use a test strip;
some report test values in mg/dL, while others report a binary value (as positive or negative). An
abnormal finding in any of the above laboratory tests would indicate nitrituria, but it remains
challenging to integrate them with automated inferencing11. Therefore, in the era of big data and
medicine, it remains extremely challenging to interpret and integrate large scale laboratory tests
systematically at the population level, in particular for quantitative tests.

Recently, a computational approach, LOINC2HPO, was developed to semantically integrate
clinical laboratory tests by transforming LOINC-coded laboratory test results into the Human
Phenotype Ontology (HPO) terms12. The HPO is a comprehensive vocabulary that
systematically describes and organizes medically relevant abnormal phenotypes. With more
than 16,000 terms, the HPO has become the standard ontology for genomic diagnosis of rare
diseases and increasingly used in translational research with EHRs 11,13. LOINC2HPO includes
a mapping library that annotated the outcome of ~3000 commonly used LOINC-coded
laboratory tests into their corresponding HPO terms. Additionally, LOINC2HPO includes an open
source software to compare the test value with the normal reference range, and then lookup the
mapping library to select the correct HPO term for the observed outcome (i.e. lower than
normal, higher than normal, normal etc). In a pilot study, LOINC2HPO was used to generate a
list of detailed patient phenotypes from laboratory tests, and identified biomarkers for acute
asthma and frequent prednisone usage with a 15,681 patient EHR dataset 12.

In the current study, we report building a large collection of patient phenotype journeys from
clinical laboratory tests after LOINC2HPO transformation in a large EHR dataset from the
Sema4 Data Warehouse (SDW, Figure 1).  We mapped over 1 billion laboratory test records
from the local test codes to LOINC, and then used the LOINC2HPO approach to transform each
laboratory record into the HPO-coded phenotypes. Based on the time course of laboratory tests
(LOINC codes) and normal or abnormal test results (HPO terms) over time for each patient, we
built longitudinal patient phenotypic journeys for over 2.2 million patients. A global analysis of
the patients’ longitudinal journeys revealed changes of tested and observed phenotypes over
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time and differences among races. Combining with diagnosis records in EHR, we identified
abnormal phenotypes, i.e. biomarkers, that were correlated with a  progression into severe
asthma. Even though transforming continuous values to HPO terms caused information loss in
some predictive tasks, we have proved the robustness and interpretability of the patient
phenotype journeys resulted from LONIC2HPO. The present study demonstrates that the
phenotypic journey framework can be readily implemented and deployed across multiple health
systems, which allows systematic biomarker screening and population phenotype analysis for
translational research.

Figure 1. Study design. A. Data analysis steps. We started with 2.2 million patients in Sema4’s EHR
dataset. We then transformed laboratory test records for the 2.2 million patients into HPO terms. Using
the resulting HPO-coded phenotypes, we constructed a large repertoire of patient phenotypic journeys.
We then conducted three translational research analyses to demonstrate the utility of patient phenotypic
journeys, including population-level phenotype analysis for longitudinal trends and racial patterns,
biomarker screen to identify phenotypes correlated with a future diagnosis of severe asthma and
assessment of information loss caused by LOINC2HPO in predictive tasks.  B. A two-step process to
transform laboratory test results into HPO-coded phenotypes. Step 1, mapping local laboratory test code
into LOINC; Step 2, interpret the report laboratory test value and identify the phenotype term for the
corresponding LOINC test and actual outcome..

Methods

Sema4 Data Warehouse (SDW)
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Sema4 is a patient-centered healthcare intelligence company. Sema4 ingested healthcare data
from multiple collaborators and maintains a database of EHRs for multi-million patients. The
cohort used for this study were from a major health system in the New York area, covering
de-identified data from Year 2003 to 2020. We retrospectively enrolled 2.2 million patients
whose laboratory test data were recorded longitudinally  into this study. This study is exempted
from review by the Institutional Review Board (IRB) because the data is de-identified.

Transforming lab tests in SDW into HPO-coded phenotypes

Laboratory tests were identified with a local codeset in the SDW dataset. We developed a
two-step process to transform them into HPO terms (Figure 1B). In the first step, we manually
curated a mapping file from the local test codes (n = 11937)  into LOINC codes. The mapping
process relied on the name, description and unit of the laboratory tests, and matched each to
the closest LOINC code. Two curators with biomedical training conducted the process
independently, and disagreements were resolved by discussion. With the mapping file, we
mapped laboratory test results from the local test code to LOINC. In the second step, we
adopted the previously reported  LOINC2HPO approach12. Briefly, we compared the observed
value with the reference range that came with each lab record and interpreted the value as L
(lower than normal), H (higher than normal) or N (normal) for Qn (quantitative) laboratory tests,
or POS (positive) and NEG (negative) for Ord (Ordinal) laboratory tests. We then utilized the
loinc2hpoAnnotation mapping file12 to identify the correct HPO term for the corresponding lab
code (LOINC) + outcome (L/H/N/POS/NEG).

We additionally conducted ontology-guided inference to add parent terms for each abnormal
phenotype transformed from a laboratory test result. For example, for Monocytopenia
[HP:0012312] that was transformed from the original laboratory test result (LOINC 26484-6
Monocytes in Blood, 0.1x103 cells/ul, normal range [0.2-1.0]x103 cells/ul), we automatically
inferred that the same lab result was also transformed to all the ancestor terms of
Monocytopenia [HP:0012312] according to the hierarchy of the HPO, including Abnormal
monocyte count [HP:0012310], Abnormal leukocyte count [HP:0011893], Abnormal leukocyte
morphology [HP:0001881], Abnormal blood and blood-forming tissues [HP:0001871] and finally
Phenotypic abnormality [HP:0000118].

Building patient journeys from laboratory test-derived phenotypes

We built patient phenotypic journeys for 2.2 million patients using laboratory test-derived
phenotypes after the LOINC2HPO transformation and HPO-guided ontology inference. We
organized patient phenotype journeys along calendar years (Figure 3). Patient phenotypes
include abnormal ones that were derived from laboratory tests with out-of-range values, and
normal ones that were derived from those with within-range values. For every abnormal and
normal phenotype, we counted how many times it was confirmed by laboratory test results in
each calendar year. Because a patient could receive multiple laboratory tests for the same
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medical problem, it is common to see instances when a patient had a phenotype listed as both
“normal” and “abnormal”, indicating the laboratory test results yielded different outcomes.

Longitudinal changes of observed phenotypes and tested phenotypes

At the patient level, a phenotype is considered to be “observed” if a laboratory test result can
directly confirm it. In each calendar year and for each phenotype, we counted the number of
patients with at least one laboratory test result that indicated the subject had such an
abnormality. Since the database size dramatically increased over time, we normalized the raw
patient counts for each observed phenotype by the database size. The database size is defined
as the total count of patients who had at least one laboratory test result at each given year.

At the patient level, a phenotype is considered to be “tested” if a laboratory test can potentially
yield a result to confirm whether the subject has such an abnormality, for example, both
Hyperglycemia [HP:0003074] and Hypoglycemia [HP:0001943] are tested by fasting glucose
measurement (LOINC 1558-6). We systematically collected the information from the
loinc2hpoAnnotation library–for each LOINC code, all the mapped HPO terms and their
ancestor terms are considered to be “tested phenotype” by the given LOINC test. For example,
LOINC 26484-6 Monocytes in Blood is mapped to three HPO terms, Monocytopenia
[HP:0012312] (for lower than normal), Monocytosis [HP:0012311] (for higher than normal) and
Abnormal monocyte count [HP:0012310] (negated for normal result). Their ancestors include
Abnormal leukocyte count [HP:0011893], Abnormal leukocyte morphology [HP:0001881],
Abnormal blood and blood-forming tissues [HP:0001871] and finally Phenotypic abnormality
[HP:0000118]. All the above phenotypes are considered to be “tested” for a subject by the fact
of receiving a lab order for LOINC 26484-6 Monocytes in Blood. With this logic, we collected all
the laboratory test orders and the tested phenotypes for each order.

Similar to the analysis of observed phenotypes, we counted all the patients who had at least
one laboratory test order that indicated the subject had been tested for each HPO-coded
phenotype at each given year. Database size is defined the same way as described above, and
patient counts are normalized by database size in the corresponding year.

Racial patterns of observed and tested phenotypes

For each phenotype abnormality, we counted all the patients of each race that were observed
(or tested) in each given year. Race was self-reported in our dataset. Additionally, we collected
patient counts by race by counting patients that received at least one laboratory test in each
year. Then for each phenotype abnormality, we then calculated the odds ratio for each race
being observed (or tested) for the corresponding phenotype compared with the other races
combined in each year. The procedure generated odds ratios over the years that are indicative
of whether a phenotype was being observed or tested compared to other races.
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Screen for biomarkers for progression into severe asthma

The starting cohort was defined as patients who had asthma and asthma-related symptoms by
ICD-10 J45 asthma and ICD-10 R06 wheezing. The cohort is further divided into two groups, a
severe asthma group by having diagnosis codes of ICD-10 J45.5 severe asthma (n = 3566
patients) and a non-severe asthma group defined as not having diagnosis codes of severe
asthma (n = 323,420 patients).

For the severe asthma group, we further identified a subgroup (n = 2593 patients) who had
non-severe asthma diagnoses before severe asthma, indicating that the cohort progressed from
non-severe asthma to severe asthma. The first severe asthma diagnosis of such patients was
defined as t0. And all phenotypes derived from laboratory tests with an abnormal finding in the
three years immediately prior to t0 were collected and used for the biomarker screening.

For the non-severe asthma group, we additionally excluded 1% patients who had mentions of
“severe asthma” in their clinical notes. We randomly sampled a subset (2x of patients who
progressed to severe asthma) as the controls for our data analysis. The latest asthma diagnosis
was defined as t0 for these patients. Similarly, all the laboratory test-derived phenotypes in the
previous three years were collected for the biomarker screening.

Evaluation of information loss caused by converting continuous laboratory test data into
HPO terms

We compared the performance of using original laboratory test values vs the transformed
HPO-coded phenotype to predict future disease diagnoses. Table 1 listed the selected diseases,
case/control definitions and the corresponding laboratory tests. Briefly, we selected four disease
diagnoses; abnormal liver function, acute kidney failure, colorectal cancer and aplastic anemia.
For abnormal liver function, we selected a cohort of patients by diagnosis codes, ICD10 R94.5
or ICD9 794.8: Abnormal results of liver function studies, as cases. If a patient had multiple
records of the diagnosis codes, the earliest one was chosen for the patient. For each patient
and each LOINC test, we used the most recent record prior to the diagnosis as a feature. The
same set of patients served as their own controls as we reasoned the diagnosis of abnormal
liver function was transient and thus it was reasonable to assume the patients had a healthy
liver function 180 days ago. We chose the 180 day cutoff because we observed laboratory test
values beginning to trend up/down after this date (Supplemental Figure 3). For the controls, we
selected the latest laboratory test at least 180 days prior to the diagnosis as the feature. After
setting up cases/controls and collecting laboratory test values, we built a logistic regression
classifier to predict whether the patient is case/control from each laboratory test, either using the
original numeric value (e.g. gamma glutamyl transferase, 91 u/L) or the transformed HPO
phenotype (binary, e.g. Elevated gamma-glutamyltransferase level [HP:0030948]: observed or
not). A random split (70%) of data was used for training the classifier and the remaining 30%
was used as the testing data. We built the receiver operating characteristic (ROC) curve from
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the predictions/labels of testing data and calculated the area under curve (AUC) as the
performance metric.

We adopted a very similar approach to analyze laboratory tests for acute kidney failure and
aplastic anemia. For acute kidney failure, cases were defined as patients who had a primary
diagnosis of ICD10 N17 Acute kidney failure. For aplastic anemia, cases were defined as
patients who had a primary or secondary diagnosis of ICD-10 D61.9 or ICD-9 284.9 Aplastic
anemia, unspecified. For both diseases, we chose 100 day as the cutoff to designate patients as
healthy controls of themselves, as we observed laboratory tests beginning to change at around
this time (Supplemental Figure 4 and 5).

For colorectal cancer, cases were defined as patients who had a primary diagnosis of ICD-10
C18, C19, C20, or ICD-9 153, 154.0, 154.1, or 154.8. For patients with multiple diagnoses, the
earliest one was chosen. Controls were defined as patients who were free from any cancer
diagnoses (based on diagnosis codes 14; see Table 1 for details). We sampled controls by
matching them 1:1 to cases based on sex, age and race (Supplemental Figure 6). For each
patient and each LOINC test, we selected the most recent record prior to colorectal cancer
diagnosis (for cases) or the latest record in the history (for controls) as the features
(Supplemental Figure 7). Statistical analysis was performed in the same manner as described in
liver function analysis.

Table 1 disease diagnoses and LOINC tests for comparing numeric vs HPO-coded phenotypes
in predictive tasks
diagnosis cohort definition LOINC test

abnormal liver
function

case: ICD-10
R94.5 or ICD-9
794.8;

control: same
patients at 180
days prior to the
diagnosis of
abnormal liver
function

LOINC 1742-6 Alanine aminotransferase [Enzymatic activity/volume]
in Serum or Plasma

LOINC 1920-8 Aspartate aminotransferase [Enzymatic
activity/volume] in Serum or Plasma

LOINC 6768-6 Alkaline phosphatase [Enzymatic activity/volume] in
Serum or Plasma

LOINC 2324-2 Gamma glutamyl transferase [Enzymatic
activity/volume] in Serum or Plasma

LOINC 1968-7 Bilirubin.direct [Mass/volume] in Serum or Plasma

LOINC 1975-2 Bilirubin.total [Mass/volume] in Serum or Plasma

LOINC 1751-7 Albumin [Mass/volume] in Serum or Plasma

LOINC 2885-2 Protein [Mass/volume] in Serum or Plasma

LOINC 2532-0 Lactate dehydrogenase [Enzymatic activity/volume] in
Serum or Plasma [DISCOURAGED]

LOINC 14805-6 Lactate dehydrogenase [Enzymatic activity/volume]
in Serum or Plasma by Pyruvate to lactate reaction

LOINC 5902-2 Prothrombin time (PT)
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acute kidney
failure

case: ICD-10 N17
as the primary
diagnosis;

control: same
patients at 100
days prior to the
diagnosis of
acute kidney
failure (100 days
ago)

LOINC: 2160-0 Creatinine [Mass/volume] in Serum or Plasma

LOINC: 3094-0 Urea nitrogen [Mass/volume] in Serum or Plasma

LOINC: 6299-2 Urea nitrogen [Mass/volume] in Blood

LOINC: 2823-3 Potassium [Moles/volume] in Serum or Plasma

LOINC: 5804-0 Protein [Mass/volume] in Urine by Test strip

LOINC: 2889-4 Protein [Mass/time] in 24 hour Urine

LOINC: 2888-6 Protein [Mass/volume] in Urine

aplastic
anemia

case: ICD-10
D61.9 or ICD-9
284.9 ;

control: same
patients when
they were healthy
(100 days ago)

LOINC: 789-8 Erythrocytes [#/volume] in Blood by Automated count

LOINC: 6690-2 Leukocytes [#/volume] in Blood by Automated count

LOINC: 777-3 Platelets [#/volume] in Blood by Automated count

LOINC: 751-8 Neutrophils [#/volume] in Blood by Automated count

colorectal
cancer

case: ICD-10
C18.0-9, C19.9 or
C20.9, excluding
patients with any
other cancer
diagnosis prior to
colorectal cancer;

control: sex, race
and age-matched
patients free from
any cancer,
including ICD-9
140, 172, 174,
209, 225, 227,
228, 230, 234,
237, 238, 239,
273, 277 and
ICD-10 C00, C43,
C4A, C45, C48,
C49, D00, D09,
D18, D32, D33,
D35, D42, D43,
D44, D45, D46,
D49, D85, D87

LOINC: 6690-2 Leukocytes [#/volume] in Blood by Automated count

LOINC: 789-8 Erythrocytes [#/volume] in Blood by Automated count

LOINC: 718-7 Hemoglobin [Mass/volume] in Blood

LOINC: 4544-3 Hematocrit [Volume Fraction] of Blood by Automated
count

LOINC: 787-2 MCV [Entitic volume] by Automated count

LOINC: 785-6 MCH [Entitic mass] by Automated count

LOINC: 786-4 MCHC [Mass/volume] by Automated count

LOINC: 21000-5 Erythrocyte distribution width [Entitic volume] by
Automated count

LOINC: 788-0 Erythrocyte distribution width [Ratio] by Automated
count

LOINC: 777-3 Platelets [#/volume] in Blood by Automated count

LOINC: 32207-3 Platelet distribution width [Entitic volume] in Blood
by Automated count

LOINC: 32623-1 Platelet mean volume [Entitic volume] in Blood by
Automated count

Code and statistical analyses
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Raw EHR data was hosted on an Amazon Redshift cluster. Data transformations, including
preprocessing of EHR data and the LOINC2HPO transformation, were conducted by SQL within
the database cluster and managed by a custom Java application. Summary statistics collected
from the Redshift cluster were loaded into memory and further analyzed in R. The interactive
web application that allows user to explore the longitudinal and racial differences of more
granular HPO phenotypes, Sema4 Lab Phenotype Viewer, was coded with RShiny. All statistical
analysis was conducted in R (version 4.1.2).

Results

SDW cohort description
The SDW EHR dataset contains medical records for over 12 million patients. We focused on a
subset of patients from a New York area health system who had at least one laboratory test
result in their medical history. The subset has around 2.2 million patients in total. Of these,
56.0% are female and 43.9% are male (Figure 2A). Most patients reported white racial identity
(38.5%), followed by Black or African American (16.7%) and Asian (2.7%) (Figure 2B). A small
fraction (6.4%) of patients reported different races at different visits and are considered to have
a mixed race. In addition, race was not reported for a substantial fraction (29.0%). The cohort
has almost equal distributions in the 30-40, 40-50, 50-60, 60-70 and >70 year age brackets, but
much less for the under 30s (Figure 2C).

Figure 2. Study demographics. A. Patient distribution based on sex. B. Patient distribution based on
self-reported race. C. Patient distribution based on birth year.

Implementation of LOINC2HPO with SDW data and summary statistics
Because laboratory tests in our dataset were identified with an institution-specific codeset, we
first mapped the local codeset to LOINC and then utilized the LOINC2HPO approach 12 to
transform the lab findings into HPO-coded phenotype terms (Figure 1B). Among 1.07 billion
laboratory test records in SDW, we successfully mapped 858 million (80.4%)  from local test
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code into LOINC (Step 1, Figure 1B), and subsequently transformed 774 million (72.5%) to HPO
terms. On average, each patient has 324 lab results that are transformed into HPO-coded
phenotypes, many of which could be the same kind of laboratory tests that were ordered
multiple times during patient care. After removing duplicates, each patient on average has 33.1
phenotypes (Figure 3), including 8.5 abnormal phenotypes from laboratory tests with
out-of-range values and the rest are normal phenotypes from laboratory tests with in-range
values. Using the hierarchy of HPO, we further inferred 22.1 abnormal phenotypes, i.e. the
ancestors of more granular phenotypes directly confirmed by laboratory test results, based on
those 8.5 abnormal phenotypes.

Figure 3. Patient distribution by the number of unique phenotypes throughout their medical history.

Example patient phenotype journey
With the laboratory test-derived phenotypes and the longitudinal information of their underlying
source record, we were able to build patient phenotypic journeys for each of the 2.2 million
patients in the cohort. Figure 4 showed a representative example for a middle-aged, female
African American patient. The patient journey includes abnormal phenotypes that were directly
confirmed by a laboratory test result or inferred based on HPO hierarchy, and normal
phenotypes from normal laboratory test values. The example patient was persistently observed
to have Elevated serum alanine aminotransferase [HP:0031964] and Elevated serum aspartate
aminotransferase [HP:0031956]; the patient, however, did not have Abnormality of alkaline
phosphatase level [HP:0004379], Abnormal albumin level[HP:0012116], nor Increased total
bilirubin [HP:0003573]. Collectively, the phenotypes indicate that the patient possibly had
chronic hepatocellular injury 15, which was validated by the repeated assignments of diagnosis
codes for fatty liver between 2015 and 2020. In summary, HPO phenotypes transformed from
laboratory test results allow one to build patient phenotypic journeys at a large scale and can
facilitate differential diagnoses.
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Figure 4. Example patient journey for an African American female subject born in 1967.

Longitudinal changes of patient counts for observed or tested phenotypes
We conducted a global analysis of 2.2 million patient phenotypic journeys to identify what
phenotypes are more or less frequently observed over time. We focused on abnormal
phenotypes that were transformed from laboratory tests with out-of-range values and defined a
patient to have been observed for an abnormal phenotype as long as there was one laboratory
test result to indicate so. Patient counts for all of the high-level HPO terms increased over time
(Figure 5A), which was expected as the dataset had a growing number of patients. After
normalizing patient counts by the database size in the corresponding year (Figure 5B, Table
2A), we found there were statistically significant decreases in patients observed for Abnormality
of blood and blood-forming tissues [HP:0001871], Abnormality of the immune system
[HP:0002715], Abnormality of the digestive system [HP:0025031] and Abnormality of the
cardiovascular system [HP:0001626]. The decrease for Abnormality of blood and blood-forming
tissues [HP:0001871] and Abnormality of the immune system [HP:0002715] was preserved
even after taking into consideration how many patients were actually tested (Supplemental
Figure 1A), which indicates the cohort was healthier in these categories possibly due to more
healthier patients undergoing routine screenings. On the contrary, there are statistically
significant increases in patients observed for the Abnormality of the genitourinary system
[HP:0000119] and Abnormality of metabolism/homeostasis [HP:0001939]. While the increase for
the Abnormality of metabolism/homeostasis [HP:0001939] was explained by more patients
undergoing testing, the increase for the Abnormality of the genitourinary system [HP:0000119]
was not, indicating that the cohort was less healthier for the genitourinary system
(Supplemental Figure 1B). We additionally developed an interactive web application, Sema4
Lab Phenotype Viewer, that allows users to explore the longitudinal changes of more granular
phenotype terms (url: https://permanent.link/to/loinc2hpo/sema4_msdw). Overall, the global
analysis of observed phenotypes revealed significant cohort changes over time.
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Figure 5. Longitudinal changes of observed (Panel A and Panel B) and tested (Panel C and Panel D)
phenotypic abnormalities. A. Raw patient count for those who were observed to have indicated abnormal
phenotype. B. Normalized patient count by database size for those who were observed to have indicated
abnormal phenotypes. C. Raw patient count for those who were tested for the indicated abnormal
phenotype. D. Normalized patient count by database size for those who were tested for the indicated
phenotype.

Table 2A Statistical testing for trendline changes of observed phenotypes

termid label beta p.value p.value.bonferr
oni significance

HP:0001871

Abnormality of
blood and

blood-forming
tissues

-1.16E-02 2.22E-11 2.22E-10 ***

HP:0002715
Abnormality of

the immune
system

-1.28E-02 6.90E-11 6.90E-10 ***

HP:0025031 Abnormality of
the digestive -1.82E-03 9.79E-06 9.79E-05 ***
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system

HP:0000119

Abnormality of
the

genitourinary
system

5.85E-03 1.91E-05 1.91E-04 ***

HP:0001626

Abnormality of
the

cardiovascular
system

-6.93E-04 1.05E-03 1.05E-02 *

HP:0001939
Abnormality of
metabolism/ho

meostasis
4.41E-03 2.48E-03 2.48E-02 *

HP:0000818
Abnormality of
the endocrine

system
4.74E-04 1.22E-02 1.22E-01

HP:0002086
Abnormality of
the respiratory

system
-2.41E-03 2.16E-02 2.16E-01

HP:0025354
Abnormal
cellular

phenotype
5.59E-04 5.58E-02 5.58E-01

HP:0000707
Abnormality of

the nervous
system

1.19E-04 5.51E-01 5.51E+00

Table 2B. Statistical testing for trendline changes of tested phenotypes

termid label beta p.value p.value.bonferr
oni significance

HP:0000707
Abnormality of

the nervous
system

7.49E-03 5.49E-06 6.04E-05 ***

HP:0000818
Abnormality of
the endocrine

system
7.70E-03 5.90E-06 6.49E-05 ***

HP:0025354
Abnormal
cellular

phenotype
1.14E-02 1.12E-04 1.23E-03 **

HP:0001626

Abnormality of
the

cardiovascular
system

-4.10E-03 2.51E-04 2.77E-03 **
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HP:0002715
Abnormality of

the immune
system

-3.73E-03 1.75E-03 1.93E-02 *

HP:0001871

Abnormality of
blood and

blood-forming
tissues

-4.07E-03 1.90E-03 2.09E-02 *

HP:0002086
Abnormality of
the respiratory

system
4.32E-03 2.20E-03 2.42E-02 *

HP:0000119

Abnormality of
the

genitourinary
system

1.09E-02 4.37E-03 4.81E-02 *

HP:0001939
Abnormality of
metabolism/ho

meostasis
4.16E-03 4.75E-03 5.22E-02 .

HP:0001197

Abnormality of
prenatal

development or
birth

-8.10E-05 3.66E-02 4.03E-01

Because the orders of laboratory tests typically reflect the medical context, we collected what
phenotypes can be theoretically revealed by each laboratory test order, aka. tested phenotype,
and determined whether they were changed over time. For high level abnormal phenotypes,
there are statistically significant increases in patients tested for Abnormality of the nervous
system [HP:0000707], Abnormality of the endocrine system [HP:0000818], Abnormality of
cellular phenotype [HP:0025354], Abnormality of the respiratory system [HP:0002086] and
Abnormality of the genitourinary system [HP:0000119]; there are statistically significant
decreases in patients tested for Abnormality of the cardiovascular system [HP:0001626],
Abnormality of the immune system [HP:0002715], and Abnormality of blood and blood-forming
tissues [HP:0001871] (Figure 5CD, Table 2B). Similarly, many granular phenotypes are also
tested differently and can be explored with the interactive web application, Sema4 Lab
Phenotype Viewer. These findings indicate that our patient phenotypic journeys were able to
reveal epidemiological trends on what phenotypic tests were ordered more or less frequently
over time.

Racial patterns in observed and tested phenotypes
Race is an important factor in clinical observations and translational research using EHR 16–18.
We analyzed each phenotype to determine whether it was tested and observed, respectively,
more frequently in one race compared to other races. Many phenotypes are tested differently in
each race. At the high level, Asian were more likely to be tested for Abnormality of the
cardiovascular system [HP:0001626] but less likely for Abnormality of prenatal development or
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birth [HP:0001197] or Abnormal cellular phenotype [HP:0025354] (Figure 6B). Black or African
American were more likely to be tested for Abnormality of prenatal development or birth
[HP:0001197], but less likely for Abnormal cellular phenotype [HP:0025354], Abnormality of the
endocrine system [HP:0000818] and Abnormality of the nervous system [HP:0000707],
especially after 2010. White were more likely to be tested for Abnormal cellular phenotype
[HP:0025354], Abnormality of the endocrine system [HP:0000818], Abnormality of the nervous
system [HP:0000707], and Abnormality of the digestive system [HP:0025031], but less likely for
Abnormality of prenatal development or birth [HP:0001197] and Abnormality of the
cardiovascular system [HP:0001626].

When all the phenotypes were ranked together, we found the most overly tested phenotype in
Black or African American were for CD4 + T helper cells (Table 3), which is consistent with
heavier HIV burden in the black population 19. Similarly, Positive urine methadone test
[HP:0031841] and Positive urine barbiturate test [HP:0500109] are also more likely to be tested
in the black population, indicating that the Black population is more likely to be tested for drug
abuse. Additionally, the Black population is also more likely to be tested for Persistence of
hemoglobin F, which is possibly for the diagnosis of sickle cell anemia, a disease with higher
incidence in the black population 20,21. The White population were most disproportionately
frequently tested for phenotypes of granulocytes, including Granulocytopenia (HP:0001913) and
Granulocytosis (HP:0032310), a group of immune cells that are responsible for many
autoimmune diseases 22. The White population were also much more likely to be tested for very
low density lipoprotein (VLDL) cholesterol concentration, which is possibly due to a combined
effect of medical needs (e.g. higher incidence of familial hypercholesterolemia) and higher
awareness and/or willingness for preventative screenings. In the Asian population, the most
likely tested phenotype is Phenotypic abnormality [HP:0000118], which is the most generic
phenotype term in HPO. Because Phenotypic abnormality [HP:0000118] can be tested by any
laboratory test, the finding suggests that Asian were more likely to receive laboratory tests in
general compared with other races in the dataset.
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Figure 6. Racial difference of observed phenotypes (A) and tested phenotypes (B). Only high level HPO
terms are shown. For other phenotypes, refer to the interactive app at
https://permanent.link/to/loinc2hpo/sema4_msdw.

When we looked at racial distribution of patients that were observed for each phenotype, we
also found apparent differences for many phenotypes (Figure 6A). For example, Asian were
consistently more likely to have confirmed Abnormality of the cardiovascular system
[HP:0001626], but much less likely for Abnormal cellular phenotype [HP:0025354]. Black or
African American were more likely to have Abnormality of the respiratory system [HP:0002086],
Abnormality of the genitourinary system [HP:0000119] and Abnormality of blood and
blood-forming tissues. White are more likely to have confirmed Abnormal cellular phenotype
[HP:0025354] but overall proportionally observed for most phenotypes. However, the differences
diminished when patient counts were normalized to the number of patients actually tested for
each phenotype(Supplemental Figure 2), suggesting that the racial differences were mainly due
to different races being tested differently rather than one race being sicker than others. Taken
together, the above findings revealed racial patterns in regards to what medical phenotypes
were tested in medical care.

Table 3. Top over-proportionally tested phenotypes for each race. OR: odds of having received lab tests
for the phenotype in the race vs other races; phenotypes with less than 1700 tested patients were
excluded.

Black or African
American

termid label OR Lab.Record Patient.Count

HP:0002843 Abnormal T cell
morphology 2.56 334106 44404

HP:0005403 Decrease in T
cell count 2.56 334106 44404

HP:0005407

Decreased
proportion of
CD4-positive
helper T cells

2.56 311716 44404

HP:0011839 Abnormal T cell
count 2.56 334106 44404

HP:0025540
Abnormal T cell

subset
distribution

2.56 334106 44404

HP:0500267

Abnormal
proportion of
CD4-positive
helper T cells

2.56 311716 44404
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HP:0031841 Positive urine
methadone test 2.19 35696 21433

HP:0011904 Persistence of
hemoglobin F 2.18 27080 13461

HP:0500109 Positive urine
barbiturate test 2.16 48469 27316

HP:0031961
Abnormal

serum anion
gap

2.16 682639 206481

White

HP:0001913 Granulocytope
nia 16.11 129756 92956

HP:0032310 Granulocytosis 16.11 129756 92956

HP:0003362

Increased
VLDL

cholesterol
concentration

7.14 244745 197169

HP:0031243

Decreased
VLDL

cholesterol
concentration

7.14 244745 197169

HP:0031889

Abnormal
VLDL

cholesterol
concentration

7.14 244745 197169

HP:0001900 Increased
hemoglobin 2.17 263958 12745

HP:0001901 Polycythemia 2.17 263958 12745

HP:0008348
Decreased

circulating IgG2
level

1.78 5992 3288

HP:0032135
Decreased

circulating IgG
subclass level

1.78 23597 3492

HP:0032137
Decreased

circulating IgG3
level

1.78 5975 3278

Asian
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HP:0000118 Phenotypic
abnormality 2.14 16291266 95861

HP:0032232

Increased
circulating

creatine kinase
MB isoform

2 17174 4036

HP:0001939
Abnormality of
metabolism/ho

meostasis
1.89 6485715 88950

HP:0006254
Elevated

alpha-fetoprotei
n

1.69 11213 3269

HP:0012337 Abnormal
homeostasis 1.69 1358581 82468

HP:0003113 Hypochloremia 1.64 404993 69973

HP:0011422
Abnormal blood

chloride
concentration

1.64 404993 69973

HP:0011423 Hyperchloremia 1.64 404993 69973

HP:0010927
Abnormal blood
inorganic cation
concentration

1.58 510106 68980

HP:0010930

Abnormal blood
monovalent

inorganic cation
concentration

1.57 745644 71488

Screen for biomarkers correlated with progression into severe asthma
To demonstrate how the patient journeys can be used for translational research, we conducted
a case study to identify biomarkers associated with asthma progression to the severe form.
Asthma is a common condition that affected 25 million (7.8%) of the US population in 2019 23.
An estimated 10% of asthma patients develop severe asthma 24, which has a significantly higher
frequency of exacerbation and can lead to death if not treated in a timely fashion 25. Therefore,
identifying biomarkers from routinely observed medical phenotypes that can predict whether a
patient will progress into severe asthma has significant medical implications. We identified 2593
severe asthma patients who progressed from the non-severe form to the severe form, and twice
the number of patients who continued to have non-severe asthma as controls. For each
phenotype in the preceding years, we assessed whether testing and observation of the
phenotype is correlated with asthma progression into the severe form after adjusting for race,
sex and age. We included whether a phenotype is tested or not as an independent variable as

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.22280880doi: medRxiv preprint 

https://paperpile.com/c/IakhhK/kwiuS
https://paperpile.com/c/IakhhK/rdZcC
https://paperpile.com/c/IakhhK/Qx7ZY
https://doi.org/10.1101/2022.10.10.22280880
http://creativecommons.org/licenses/by-nc-nd/4.0/


we reasoned that true biomarkers should be more likely to be ordered when severe asthma was
suspected.

We found that among phenotypes in the year preceding to progression to severe asthma,
having been tested for Eosinophilia [HP:0001880] was associated with significantly increased
odds for severe asthma progression; in addition, confirmation of Eosinophilia was also strongly
correlated with increased odds for severe asthma diagnosis. In a similar manner, Neutrophilia
[HP:0011897], which is elevated counts of neutrophils, was also identified to be correlated with
severe asthma. Elevated counts of eosinophils and neutrophils in the sputum were identified as
important subtypes of asthma 26; previous studies also indicate that these cell types in the
peripheral blood, are weaker but significant biomarkers for severe asthma 27–29. Our findings are
consistent with the previous reports, thus validating our approach here. We also identified
Leukocytosis [HP:0001974], Abnormal granulocyte count [HP:0032309] and Abnormal myeloid
leukocyte morphology [HP:0010974] that are significantly correlated with severe asthma, which
are expected as they are the parent terms of Eosinophilia [HP:0001880] and Neutrophilia
[HP:0011897]. Interestingly, we identified Monocytopenia [HP:0012312], i.e. low counts of
monocytes, as strongly associated with progression to severe asthma. Additionally, we found
Increased hematocrit [HP:0001899], Hypercapnia [HP:0012416] and Abnormal blood gas level
[HP:0012415] (the parent of Hypercapnia) were strongly associated with severe asthma.
Hypercapnia [HP:0012416], i.e. an elevated level of CO2 in the blood could be related to the
effects of asthma on respiration 30; and Increased hematocrit [HP:0001899] could be related to
chronic hypoxia, although our analysis does not allow any conclusions about the
pathomechanisms of observed laboratory abnormalities. .

To assess whether phenotypic abnormalities even further ahead of progression to severe
asthma were correlated with the outcome, we conducted similar analysis for phenotypes
collected in the one year or two years window before severe asthma diagnosis. We found the
same phenotypes also have significant correlations with the later progression into severe
asthma, thus suggesting the observed correlations are persistent. In addition, the weights of
correlations for most phenotypes gradually decreased as we moved the time window further
away from the outcome.

Table 4. Selection of biomarkers that are statistically significantly correlated with future progression into
severe asthma.

Lab.Year.Bra
cket

termid label Odds.Ratio..B
een.Tested.

p.value..Been
.Tested.

Odds.Ratio..B
een.Observe

d.

P.value..
Been.

Observed.

(-1,0] HP:0001880 Eosinophilia 1.88 4.27E-29 2.37 3.38E-25

(-2,-1] HP:0001880 Eosinophilia 1.66 1.14E-17 2.24 2.00E-15

(-3,-2] HP:0001880 Eosinophilia 1.6 2.77E-14 1.92 1.16E-09

(-1,0] HP:0020064
Abnormal
eosinophil

count
1.84 6.22E-27 2.37 9.23E-27
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(-2,-1] HP:0020064
Abnormal
eosinophil

count
1.65 5.58E-17 2.08 4.10E-14

(-3,-2] HP:0020064
Abnormal
eosinophil

count
1.57 1.02E-12 1.92 2.26E-10

(-1,0] HP:0001974 Leukocytosis 1.46 7.08E-10 2.13 5.37E-29

(-2,-1] HP:0001974 Leukocytosis 1.51 3.28E-11 1.82 7.42E-14

(-3,-2] HP:0001974 Leukocytosis 1.33 2.11E-05 2.06 1.82E-16

(-1,0] HP:0001899 Increased
hematocrit 2.02 5.45E-40 1.83 1.86E-05

(-2,-1] HP:0001899 Increased
hematocrit 1.92 5.32E-34 1.04 8.26E-01

(-3,-2] HP:0001899 Increased
hematocrit 1.76 2.42E-24 1.67 5.18E-03

(-1,0] HP:0012312 Monocytopeni
a 2.15 3.00E-45 1.81 5.86E-09

(-2,-1] HP:0012312 Monocytopeni
a 1.91 8.47E-31 1.59 4.64E-04

(-3,-2] HP:0012312 Monocytopeni
a 1.74 4.23E-21 2.03 2.10E-06

(-1,0] HP:0032309
Abnormal

granulocyte
count

1.64 4.49E-13 1.79 1.04E-15

(-2,-1] HP:0032309
Abnormal

granulocyte
count

1.51 9.05E-09 1.66 2.80E-09

(-3,-2] HP:0032309
Abnormal

granulocyte
count

1.36 4.84E-05 1.81 1.11E-10

(-1,0] HP:0010974

Abnormal
myeloid

leukocyte
morphology

1.67 4.19E-13 1.68 2.47E-12

(-2,-1] HP:0010974

Abnormal
myeloid

leukocyte
morphology

1.5 7.55E-08 1.64 1.00E-08

(-3,-2] HP:0010974

Abnormal
myeloid

leukocyte
morphology

1.34 2.73E-04 1.78 8.73E-10
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(-1,0] HP:0011897 Neutrophilia 2.04 3.80E-33 1.45 3.55E-07

(-2,-1] HP:0011897 Neutrophilia 1.86 1.13E-23 1.38 4.11E-04

(-3,-2] HP:0011897 Neutrophilia 1.67 2.62E-15 1.57 6.26E-06

(-1,0] HP:0012416 Hypercapnia 1.74 5.96E-23 1.42 1.65E-05

(-2,-1] HP:0012416 Hypercapnia 1.77 1.28E-23 1.27 1.76E-02

(-3,-2] HP:0012416 Hypercapnia 1.75 1.49E-21 1.28 2.59E-02

(-1,0] HP:0012415
Abnormal
blood gas

level
1.64 5.30E-16 1.35 1.26E-05

(-2,-1] HP:0012415
Abnormal
blood gas

level
1.64 2.18E-15 1.36 1.34E-04

(-3,-2] HP:0012415
Abnormal
blood gas

level
1.68 7.76E-16 1.27 6.96E-03

Assessment of information loss caused by binning numeric laboratory test values
Converting continuous values of laboratory tests to HPO-coded phenotypes are expected to
cause information loss, but it is unclear to what extent the loss is. We determined this by
comparing the performance of laboratory tests in predicting medical diagnoses when used as
the original continuous values vs HPO-coded phenotypes. We selected four representative
diseases and laboratory tests that are used for their diagnoses (Table 1). The medical
conditions, including abnormal liver function, acute kidney failure, aplastic anemia and colorectal
cancer, were chosen so that the laboratory tests cover blood work and urinalysis, which are
commonly ordered and utilized for healthcare machine learning tasks 31,32. We built logistic
regression classifiers to predict whether a patient was a case or control from laboratory tests
conducted before the disease diagnosis, one laboratory test at a time. We found that using the
transformed HPO-coded phenotype (as a binary value to indicate whether an abnormal
phenotype was observed or not) almost always reduced the AUC of ROC (Figure 7), validating
the expectation that transforming continuous laboratory tests into HPO caused information loss
in predictive models. When considering the magnitude of AUC above 0.5 (i.e. the feature is
randomly distributed in cases and controls) as the power of a feature in a predictive task,
however, using laboratory tests as HPO terms still preserved 73.9% of the power compared to
using laboratory tests as the original continuous values. Taken together, the analysis confirmed
that transforming laboratory tests from the continuous numeric values into HPO-coded
phenotypes still preserved the majority of information.
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Figure 7. Performance of laboratory tests in predictive tasks when used as the numeric values vs HPO
terms.

Discussion

In this report, we presented building patient phenotypic journeys from clinical laboratory tests in
a real-world EHR dataset after the LOINC2HPO transformation. Among 1.07 billion laboratory
test records in the Sema4 Data Warehouse, we successfully converted 774 million (72.5%) into
HPO-coded phenotypes. The high conversion rate confirms that LOINC2HPO can be
successfully used to analyze laboratory data stored in the tabular format within relational
databases even though it was initially developed for the Fast Healthcare Interoperability
Resources (FHIR) format 12. The transformation allowed us to describe each patient with
medically relevant phenotypes and thereby create patient phenotypic journeys throughout their
healthcare history. Global analysis of the patient phenotypic journeys revealed longitudinal
changes of both tested phenotypes and observed phenotypes. Furthermore, we found clear
racial patterns especially in what phenotypes were tested from laboratory test orders. The vast
collection of phenotypic journeys also allowed us to screen for what abnormal phenotypes
correlated with future asthma progression into the severe form. Lastly, the transformation of
laboratory test results into HPO-coded phenotypes caused a reduction of performance in
predictive tasks but nevertheless preserved the majority of information.

A concern for transforming the continuous values of laboratory tests into HPO-coded phenotype
terms is loss of information. Many previous work using laboratory tests for translational research
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had relied on feeding statistical models with the continuous values 31,32. A previous work also
discovered that the variations of laboratory test values within the reference range, even if the
test result falls within the range, have medical significance 33. In this report, we quantified the
loss of performance in predictive tasks and our own result confirmed the expected loss of
information by 26.1% (Figure 7). One unique advantage of LOINC2HPO, however, is to allow
one to systematically transform laboratory tests into HPO-coded phenotypes that can describe
patients with medically relevant terms. The approach achieves data integration on two levels.
On the LOINC level, different LOINC codes are mapped to the same HPO terms if they all
measure similar medical conditions, and therefore the laboratory test results will be mapped to
the same set of HPO terms. On the HPO level, the hierarchical structure of HPO allows one to
integrate granular phenotypes with the more generic ancestor terms. Therefore, the loss of
information by 26.1% is an overestimation as we only utilized one laboratory test at a time for
simplicity. Additionally, integrating different laboratory tests together can effectively increase
sample size for specific medical phenotypes and allow statistical analysis that is otherwise
difficult or impossible. We concluded that with limited information loss, the LOINC2HPO
transformation generated deep phenotypes and opened the possibilities for many downstream
applications.

Transforming laboratory tests into HPO-coded phenotypes allowed us to build a vast collection
of patient phenotypic journeys for 2.2 million patients. Patient journey is a description of medical
events that happen to a subject throughout the care history for a given condition 1. It has long
been an interest for the pharmaceutical industry as they provide the foundation to uncover
unmet medical needs, and thereby, opportunities for novel interventions. In this study, we
created patient phenotypic journeys by summarizing how many abnormal phenotypes were
observed from laboratory tests each year and how many were ruled out by laboratory tests that
yielded within-range values. For practical uses, patient journeys can be customized so that the
time window is in relative to the medical outcome under study and with a larger or smaller unit
length (e.g. 3-Year, or 1-Month). Additionally, there were previous efforts in mapping diagnosis
codes into HPO terms 8, or text mining HPO from imaging studies or doctor notes 7,34. We
envision future patient journeys to include those EHR data sources for building comprehensive
patient phenotype journeys as laboratory tests are heavily biased toward human physiology that
is easily measured by highly automated equipment.

A global analysis of patient journeys revealed longitudinal changes and racial differences in
what phenotypes were observed or tested in the dataset. We found an increased proportion of
patients being confirmed to have Abnormality in the genitourinary system [HP:0000119], which
is consistent with recent findings of globally increased urinary tract infection 35 and end stage
renal disease 36 in the past three decades. However, we also caution that the current dataset is
mainly from a regional hospital system and that the trends may not always be representative on
a national or global level. Because laboratory tests can be used for both differential diagnosis
and preventative screening, there are also two competing explanations for any longitudinal
trends or racial patterns, either they reflect a medical necessity for diagnosis purposes or how
frequently they were used for preventative screenings. For example, our discovery that African
American were more likely to be tested for CD4+ T helper cells, is probably due to the
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established medical consensus that this population has higher HIV burden 19. On the contrary,
the increased testing for abnormality of the nervous system and the endocrine system (Figure 5)
is possibly for screening purposes as there is an increased awareness in the general public for
mental health issues.

Patient phenotype journeys can also be combined with other EHR data sources for translational
research. In this study, we used severe asthma progression as an endpoint. We utilized logistic
regression, a commonly used statistical model in medicine, to establish whether each abnormal
phenotype in a given time window was correlated with the endpoint. One notable difference from
our previous study of LOINC2HPO 12, is that we created two features for each abnormal
phenotype, whether the phenotype was tested and whether the phenotype was observed. The
fact that we were able to identify Eosinophilia and Neutrophilia as two of the most significant
phenotypes associated with severe asthma progression validated the approach and the
usefulness of our patient journeys. Sputum eosinophil and neutrophil counts were established
as golden criteria to diagnose and subtype severe asthma 26. Our findings provided evidence
that routine laboratory tests with peripheral blood that were performed up to three years prior
were also statistically significantly correlated with severe asthma progression. We anticipate
future patient phenotypic journeys that include data from other EHR sources, including imaging
and clinical notes, to serve as an even more robust resource for biomarker screens in many
therapeutic areas.
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Supplemental Figures can be accessed at
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