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Abstract 
 

Background: Mathematical models and empirical epidemiologic studies (e.g., randomized 

and observational studies) are complementary tools but may produce conflicting results for 
a given research question. We used sensitivity analyses and bias analyses to explore such 

discrepancies in a study of the indirect effects of influenza vaccination. 

 
Methods: We fit an age-structured, deterministic, compartmental model to estimate 

indirect effects of a school-based influenza vaccination program in California that was 

evaluated in a previous matched cohort study. To understand discrepancies in their results, 

we used 1) a model with constrained parameters such that projections matched the cohort 

study; and 2) probabilistic bias analyses to identify potential biases (e.g., outcome 

misclassification due to incomplete influenza testing) that, if corrected, would align the 
empirical results with the mathematical model.  

 
Results: The indirect effect estimate (% reduction in influenza hospitalization among older 

adults in intervention vs. control) was 22.3% (95% CI 7.6% – 37.1%) in the cohort study but 
only 1.6% (95% Bayesian credible intervals 0.4 – 4.4%) in the mathematical model. When 
constrained, mathematical models aligned with the cohort study when there was 

substantially lower pre-existing immunity among school-age children and older adults. 
Conversely, empirical estimates corrected for potential bias aligned with mathematical 
model estimates only if influenza testing rates were 15-23% lower in the intervention vs. 

comparison site.  

 
Conclusions: Sensitivity and bias analysis can shed light on why results of mathematical 

models and empirical epidemiologic studies differ for the same research question, and in 

turn, can improve study and model design.  
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Introduction 
 

Mathematical modelling offers a helpful tool for capturing the complexities of infectious 

disease transmission. As well as being applied widely as part of the COVID-19 response,1–3 
modelling continues to play an important role in planning the response to other major 

infections.4 However, no mathematical model can be fully predictive: all models must make 

simplifications of reality in order to be tractable, and models may produce different results, 
even when applied to the same question.5,6 Although well-documented,7,8 it remains 

important for these and other limitations to be fully appreciated in any application of 

mathematical modelling for public health decision-making.  

 

Given such limitations, there can be substantial value in comparing mathematical model 

projections with estimates from epidemiologic field studies that aim to quantify the impact 
of interventions on transmission using real-world data. Epidemiologic studies may better 

capture complex real-world transmission dynamics, yet they are subject to different 
assumptions and biases than mathematical models. Comparisons of results from the two 

approaches could shed light on the influence of each approach’s assumptions and biases, 
and in turn, improve model and study design and cast new light on evidence about 
intervention effectiveness. Here, we present results of one such analysis, in the context of 

an intervention to improve rates of influenza vaccination amongst schoolchildren in 
California, USA.  
 

Vaccination is critical for the prevention of seasonal influenza morbidity and mortality, 

particularly among vulnerable groups such as the elderly.9 In the USA and elsewhere, 
recommendations for seasonal influenza vaccination extends to all age groups10 older than 

six months of age. Mathematical modelling has highlighted the potential importance of 

vaccinating schoolchildren for reducing community-wide transmission.11, and studies from 
Japan have provided empirical evidence for such impact.12 In this context, the ‘Shoo-the-Flu’ 

intervention aimed to increase influenza vaccination coverage amongst elementary children 

in Oakland, California.13 Notably, this study aimed to quantify indirect (transmission-
mediated) effects: comparison with a closely-matched control district, West Contra Costa, 

showed evidence of indirect effects through a reduction in influenza-related hospitalizations 

among non-elementary school aged children and the elderly in Oakland.  
 

We fit a mathematical model to capture these indirect effects. We describe discordance 

between the mathematical model and empirical epidemiological study and report the 
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results of sensitivity and bias analyses to identify possible reasons for this discordance. We 
performed analyses in two directions: one to identify influential parameters of the 

mathematical model, and conversely to identify potential biases in the epidemiological 

analysis. This study demonstrates how to use sensitivity analysis and probabilistic bias 
analysis to investigate different results produced by epidemiologic models and 

mathematical models. We conclude with recommendations for future studies.  

 
Methods 

  

1. Overview of study population and intervention  
The mathematical model and prior cohort study13 aimed to estimate impact of a city-wide 

school-located influenza vaccination program on community-wide influenza hospitalization 

incidence. The Shoo the Flu program (https://www.shootheflu.org) was delivered in 
Oakland, California, offering delivery of free influenza vaccinations at elementary schools 

(kindergarten through grade 5). The intervention was initiated in 2014; here, we focused on 
the 2017-18 season, which had the highest incidence of influenza, and the largest estimate 

of intervention effectiveness in the cohort study. In this season, the program delivered 
quadrivalent inactivated influenza vaccinations to 7,536 of 34,741 eligible students in 95 
elementary schools. The cohort study enrolled 34 schools in Oakland Unified School District 

and 34 schools in West Contra Costa Unified School District (the comparison group). 
Intervention and comparison schools were pair-matched by pre-intervention school-level 
characteristics (mean enrollment, class size, parental education, academic performance 

index scores, California standardized test scores, school-level percentage of English 

language learners, and school-level percentage of students receiving free lunch at school) 
using a multivariate genetic matching algorithm.14 The study conducted a survey of parents 

and guardians of students to estimate influenza vaccination coverage. The study estimated 

indirect effects using data on laboratory-confirmed influenza hospitalizations among 
residents of the zip codes that overlapped with the boundaries of each school district from 

the CDC-sponsored California Emerging Infections Program (CEIP). The study estimated that 

vaccination coverage in 2017-18 in children aged 5-11 years was 11 percentage points (95% 
CI 7%, 15%) higher and influenza hospitalization incidence was 22% (95% CI 8% – 37%) lower 

in adults 65 years or older in the intervention vs. comparison site.13 Additional details on the 

intervention and cohort study design have been reported elsewhere.13 
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2. Mathematical modelling 

 
We modelled the indirect effect of the intervention among adults ≥65 years of age using an 
age-structured, deterministic, compartmental model, illustrated schematically in Figure 1. 

We focused on influenza A, which was the predominant influenza type during the 2017/18 

season in California. For simplicity, we did not distinguish H3 and H1 subtypes of influenza 
A. The model was stratified into six different age groups: <4yo, 5-11yo, 12-17yo, 18-49yo, 

50-64yo, and ≥65yo. To capture mixing between different age groups, we drew from 

contact matrices recently estimated for the USA.15 The overall structure shown in Figure 1 

was further stratified by influenza vaccination status, distinguishing those who did and did 

not receive seasonal influenza vaccination during the 2017/18 season. Given the focus of 

this analysis on indirect effects, we assumed that the measured vaccine efficacy is against 
infection and, moreover, that vaccination confers protection through a ‘leaky’ mechanism: 

that is, we assumed that all receiving influenza vaccination have their risk of infection 
reduced by an amount equivalent to the vaccine efficacy. Because the majority of seasonal 

vaccination coverage in the USA is typically completed prior to the onset of the influenza 
season16, we modelled age-specific vaccination simply through initial conditions, ensuring 
that the initial population vaccinated compartments reflected the estimated, age-specific 

vaccination coverage.  
 
Since data on pre-intervention influenza vaccination coverage by site were not available, we 

drew from state-level estimates of vaccination coverage in California, assuming coverage 

was the same in the intervention and control districts (see Fig. S1A) (C. Reed, personal 
communication, 31 Aug 2020). We drew from national-level estimates of vaccine efficacy 

against influenza A for the 2017/18 season (see Fig. S1B). 

 
To model the intervention, we simulated the impact (reduction in hospitalizations amongst 

those aged ≥ 65 yo) of increasing vaccination in the 5-11yo age group from 58% to 69%. 

Although in theory the intervention may have also influenced other age groups to increase 
uptake of vaccination, we had no data to this effect: thus, we assumed no change in 

vaccination coverage in other age groups. 

 
Calibration data  

We calibrated model parameters in order to match the available epidemiological data in the 

control district (West Contra Costa). In particular, as a proxy for incidence, we used district-
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level data from the CEIP for age-specific, weekly hospitalizations that were virologically 
confirmed as being influenza. These are the same data that were used to estimate indirect 

effects in the cohort study. To link these data with the weekly incidence of symptomatic 

influenza in the community, we drew from previous estimates by CDC for the age-specific 
proportions of symptomatic influenza cases that are hospitalized, tested for influenza, and 

reported to FluSURV-NET.17 These multipliers are available by age group, but only at the 

national level. Further details on model calibration are provided in Supplement 1. 
 

Finally, using a sensitivity analysis, we sought to identify model parameters that would best 

explain differences in the results of the transmission model and the cohort study. To do so, 

we performed an alternative, ‘constrained’ calibration, one where – in addition to the data 

described above – we also included the requirement that model projections should capture 

the observed reduction in hospitalization in those ≥ 65 years of age. 
 

3. Examining potential sources of error in study data 
 

Focusing next on the statistical analysis of the study data, using probabilistic bias analysis,18 
we sought to identify sources of bias that, if corrected, would result in cohort study 
estimates that aligned with those of the mathematical model. We explored the following 

bias scenarios, which we considered plausible for the cohort study: 1) incomplete influenza 
testing among hospitalized patients, and 2) an unmeasured time-dependent confounder of 
the relationship between the school-located influenza vaccination intervention and 

influenza hospitalization.  

 
Correction for potential misclassification of influenza hospitalization 

Our original study estimated impacts of school-located influenza on laboratory-confirmed 

influenza hospitalization. If some patients who truly had influenza were not tested for 
influenza, this could result in outcome misclassification, and if testing rates differed 

between the intervention and comparison sites, this could result in differential outcome 

misclassification. We corrected estimates of intervention impact on hospitalization for 
influenza on potential misclassification due to incomplete influenza testing. We obtained 

estimates of the proportion of hospitalized patients with pneumonia and influenza 

International Statistical Classification of Disease codes who were tested for influenza from 
the CEIP, which provided influenza hospitalization data in the original study. These 

unpublished data were collected as part of CEIP’s evaluation of its activities in Alameda, San 

Francisco, and Contra Costa counties. It was not possible to stratify data by study site. First, 
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we performed a probabilistic bias analysis assuming that the proportion of patients ≥ 65 
years of age that were tested for influenza was 0.58 on average and ranged from 0.38 to 

0.78 (Beta(a=44, b=32)); we defined the prior based on testing rate estimates from CEIP and 
used the same prior distribution for the intervention and comparison sites (Table S2). Next, 

to explore the influence of different testing rates in the intervention and comparison sites, 

we corrected case counts for all combinations of testing values from the prior distribution 

for each site in increments of 0.01. We corrected the number of hospitalized cases in each 

study site for incomplete influenza testing using the following formula: 

 

ytrue = ((yobserved x (1-p))/p) + yobserved        (1) 

 

where ytrue is the number of cases hospitalized with laboratory-confirmed influenza 
corrected for incomplete testing, yobserved is the observed number of cases, and p is the 

proportion of hospitalized patients tested for influenza.  

 
Correction for potential unmeasured time-dependent confounding 
We hypothesized that the implementation of the main provisions of the Affordable Care Act 

(ACA), which coincided with the start of the intervention in 2014, could have changed health 
insurance coverage over time differentially between sites. This may have introduced time-

dependent unmeasured confounding that would not have been removed by the original 

difference-in-difference analysis. We define Y as the outcome, X as an indicator for the 
intervention vs. comparison site, and C as an indicator for the unmeasured confounder 

(health insurance coverage). Priors for correcting for an unmeasured confounder include: 1) 

the probability of the confounder in the intervention group P(C|X=1), 2) the probability of 

the confounder in the comparison group P(C|X=0), and 3) difference in risk between 

hospitalization (Y) and the confounder (C) in the comparison group (X=0), assuming no 

effect modification by X (𝐸[𝑌|𝐶 = 1, 𝑋 = 0] 	− 	𝐸[𝑌|𝐶 = 0, 𝑋 = 0]).18 We defined priors 

separately for the period before and during the intervention to allow for time-dependent 

confounding. We defined both realistic and alternative, less realistic priors to investigate 

what priors would be required to replicate the mathematical model’s findings (see details in 

Supplement 2).  

 

We calculated three Mantel-Haenszel risk differences (RDMH) correcting for confounding: 1) 

the risk difference for the intervention in the pre-intervention period (RDMH, pre), 2) the risk 

difference for the intervention during the intervention (RDMH, post), and 3) the risk difference 

comparing the risk during the intervention vs. prior to the intervention in the comparison 
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group (RDMH, comparison).18 We calculated the difference-in-difference correcting for bias as 
RDMH, post - RDMH, pre and the relative reduction in the difference-in-difference correcting for 

bias as (RDMH, post - RDMH, pre)/ RDMH, comparison.  

 
In all bias analyses, we randomly sampled bias parameters from prior distributions without 

replacement and repeated analyses 10,000 times to obtain distributions of bias-corrected 

estimates. We used a bootstrap with 1000 replicates to obtain credible intervals for the 
ratio of mean prior values for each prior. 

 

Results 

  

Mathematical model estimates 
 
Figure 2 shows results of model calibration for the observed epidemic in West Contra Costa, 

the ‘control’ district. Despite the scarcity of data in the three youngest age groups, the 
model captures a reasonable fit with the dynamics of influenza hospitalization in the three 

oldest age groups. Figure S2 shows model fits to cumulative numbers hospitalized, again 
showing a reasonable fit, while Figure S3 illustrates the marginal posterior distributions for 
each of the model parameters.  

 
We next simulated the effects of an intervention to increase influenza vaccination coverage 
in schoolchildren 5-11 years old, by 11 percentage points (i.e. increasing coverage from 58% 

to 69%). Table 1 shows the reductions in hospitalizations that were projected to result in 

each of the other age groups. Notably, model projections suggest a 1.6% reduction (95% 
Bayesian credible intervals 0.14 – 4.4%) in hospitalizations in those ≥	65 years of age, 

substantially lower than the empirically observed reduction of 22%.  

 
To examine which parameters are most strongly associated with this low impact, we 

performed the ‘constrained’ calibration described above. Figures S3 – S5 show the results of 

this calibration, in terms of parameter estimates and agreement with the epidemic 
dynamics. Table 1 illustrates that this model indeed approximates the expected indirect 

effect in those ≥ 65 years of age.  

 
Figure 3 shows results of a comparison of posterior samples in the unconstrained and 

constrained calibrations, plotting the ratio between the two. Parameters whose uncertainty 

intervals cross 0 on the logarithmic axis are those for which there appears to be no 
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systematic difference between constrained and unconstrained posterior densities. Amongst 
the parameters that do show a systematic difference, two notable examples are: the 

proportion initially immune in those aged 5-11 years, and in those ≥ 65 years of age. In 

particular, in order to capture the impact of vaccination, the constrained calibration 
systematically estimates these parameters as having lower values than in the unconstrained 

calibration: that is, the mathematical model requires lower pre-existing immunity in both of 

these age groups in order to capture indirect effects in ≥	65-year-olds. Amongst other 
parameters showing a systematic difference between the samples are: the rate-of-infection 

(systematically estimated as higher in the constrained model); the average duration of 

infectiousness (lower in the constrained model); and the proportion symptomatic (higher in 

the constrained model).  

 

Examining potential sources of error in study data 
Estimate of intervention impact adjusting for incomplete influenza testing 

In the original study, the difference-in-difference comparing influenza hospitalizations in the 
intervention and comparison areas among adults ≥65 years was -160 per 100,000 (95% CI -

267, -53) in 2017-18. Using probabilistic bias analysis to correct for misclassification due to 
incomplete influenza testing of patients hospitalized for pneumonia and influenza, the mean 
of difference-in-differences across replications was -276 per 100,000 (range: -412 to -209 

per 100,000). No results aligned with the mathematical model. In our exploratory analysis 
investigating all possible combinations of priors in each site, 1.4% of results aligned with the 
mathematical model, which estimated a 1.6% reduction in influenza hospitalization in the 

intervention vs. comparison area, accounting for pre-intervention differences between sites. 

Bias-corrected relative reductions were similar to the mathematical model (2% to 0%) when 
influenza testing was approximately 15-23% lower in the intervention site than in the 

comparison site and when the percentage tested for influenza in the intervention site 

ranged from 38% to 56% (Figure 4a). The intervention was associated with increased 
influenza hospitalizations when the percentage tested for influenza was more than 23% 

lower in the intervention than in the comparison site (Figure 4b). Conversely, the 

intervention was associated with a larger reduction in influenza hospitalizations than our 
original analysis when the percentage tested for influenza was higher in the intervention 

than the comparison site. 

 
Estimate of intervention impact adjusting for unmeasured confounding 

After adjusting for potential unmeasured time-dependent confounding with realistic priors, 

results were similar to the original analysis; the mean of difference-in-differences across 
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replications was -160 per 100,000 (range: -183 to -138 per 100,000), and the mean 
percentage change was -29% (range: -33% to -25%) (Table 2). No estimates aligned with the 

results of the mathematical model.  

 
In the alternative analysis with extreme prior values of health insurance coverage by site, no 

results aligned with the mathematical model, and the mean percentage change was -27% 

(range: -114% to 78%). One percent of bias-corrected estimates aligned with the 
mathematical model; among those that did, the prior for the difference in risk between 

hospitalization and the confounder in the comparison group was always closer to zero in the 

pre-intervention period (RD range: -0.0007, 0.0007) compared to during the intervention 

period (RD range: -0.0025, -0.0010) (Figures S6-7). This implies that the epidemiologic 

analysis matched the mathematical model results only under extreme shifts in insurance 

coverage during the intervention period (from 0 to 90% in the intervention site and from 
90% to 0% in the comparison site) and when the effect of health insurance coverage on 

influenza hospitalizations was weaker prior to compared to during the intervention period. 
In the alternative analysis with stronger relationships between hospitalization and health 

insurance coverage, no results aligned with the mathematical model, and the mean 
percentage change was -28% (range: -37% to -20%). 
 

Discussion 
 
This study demonstrates how modelling sensitivity analysis and probabilistic bias analysis 

can be used to examine differences in results from methodologically distinct analyses. While 

the original study13 found that school-located influenza vaccination was associated with a 
22.3% relative reduction in community-wide influenza hospitalizations among adults ≥65 

years old, a mathematical model that posed the same question using the same underlying 

data found a relative reduction of only 1.6%. Sensitivity analyses of mathematical models 
showed that model parameters that would replicate the original study results would require 

unrealistically low levels of pre-existing immunity to influenza among school-age children 

and older adults. Other factors included a higher rate of influenza infection, a lower average 
duration of influenza infection, and a higher proportion of symptomatic individuals. Using 

probabilistic bias analysis, we identified differential influenza testing rates among 

hospitalized patients as the most plausible potential source of bias that, if truly present, 
could explain the discrepancy between the epidemiologic and mathematical models.  

Considering the relative strengths and weaknesses of each approach, the intervention likely 
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produced indirect effects among older adults, but this study suggests that true effects may 
have been smaller than estimates published in the original study.  

 

On the modelling side, our analysis yielded markedly more modest impact than previous 
modelling studies of vaccinating schoolchildren against influenza. These differences are 

likely due to the comparators involved: a 2009 study in the USA19 and a 2013 UK study11 

both modelled an increase in vaccination coverage amongst children from 0% to 70%. 
Vaccination coverage in both the USA and UK has increased substantially in recent years: in 

the present study, we modelled an increase in influenza vaccination coverage in 

schoolchildren from 58% to 69%. High levels of pre-existing immunity in schoolchildren 

would tend to reduce the incremental impact of additional vaccination coverage in this 

group. Likewise, high levels of pre-existing immunity in the elderly would reduce the extent 

to which they can benefit from indirect effects of vaccination in other age groups. Contrary 
to the low levels of immunity required by the constrained model, studies in the USA and 

elsewhere have shown the presence of antibodies to influenza in over 40% of school-aged 
children.20–22 Although some of these studies were performed in the context of the 2009 

influenza pandemic, we might expect the prevalence of antibodies to seasonal influenza to 
be comparable or greater, arising from several seasons of exposure to seasonal influenza 
viruses as well as vaccination in past seasons.  

 
Epidemiologic analyses aligned with the mathematical model only when the percentage of 
patients ≥ 65 years old who were tested for influenza was 15-23% lower at hospitals in the 

intervention area vs. comparison area. While it is not possible to verify testing rates by site, 

we consider this difference in testing rates to be plausible because it is within the range of 
observed testing rates, which varied from 21-92% depending on the provider type and age 

group during the study period. The California Department of Public Health mandates 

reporting of laboratory-confirmed influenza deaths among individuals 0-64 years of age, but 
not influenza hospitalizations. Whether a physician orders an influenza test for a patient 

likely depends on a range of factors that could plausibly vary between study areas, including 

hospital protocols, laboratory capacity, patient insurance type, patient risk factors, patient 
symptoms, and the severity of circulating influenza strains at a given time.  

 

The analysis for possible unmeasured time-dependent confounding due to the start of the 
ACA did not explain the discrepancy in the mathematical model and the epidemiologic 

study’s findings. Confounding-corrected estimates aligned with mathematical models only 

when we assumed extreme, unrealistic changes in insurance coverage that were in the 
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opposite direction between study sites. Most studies have not found evidence that the ACA 
led to increased influenza vaccination,23–26 and CDC estimates do not show increased 

national influenza vaccination coverage from 2014 to 2018 in any age group.27 Here, we 

focused on adults ≥65 years old who were already covered by Medicare, and lower 
preventive service and premium costs under ACA may not have been substantial enough to 

influence the risk of influenza hospitalization.  

 
The two analytical approaches that we have compared, mathematical modelling and 

statistical analysis, must each be interpreted with their strengths and limitations in mind. 

Mathematical models allow investigators to explicitly model transmission dynamics and 

offer considerable flexibility to explore a range of scenarios for parameters that cannot 

directly be measured, such as the distribution of prior immunity across different age groups. 

However, models make several simplifications in order to be tractable. In particular, 
mathematical models cannot explicitly model household contact structure, relying instead 

on contact matrices to capture inter-generational mixing. Future work could compare the 
results using individual-based models, which can capture household contact structure more 

explicitly, as well as potentially incorporating heterogeneous mixing by race/ethnicity and 
other groupings (data that was not available in the present study). Additionally, the 
uncertainty analysis of our mathematical model focused on model parameters such as prior 

immunity, but did not examine the effect of alternative model structures (‘structural’ 
uncertainty), including alternative ways of modelling vaccine-induced immunity. While 
statistical analyses in epidemiologic studies generally entail fewer assumptions than 

mathematical models, they are subject to biases of their own. Bias analysis is a useful tool 

for investigating the influence of potential biases but is sensitive to the assumed priors. We 
have higher confidence in our prior definitions for influenza testing rates since they were 

based on local testing rate estimates; priors for time-dependent confounding analyses were 

based on published studies from other populations that may not resemble values in our 
study population. However, our estimates of influenza testing rates included some 

surveillance areas that were outside of the study site, so priors may be inaccurate, and we 

did not have data on the relative difference in testing rates between study areas.  
 

Our findings have several implications for future influenza vaccine studies. Prior to 

constructing mathematical models, it may be useful to conduct a preliminary modeling 
analysis to identify additional data to collect that could improve models. For example, in this 

study, serological analysis of biobanked, pre-intervention samples could have informed 

assumptions about the baseline distribution of influenza immunity within various age 
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groups. In addition, demographic assessments could be used to construct contact matrices 
that account for heterogeneous mixing by race/ethnicity and other groupings. Data 

collection to inform potential bias analyses is also highly valuable (e.g., influenza testing 

rates among hospitalized patients by study group).  
 

More generally, our approach can serve as a template for future infectious disease studies 

aiming to explain different estimates of intervention impact using different methods. There 
are many such examples, including the wide range of differing estimates of the impact of 

non-pharmaceutical interventions for COVID-19 from transmission models and empirical 

epidemiologic studies.28 To give another example, a transmission model and a randomized 

trial produced different effect estimates for combined a water, sanitation, and hygiene and 

deworming intervention to reduce soil-transmitted helminth infections.29,30   

 
No empirical epidemiologic study can definitively rule out bias, and no mathematical model 

can guarantee representation of true population transmission dynamics. Systematic, 
quantitative investigation of the influence of model assumptions and potential biases can 

have equal benefits for improving both modelling and epidemiological analysis by improving 
future data collection and study design.  
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Figures  
 

 
 
Figure 1. Schematic illustration of the mathematical model. We distinguish those who 

were vaccinated in time for the 2017/18 season (lower panel) from those who were not 
(upper panel). Model symbols are as follows: force-of-infection (𝜆), vaccine efficacy in 
reducing the force-of-infection (𝑐), proportion of infections that are symptomatic (𝑝), and 

per-capita recovery rate (𝛾). ‘Layers’ to each compartment denote stratification into six age 
groups: <4yo, 5-11yo, 12-17yo, 18-49yo, 50-64yo, and ≥65yo.  
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Figure 2. Results of model calibration to epidemiological data in the control district (West 
Contra Costa). Curves in red show age-specific data on virologically confirmed influenza 

hospitalizations from FluSURV-NET. Solid red lines show parts of the epidemic when 

influenza A dominated (to which the data were calibrated) while dashed red lines show 

parts of the epidemic driven by influenza B (not addressed in the calibration). Blue curves 
show best model fits, scaled by multipliers associating the data with incidence of 

symptomatic influenza, with shaded regions showing 95% Bayesian uncertainty intervals. 

While this Figure shows model fits to the weekly data, Figure S2 in the supporting 
information also shows model fits to cumulative reported cases.  
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Figure 3. Comparison of parameter estimates between ‘constrained’ and ‘unconstrained’ 

calibrations. In constrained calibration, we incorporated in the posterior density a likelihood 

term for the impact of vaccination in those ≥65 years of age. Figure shows estimates for the 
ratio of parameter values, calculated as constrained vs unconstrained. The vertical dashed 

line corresponds to a ratio of 1 (hence a log-ratio of zero); uncertainty intervals show 95% 
Bayesian credible intervals.  
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Figure 4. Concordance of epidemiologic and mathematical models by % of patients tested 

for influenza in the intervention vs. comparison site  
Using probabilistic bias analysis, we corrected empirical estimates of the incidence of 
laboratory-confirmed influenza hospitalizations in the study site for misclassification due to 

potential incomplete influenza testing of patients hospitalized for pneumonia and influenza. 
In an exploratory analysis, we investigated all possible combinations of priors in each site. A) 
shows whether bias-corrected estimates matched empirical estimates by the percentage of 

patients tested for influenza in the intervention and comparison site. B) shows relative 
reductions in influenza hospitalization incidence by the percentage of patients tested for 

influenza in the intervention site and the difference in the percentage tested between sites.   
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Table 1. Model-simulated indirect effects (reduction in hospitalizations in those ≥65 of 
age) arising from increasing vaccination in schoolchildren 

 

Model type Percent reduction in cumulative hospitalizations in 

those over 65 years old 

Unconstrained 1.6% (Bayesian credible intervals 0.14 – 4.4%) 

Constrained 21.7% (Bayesian credible intervals 20.0 – 23.3%) 

 

 
 

Table 2. Percentage change in influenza hospitalizations corrected for time-dependent 

confounding  
 N simulations 

with valid case 

counts* 

Mean  Range 

Realistic scenario 10,000 -29%   -33, -25% 

Extreme values of health insurance 
coverage by site 

10,000 -27%  -114, 78% 

Extreme values of the relationship 

between hospitalization and health 

insurance coverage 

3,615 -28%  -37%, -20% 

* Excludes simulations that resulted in zero case counts 
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School-located influenza vaccination and community-wide indirect effects: comparing 
transmission models to epidemiologic models 

 
 
Supplement 1. Supporting technical information for the mathematical model 
 
 
Specification of the mathematical model 
 
Governing equations for the deterministic, compartmental model are as follows (see 

Supplementary table S1 for all parameter definitions): 

 
Susceptible to infection, unvaccinated in the current season (𝑆): 
 

𝑑𝑆!
𝑑𝑡 = −𝜆!𝑆!  

 
Susceptible to infection, but vaccinated in the current season (𝑉!): 
 

𝑑𝑉!
𝑑𝑡 = −(1 − 𝑐!)𝜆!𝑉!  

 
Infected and infectious, asymptomatic (𝐴): 
 

𝑑𝐴!
𝑑𝑡 = :1 − 𝑝"#$;[𝜆!𝑆! + (1 − 𝑐!)𝜆!𝑉!] − 𝛾𝐴!  

 
Infected and infectious, symptomatic (𝐼): 
 

𝑑𝐼
𝑑𝑡 = 𝑝"#$[𝜆!𝑆! + (1 − 𝑐!)𝜆!𝑉!] − 𝛾𝐼!  

 
Recovered (𝑅): 

𝑑𝑅!
𝑑𝑡 = 𝛾𝐴! + 𝛾𝐼!  

 
Force of infection (𝜆): 
 

𝜆! =@𝛽𝑚!%:𝐼% + 𝑑𝐴%;
{!,%}

/𝑁%  

  
where 𝑁% = 𝑆% + 𝑉% + 𝐴% + 𝐼%, i.e. the total number of individuals in age group 𝑗, and 𝑚!%  is a 

contact matrix representing the frequency of contacts between age groups 𝑖 and 𝑗, drawn 
from.1  
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For initial conditions, we first constructed a disease-free equilibrium as follows: 
 

𝑆!(0) = G1 − 𝑝!$$
(!) HG1 − 𝑝+,--

(!) H𝑁!; 			𝑉!(0) = G1 − 𝑝!$$
(!) H𝑝+,--

(!) 𝑁!; 				𝑅!(0) = 𝑝!$$
(!) 𝑁! , 

 

and all other state variables being zero. We then initiated an epidemic by introducing 𝑥 

infected individuals in this population, a parameter to be calibrated. The precise value of 𝑥 
does not model projections for the impact of vaccination, because it mainly serves to drive 

the timing of the epidemic. 

 
Model calibration 

 

Free parameters in the model include: the risk of infection per contact; the proportions of 
each age group that are initially susceptible to infection (as determined by pre-epidemic, 

pre-vaccination immunity); and the rate of recovery. We also incorporated uncertainty in 
model parameters such as the proportion of infections that are symptomatic, and terms in 
the age-specific mixing matrix. Denoting these parameter values together as a vector 𝜃, we 

defined the logarithm of the posterior density 𝜋(𝜃) as: 
 

𝐿𝑜𝑔:𝜋(𝜃); =@log	[Pr(𝜇!)]
!

+@𝐿𝑜𝑔[𝐿./-(𝜃, 𝑡)]
,,0

 

 
Where 𝜇!  is the case-to-hospitalization multiplier; Pr(𝜇!) is the prior distribution for 𝜇!  
(constructed by fitting log-normal distributions to the multipliers estimated by CDC.2); 

and	𝐿./-(𝜃, 𝑡) is the likelihood for observed, virologically confirmed hospitalizations in week 
𝑡 given parameters 𝜃.	We constructed the likelihood as follows: if the model-projected 

symptomatic incidence in week 𝑡 and age group 𝑖 is 𝑀!(𝑡), we assumed that the reported 

cases in that week, 𝑅!(𝑡), would follow a binomial distribution with number of trials 𝑀!(𝑡) 
and probability of success 1/𝜇! 	. Approximating this with a normal distribution, we have: 

 

𝐿𝑜𝑔[𝐿!/-(𝜃, 𝑡)] = −@Xlog:𝜎!(𝑡); +
[𝑅!(𝑡) − 𝑀!(𝑡)/𝜇!]1

2𝜎!(𝑡)1
[

!

 

 

where 𝜎!(𝑡) = 𝑀!(𝑡) G1 −
2
3!
H /𝜇!, and all terms on the right-hand side of the equation 

above are implicitly functions of 𝜃.  
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To sample from the posterior density, we used adaptive Bayesian Markov Chain Monte 
Carlo (MCMC).3 After drawing 10,000 samples, we discarded the ‘burn-in’ and then selected 

every 50th sample, in order to derive 250 samples from the posterior density. We repeated 

this process with three different initial parameter values, sampled at random, in order to 
ensure convergent MCMC chains. Evaluating model projections on each of the resulting 

samples from the posterior density, we estimated parametric uncertainty by calculating the 

2.5th, 50th and 97.5th percentiles of these model projections, denoting the interval between 
the upper and lower percentiles as the 95% Bayesian credible interval.  

 

Constrained model 
To identify model parameters that would best explain differences in the results of the 

mathematical model and the matched cohort study, we constrained the calibration by 

additionally including the requirement that model projections should capture the observed 
reduction in hospitalization in the over-65-year-olds. In particular, we defined an alternative 

posterior density as: 
 

𝐿𝑜𝑔:𝜋(𝜃); =@log[Pr(ℎ!)]
4

+@𝐿𝑜𝑔[𝐿./-(𝜃, 𝑡)] + 𝐿𝑜𝑔[𝐿.$5,-0(𝜃, 𝑡)]
,,0

 

 

Where 𝐿.$5,-0(𝜃, 𝑡) is a likelihood term for the reduction in hospitalizations amongst those 

over 65 years old, as a result of the intervention. We modelled 𝐿.$5,-0(𝜃, 𝑡) using a beta 

distribution with shape and scale parameters 37 and 99, respectively, to capture a point 
estimate of 22%, with 95% uncertainty intervals [15, 27].  

 

We repeated the calibration process described above to obtain a ‘constrained’ posterior 

sample 𝜃-. We then evaluated the ratio of unconstrained vs constrained samples, to identify 

any systematic differences between the two.  
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Supplement 2. Prior definitions for the bias analysis for unmeasured time-dependent 
confounding 
 
For P(C|X=1) and P(C|X=0), we initially defined realistic prior distributions assuming that 

coverage was 80% prior to the ACA (normal distribution with mean=0.8, SD = 0.01) and 90% 

afterwards (normal distribution with mean=0.9, SD = 0.01) based on estimates of changes in 

coverage in California during this time (Table S1).4,5  

 

For the risk difference between hospitalization and the confounder, we defined a prior with 

a uniform distribution bounded by [-0.0007, 0.0007] in the pre-intervention period and 

bounded by [-0.0053, 0.0053] in the post-intervention period. We chose these bounds 

because the outcome is rare (influenza hospitalization incidence among adults 65+ years 
was 7 per 10,000 prior to the intervention from 2011-2014 and 53 per 10,000 during the 

intervention in 2017-18), so setting these bounds allowed for a percent reductions in 
incidence ranging from -100% to 100% at each time point. We dropped any bias-corrected 

case counts that were less than 0. 6 

 
We also explored alternative prior distributions with less realistic assumptions to investigate 

what priors would be required to replicate the mathematical model’s findings. First, we 

investigated extreme distributions of P(C|X=1) and P(C|X=0) in which insurance coverage 

was approximately 0% in the intervention site (beta distribution with a = 2, b = 100) and 
90% (normal distribution with mean = 0.9, SD=0.01) in the comparison site prior to the 
intervention and 90% in the intervention site and 0% in the comparison site during to the 

intervention. Second, we investigated a much stronger relationships between 
hospitalization and health insurance coverage, using a uniform distribution bounded by [-
0.01, 0.01] both prior to and during the intervention period.   
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Supplement 3. Additional tables and figures 
 

Symbol Meaning Value, constrained 
[unconstrained] models 

Source 

 

Natural history parameters 

𝜷 Rate of infection, 
amongst those with 
symptomatic disease 

0.18 (0.14 - 0.20)  
 
[0.11 (0.07 - 0.15)] 

Model 
calibration 

𝒅 Rate of infection of 
asymptomatic 
infection, relative to 
symptomatic  

0.61 (0.24 - 0.81)  
 
[0.33 (0.11 - 0.70)] 

𝒑𝒔𝒚𝒎 Proportion of 
infections that are 
symptomatic 

0.89 (0.87 - 0.90)  
 
[0.60 (0.37 - 0.84)] 

𝜸 Per-capita rate of 
recovery 

1.28 (1.09 - 1.48)  
 
[3.52 (2.67 - 4.82)] 

 

Immunity-related parameters 

𝒑𝒊𝒎𝒎
(𝒊)  Initial proportion 

immune in age group 
𝑖, as a result of 
previous 
exposure/vaccination, 
not including 
vaccination in the 
season being modelled 

0-4 yo 0.36 (0.03 - 1.00)  
 
[0.50 (0.03 - 1.00)] 

Model 
calibration 

5 – 11yo 0.93 (0.84 - 1.00)  
 
[0.29 (0.01 - 0.82)] 

12 – 17 
yo 

0.29 (0.21 - 0.38)  
 
[0.62 (0.33 - 0.93)] 

18 – 49 
yo 

0.15 (0.13 - 0.18)  
 
[0.21 (0.11 - 0.35)] 

50 – 64 
yo 

0.77 (0.64 - 0.91)  
 
[0.64 (0.42 - 0.90)] 

>65 yo 0.99 (0.93 - 1.00)  
 
[0.70 (0.47 - 0.95)] 

𝒄𝒊 Vaccine efficacy in age 
group 𝑖  

0-4 yo 0.68 (0.55 – 0.77) Using CDC 
estimates7 5 – 11yo 0.50 (0.36 – 0.61) 
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12 – 17 
yo 

0.32 (0.16 – 0.44)  
We assume that 
vaccination acts 
to protect 
against 
infection 

18 – 49 
yo 

0.33 (0.21 – 0.44) 

50 – 64 
yo 

0.30 (0.13 – 0.34) 

>65 yo 0.17 (-0.14 – 0.39) 

𝒑𝒗𝒂𝒄𝒄
(𝒊)  Proportion vaccination 

coverage in age group 
𝑖 

0-4 yo 0.68 (0.62 – 0.74) C. Reed, 
personal 
communication, 
31 Aug 2020 

5 – 11yo 0.58 (0.53 – 0.63) 

12 – 17 
yo 

0.49 (0.43 – 0.54) 

18 – 49 
yo 

0.25 (0.23 – 0.27) 

50 – 64 
yo 

0.39 (0.36 – 0.42) 

>65 yo 0.58 (0.55 – 0.61)  
 

Surveillance parameters 

𝝁𝒊 Multipliers for 
symptomatic infection 
to hospitalisation and 
virological 
confirmation 

0-4 yo 191.00 (159.67 - 
333.12)  
 
[202.55 (161.13 - 
380.00)] 

Using CDC 
estimates2  

5 – 11yo 605.94 (430.36 - 
1233.25)  
 
[594.03 (454.63 - 
851.14)] 

12 – 17 
yo 

469.23 (427.07 - 
669.15)  
 
[635.41 (434.81 - 
1240.14)] 

18 – 49 
yo 

430.53 (261.48 - 
614.82)  
 
[326.52 (218.66 - 
581.28)] 

50 – 64 
yo 

215.26 (124.72 - 
286.45)  
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[128.83 (97.53 - 
262.99)] 

>65 yo 28.32 (17.12 - 
39.20)  
 
[19.72 (13.85 - 
35.02)] 

 
Table S1. Estimates of model parameters. Numbers in round parentheses show 95% 

Bayesian credible interval estimates. In each cell, two sets of estimates are listed: the first is 

for the ‘unconstrained’ model, while the second (in square brackets) is for the ‘constrained’ 
model, which is constrained to capture the observed impact of augmented vaccination 

coverage in schoolchildren. 
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Table S2. Prior distributions for probabilistic bias analysis  
 

   Percentiles of distribution 

  Prior distribution 0 50 100 

Hospitalization      

% of patients tested 

for influenza 

 
Beta(a=44, b=32) 0.38 0.58 0.78 

Confounding      

Realistic scenario      

P(C|E=1) Pre N(µ=0.8, s=0.01) 0.77 0.80 0.84 

P(C|E=0) Pre N(µ=0.8, s=0.01) 0.77 0.80 0.84 

RDC,D  Pre Uniform(a=-0.0007, b=0.0007) -0.0007 0.00 0.0007 

P(C|E=1) Post N(µ=0.9, s=0.01) 0.86 0.90 0.94 

P(C|E=0) Post N(µ=0.9, s=0.01) 0.86 0.90 0.94 

RDC,D  Post Uniform(a=-0.0053, b=0.0053) -0.0053 0.00 0.0053 

Alternative scenario 1: extreme shifts in health insurance coverage 

P(C|E=1) Pre Beta(a=2, b=100) 0.0002 0.0164 0.1158 

P(C|E=0) Pre N(µ=0.9, s=0.01) 0.86 0.90 0.94 

RDC,D  Pre Uniform(a=-0.0007, b=0.0007) -0.0007 0.00 0.0007 

P(C|E=1) Post N(µ=0.9, s=0.01) 0.86 0.90 0.94 

P(C|E=0) Post Beta(a=2, b=100) 0.0002 0.0164 0.1158 

RDC,D  Post Uniform(a=-0.0053, b=0.0053) -0.0053 0.00 0.0053 

Alternative scenario 2: stronger association between health insurance coverage and influenza hospitalization  

P(C|E=1) Pre N(µ=0.8, s=0.01) 0.77 0.80 0.84 

P(C|E=0) Pre N(µ=0.8, s=0.01) 0.77 0.80 0.84 

RDC,D  Pre Uniform(a=-0.01, b=0.01) -0.01 0.00 0.01 

P(C|E=1) Post N(µ=0.9, s=0.01) 0.86 0.90 0.94 

P(C|E=0) Post N(µ=0.9, s=0.01) 0.86 0.90 0.94 

RDC,D  Post Uniform(a=-0.01, b=0.01) -0.01 0.00 0.01 

RDC,D = E[Y|C=1, E=0] – E[Y|C=0,E=0]  
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Figure S1. Data for vaccination coverage and efficacy used in the modelling. Left panel 

shows the estimates of age-specific vaccination coverage, with blue bars showing the 
baseline coverage (i.e. in the absence of intervention, as in the control district). These data 

show state-level estimates for California. The dashed black area shows the increase in 

vaccination coverage in the intervention district: the modelling analysis aims to capture the 
indirect effects of this enhancement of vaccination coverage in school children aged 5 – 11 

years old. Right panel shows estimates of age-specific vaccine efficacy against influenza A in 
the 2017/18 season, with red lines spanning 95% uncertainty intervals. 
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Figure S2. Comparison of model results and data for cumulative cases reported, for the 
unconstrained model. While Figure 2 in the main text shows model-data comparisons for 
the weekly timeseries of virologically confirmed hospitalizations, here we show comparisons 
for the cumulative reported numbers. Points for age groups lower than 18 years old are 
shown in grey, as these did not have sufficient data to be included as calibration targets. 
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Figure S3. Marginal posterior densities for free parameters in the mathematical model. 

Histograms in blue show posterior densities for the unconstrained model, which projected a 

1.6% decrease in hospitalizations amongst those over 65 years old. Histograms in orange show 

densities for the constrained model, which captures a 22% decrease in hospitalizations amongst 

those over 65 years old. 
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Figure S4. Results of calibrating the constrained model to epidemiological data in the 

control district (West Contra Costa). As for Figure 2 in the main text, curves in red show age-
specific data on virologically confirmed hospitalizations from FluSURV-NET, scaled by 
multipliers associating this data with symptomatic incidence. Solid red lines show parts of the 

epidemic where influenza A dominated (to which the data was calibrated) while dashed red 
lines show parts driven by influenza B (not addressed in the calibration). Blue curves show 

best model fits, with shaded regions showing 95% Bayesian uncertainty intervals. While this 

Figure shows model fits to the weekly data, Figure S5 below also shows model fits to 
cumulative reported cases. 
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Figure S5. Comparison of model results and data for cumulative cases reported, for the 

constrained model. As for figure S2, but for the constrained model. 
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Figure S6. Bias-corrected estimates that matched the mathematical model. We used probabilistic bias analysis to adjust for potential time 

dependent confounding in the empirical matched cohort study due to the implementation of the main provisions of the Affordable Care Act, 
which coincided with the start of the intervention in 2014. Here, we restricted to bias-corrected estimates that matched the mathematical 

model. Panels on the bottom left show pairwise scatter plots of each prior. The diagonal shows univariate density distribution for each prior. 
Panels on the upper right show pairwise Pearson correlations.   
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Figure S7. Bias-corrected estimates that did not match the mathematical model. We used probabilistic bias analysis to adjust for potential 

time dependent confounding in the empirical matched cohort study due to the implementation of the main provisions of the Affordable Care 
Act, which coincided with the start of the intervention in 2014. Here, we restricted to bias-corrected estimates that did not match the 

mathematical model. Panels on the bottom left show pairwise scatter plots of each prior. The diagonal shows univariate density distribution 
for each prior. Panels on the upper right show pairwise Pearson correlations.  
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