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Abstract We investigate structural properties of neurons in the granular layer of human13

cerebellum with respect to their involvement in multiple sclerosis (MS). To this end we analyze14

data recorded by X-ray phase contrast tomography from tissue samples collected post mortem15

from a MS and a healthy control group. Using automated segmentation and histogram analysis16

based on optimal transport theory (OT) we find that the distributions representing nuclear17

structure in the granular layer move to a more compact nuclear state, i.e. smaller, denser and18

more heterogeneous nuclei in MS. We have previously made a similar observation for neurons of19

the dentate gyrus in Alzheimer’s disease, suggesting that more compact structure of neuronal20

nuclei which we attributed to increased levels of heterochromatin, may possibly represent a21

more general phenomenon of cellular senescence associated with neurodegeneration.22

23

Introduction24

The complex cytoarchitecture of the human brain can undergo pathological alterations associated25

with neurodegenerative diseases. Morphological changes may range from drastic and relatively26

easy to be diagnosed to – on the contrary – very subtle and yet elusive changes. Deciphering27

the interplay between the neuronal tissue structure and the development of neurodegenerative28

diseases therefore remains a challenge which requires further progress in imaging and morpho-29

metric quantification. Today, histology and histopathology is largely based on tissue sections and30

observation of exemplary regions in two-dimensions (2d) by optical or electronmicroscopy. Three-31

dimensional (3d) imaging is required to digitalize and compare structures in their full dimensional-32

ity. Serial sectioning, staining, digital microscopy and subsequent alignment is laborsome, but can33

in principle address micro-anatomy and cytoarchitecture in 3d. Unfortunately, this comes at the34

cost of a non-isotropic resolution, possible artifacts due to the slicing, staining, or the alignment35

procedure. Moreover, this approach is severely limited in throughput, and therefore often impedes36

the visualization of large fields of view (FOV), even at moderate resolution, as well as the compari-37

son between a sufficient number of individuals. Sufficient sample size and volume, in combination38

with unsupervised morphometric quantification, however, is a prerequisite to understand the lim-39

its of ’structural homeostasis’ and the onset of pathological structural alterations. X-ray phase40

1 of 25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2022. ; https://doi.org/10.1101/2022.10.07.22280811doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

tsaldit@gwdg.de
https://doi.org/10.1101/2022.10.07.22280811
http://creativecommons.org/licenses/by-nc-nd/4.0/


contrast computed tomography (XPCT) has been recently introduced as a new 3d imaging method41

for histology and pathohistology Albers et al. (2018); Massimi et al. (2020); Vågberg et al. (2018);42

Reichardt et al. (2021); Frohn et al. (2020); Dejea et al. (2019); Khimchenko et al. (2016). It offers43

a capability for high resolution imaging of soft tissues over a cross section of several mm, with a44

geometric zoom able to visualize selected regions of interest down to 20 nm to 50 nm voxel sizes45

Bosch et al. (2022); Kuan et al. (2020). In this way, 3d reconstructions of neurons and their spatial46

organization within particular regions can be obtained. By comparison of different cohorts, mor-47

phometrical analysis may also contribute to an understanding of neurodegenerative mechanisms,48

in particular if tissue structure is probed at subcellular resolution.49

A case in point is cerebellar involvement in multiple sclerosis (MS), which is relevant for MS-related50

impairments, including not only cerebellar motor dysfunction but also cognitive cerebellum associ-51

ated deficitsWeier et al. (2015); Kutzelnigg et al. (2007); Parmar et al. (2018). More generally, asMS52

research is no longer restricted to inflammation and demyelination as major pathological mecha-53

nisms, but also includes neurodegenerative processes Albert et al. (2017), it is timely to address54

the cerebellar cytoarchitecture in a broader sense. As one of the oldest brain regions of mammals,55

the cerebellum is well known for its role in motion control and synergy of movementsManto et al.56

(2013). Despite a relatively small weight of ∼ 10% of the total brain mass, the cerebellum contains57

80% of the total number of neurons within the human brain Azevedo et al. (2009). Tightly packed58

neurons in its densest layer, the so-called granular layer, are a particular target when screening59

for possible MS-related changes in the cytoarchitecture. Along with the molecular layer and the60

interfacial Purkinje cell layer, the granular layer is part of the tightly folded cerebellar cortex.61

In a preceding study, we provided 3d imaging of tissue samples from human cerebellum, collected62

post mortem by autopsy Töpperwien et al. (2018). The millimeter sized samples were taken by63

biopsy punches from formalin-fixed and paraffin-embedded (FFPE) tissue blocks, and scanned by64

XPCT. Phase contrast was achieved based on propagation of partially coherent wavefields, using65

both synchrotron radiation for high resolution and custom 𝜇-CT scanners for larger overviews.66

Datasetswith subcellular resolutionwere obtained, and a reconstructionworkflow to automatically67

locate the neuronal nuclei in themolecular and granular layer by an automated approach based on68

the Hough transform, giving a detailed statistical account of the spatial packing of neurons within69

the granular layer (cf. Fig. 1d). Based on local density estimations and pair correlation functions,70

a previously unknown anisotropy in the short-range order of granule cells was reported, which71

reflected the plane of the dendritic trees of the Purkinje cells.72

In this work, we extend the previous analysis from physiological histology to the pathohistology73

of MS. To this end, we use the data provided in Töpperwien et al. (2018) and investigate possible74

alterations in the granular layer occurring in the tissue of 6 MS patients compared to samples from75

6 control subjects. Since data acquisition and tomographic reconstruction was already reported in76

detail Töpperwien et al. (2018); Töpperwien (2018), we concentrate here on pathological structural77

alterations of cerebellar granule cells. Note that previously only neuron locations, but no struc-78

tural features of neurons were obtained in the segmentation. Here we can now provide a detailed79

comparison of structural features of neuronal nuclei, since progress in segmentation allowed us80

to extract not only positions of nuclei, but also size, shape, and electron density, as well as hetero-81

geneity of the density within the nucleus. Furthermore, we now have novel statistical tools at hand,82

based on optimal transport (OT) theory Santambrogio (2015); Peyré and Cuturi (2019), with which83

the structural differences in the cytoarchitecture can be compared, even without prior structural84

hypothesis and group attribution. The fact that we earlier found clear changes in dentate gyrus85

granule cells associated with Alzheimer’s disease (AD) Eckermann et al. (2021), also motivated us86

to reinvestigate the cerebellum data, in view of possible involvement of cerebellar granule cells in87

MS.88

The manuscript is organized as follows: after this introduction, the results section first describes89

the available data and the segmentation of neuronal nuclei, before we analyze neuronal density90

and packing, and then nuclear morphological features. The multidimensional histograms repre-91
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Figure 1. Experimental setup and analysis workflow. (a) Sketch of the human cerebellum in transversal slice and zoom-in to the cerebellarcortex, which contains various types of cells. (b) Tissue samples of the cerebellum were taken post mortem from twelve individuals (6 MS, 6Control) and embedded in paraffin. Biopsy punches of the samples were placed into a Kapton tube for scanning. (c) Schematic of thesynchrotron setup at the PETRAIII storage ring (DESY, Hamburg). X-rays with an energy of 13.8 keV are generated, focused and hit an intensitydetector behind the sample. From the projections, the sample is reconstructed using phase retrieval. (d) The reconstructed volume covers theinterface between the molecular- and the granular layer (right, inverted contrast). A virtual slice through the volume reveals histological featuressuch as the granule cell nuclei or the dendritic tree of a Purkinje cell (left). Scale bar: 50µm. Also the internal structure of the nuclei can beresolved (middle). (e) In the previous work of Töpperwien et al. (2018) the data were segmented with the Hough transform, which is suited tofind center positions of the GC-nuclei and generates spherical objects (left). Here, we segment the nuclei with the Blob Finder algorithm fromArivis, which generates segments covering the actual shape of the nuclei (right). This enables to determine structural features of the nuclei suchas their volume or sphericity. Note that the 3d views in (e) left/right do not correspond to the same location. (f) The nuclei are then representedin a feature space – an abstract space in which each nucleus represents a point with coordinates encoding their structural properties. Eachsubject is represented by a point cloud, with is then further analyzed in view of pathological alterations.

senting the neuron population of any single subject are then further compared between individu-92

als of the MS and control groups, using concepts of OT theory. The paper closes with a discussion93

and summary of the main morphometric results. Technical details are presented in the Materials94

and Methods section in summarized form, and in part further explained in the appendix.95

Results96

Figure 1 presents (a) a schematic of the granular layer as the target region of this work, and (b) the97

sample extraction from a tissue block, which is chosen to probe the granular layer of the cerebellar98

cortex, consisting of the molecular layer, the granular layer and the Purkinje cell layer at the inter-99
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face of the latter. In (c), the XPCT data acquisition scheme is depicted, followed by (d) an example100

illustrating the data quality, (e) a comparison of two different segmentationmethods, and finally (f)101

a schematic of the so-called feature space consisting of point clouds, in which the coordinates of102

each point represents features of corresponding nuclei, which then subjected to further analysis.103

Data104

Tissue samples were acquired from a total of twelve age-matched subjects: six patients suffering105

from multiple sclerosis (MS), and six healthy control subjects (Control, CTRL). The samples were106

collected post mortem, chemically fixed and embedded in paraffin. Using biopsy needles, cylin-107

drical tissue samples were punched out of the paraffin-embedded tissue blocks, and placed in a108

polyimide (Kapton) tube, as depicted in Fig. 1(b). The samples were scanned at the GINIX endsta-109

tion Salditt et al. (2015) of the P10 beamline of the PETRAIII storage ring (DESY, Hamburg), see110

the schematic of the experimental setup in Fig. 1(c). The monochromatic (Si(111) channel-cut111

monochromator) undulator beamof 13.8 keVphoton energywas prefocusedby apair of Kirkpatrick-112

Baez (KB) mirrors and coupled into an X-ray waveguide serving further spot size reduction and co-113

herence filtering. Using this scheme, the samples which are positioned on the fully motorized to-114

mographic stage are illuminated by a fully coherent beam with reduced wavefront artefacts which115

facilitates a clean and artifact poor image formation. Projected in-line holograms are recorded on116

a fibre-coupled detector. Projection images are first treated by phase retrieval using a Contrast-117

transfer function (CTF)-based algorithm Cloetens et al. (1999) implemented in a published soft-118

ware package Lohse et al. (2020) prior to tomographic reconstruction. Detailed information about119

data acquisition and the experimental setup can be found in Töpperwien et al. (2018). The recon-120

structed samples have a field of view (FOV) of 336 × 336 × 375 µm3 and capture the transition from121

the molecular to the granular layer. The voxel size of 187 nm is sufficient to identify various his-122

tological characteristics such as blood vessels, the dendritic tree of a Purkinje cell as well as the123

nuclei of the granule cells, when observing a virtual slice through the volume (see e.g. Fig.1(d) left).124

Furthermore, the internal structure of the nuclei is resolved. Note that gray values in XPCT repre-125

sent phase shifts of the X-ray beam which are proportional to the electron density difference with126

respect to the average sample, here predominantly the paraffinmountingmedium. In Töpperwien127

et al. (2018) the granule cell nuclei were already segmented using the spherical Hough transform128

Peng et al. (2007). The Hough transform finds the center positions of spherical objects and gen-129

erates spheres of equal size. Contrarily, here we are interested in the details of nuclear volumes,130

shapes, and electron density distribution. To this end, the nuclei are segmented with the Blob131

Finder algorithm of the software Arivis (Zeiss AG, Germany). The Blob Finder generates segments132

which cover the actual shape of the nuclei, in contrast to the Hough transform which only gives133

the center positions of the nuclei. Here we can hence exploit detail structural properties related to134

the size, roundness and the density of the nuclei, as illustrated in Fig.1(e). We use this information135

to place each neuron in a feature space, with coordinates representing the corresponding struc-136

tural property, as schematically illustrated in Fig.1(f) and previously introduced in Eckermann et al.137

(2021). In this way, one obtains a multidimensional distribution (histogram) for each subject. Anal-138

ysis of the entire distributions and OT based metrics then allows us to probe differences between139

individuals on the histogram level, instead of only the mean or median values. Most notably, we140

can compare data beyond the capacity limits and bias of visual inspection.141

Segmentation142

The segmentation was performed using the software Arivis Vision4D (Zeiss AG, Germany). Several143

ten thousand neurons were detected in a semiautomatic workflow for each sample. The segments144

were created with the Blob Finder algorithm which is designed to find round, sphere-like objects.145

It has several adjustable parameters with which size and number of found objects can be varied.146

Note that all samples were segmented with the same parameters in order to make the results147

comparable. Since we focus on the analysis of the granule cell nuclei, all objects found by the148
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Figure 2. Segmentation of the granule cell nuclei. (a) A mask enclosing the granule layer is used to remove segments lying in the molecular layerand Purkinje cell layer as well as artifacts in the corner of the samples. (b) Plotting the properties volume and sphericity of all segments in ascatterplot allows the segments to be distinguished into three subgroups: granule cells (middle), double cells (bottom right) and artifacts (left).The artifacts are filtered out, and the double cell segments are split into single cell segments (c) The final segmentation results shown in a 2dslice. Different segment colors serve for better distinction. (d) Three-dimensional rendering of the segments reveals a homogeneousdistribution of round spheres, which adequately represent the granule cell nuclei.

Blob Finder outside the granular layer were vetoed out. For this purpose, a mask was created149

which only encloses the granular layer. The mask was defined by manual drawing in the data,150

see Fig.2(a). All objects outside the mask are removed. Furthermore, several filters were applied151

to remove segments which clearly do not represent granule cell nuclei. For detailed information152

about the filter limits and the general segmentation workflow, see Appendix 1. The limits of the153

filters were determined by plotting all segments in a scatter plot, see Fig. 2(b). In the scatter plot, all154

segments are plotted as single points according to their properties like volume or sphericity. In this155

representation, three subgroups of segments can be identified. Themiddle of the three groups are156

identified as the granule cells. The left group are small artifact segments which are filtered out by a157

volume filter of≈ 10µm3. The right group corresponds to “double cells”, which occur when two cells158

are close to each other and are covered by only one segment. To ensure that each cell is covered159

by exactly one segment, the double cell segments can be separated with the splitting operation of160

Arivis. This operation applies a distance map on the segments, whose local maxima are then used161

as seed points for a Watershed-algorithm. Figure 2(c,d) show the final segmentation results after162

filtering. A homogeneous distribution of round segments is obtained, which adequately covers the163

granule cell nuclei. From the segments the following properties are extracted: the center of mass,164
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Figure 3. Structure factor characterizing spatial arrangement of the nuclei. (a) The group averages of thepowder-averaged structure factor, with the error intervals (standard error of the mean 𝜎𝑥̄(𝑞)) (left) of theMS-group (left) and (right) the CTRL-group. (b) A zoom-in showing the MS group-averaged structure factor tobe located at the boundary of the error interval of the CTRL group, and vice versa, which is quantified by 𝜒values of 1.04 and 1.58, respectively. (c) The cell density of all individuals plotted with the mean density ofboth groups. t-test on the density values yields 𝑝 = 0.091.

volume, sphericity, mean of electron density and standard deviation of electron density. The latter165

is dominated not by white shot noise of the reconstructed gray values, but by the density variations166

representing nuclear sub-structure. We denote this variation as heterogeneity of the nucleus.167

Density and local ordering of granule cells168

With the center positions of the nuclei obtained from the segmentation, the density of the granule
cells within the granular layer is calculated for each subject. To this end, the volume of the granule
layer is computed by creating an envelope around all cells. The total cell count divided gives the
average cell density, which is plotted for all subjects in Fig. 3c. For the MS group, the average
𝜌̄𝑛 =3.59 × 106 1∕mm3 is higher than for Control subjects with 𝜌̄𝑛 =2.99 × 106 1∕mm3, with marginal
statistical significance of 𝑝 = 0.091 (Welch’s t-test, double-sided). The short range order of the cells
can be further investigated by calculating the structure factor 𝑆(𝐪) for each sample, using concepts
of quantifying ordering in amorphous and liquid structures of condensed matter, which we had
already used for neurons in Töpperwien et al. (2018). The structure factor is calculated based on
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the nuclei center positions 𝐫 according to
𝑆(𝐪) = 1

𝑁

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
e−𝑖𝐪⋅(𝐫𝑗−𝐫𝑘) , (1)

where𝑁 denotes the number of nuclei and 𝐪 the reciprocal space vector. A 3d structure factor 𝑆(𝐪)169

is obtained for each subject, which was investigated in view of directional anisotropy already in170

Töpperwien et al. (2018). Here, we focus on the comparison between MS and CTRL and to this end171

content ourselves with the 1d (powder averaged) 𝑆(𝑞), which can be comparedmore easily already172

based on visual inspection. Figure 3a shows the group-averaged 𝑆(𝑞) curves, representing a mean173

structure factor for MS and one for CTRL. Two strong modulations of the curves show that the174

neurons exhibit pronounced short range order. The peak of theMS curve is slightly shifted towards175

the higher wave numbers in comparison to 𝑆CTRL(𝑞), which indicates a more compact arrangement176

in MS and is in agreement with the higher cell densities. To determine whether the observed177

shift is statistically significant, we test whether the graphs lie within each other’s error interval. As178

error interval, the standard error of the mean 𝜎𝑥̄(𝑞) is chosen. At every point 𝑞 where the structure179

factors are sampled, the squared ratio 𝜒2 of the distance between the graphs and the error 𝜎𝑥̄(𝑞)180

is calculated and averaged over all 𝑞 as181

𝜒2 = 1
𝑛

𝑛
∑

𝑞=1

(

𝑆MS(𝑞) − 𝑆CTRL(𝑞)
)2

𝜎𝑥̄(𝑞)2
. (2)

Since the powder-averaged structure factors are noisy for very high and very small 𝑞 values, this is182

done only in the range 0.3µm < 𝑞 < 5µm (5µm is the sampling limit of the 3d structure factors). Note183

that two 𝜒2 values are obtained, since we can compare the distance once with the error of MS and184

oncewith that of CTRL, resulting in 𝜒2 = 1.04 and 𝜒2 = 1.58 respectively. This would indicate that the185

differences are not statistically significant, and that more samples are required to unravel possible186

inter-group effects from the inter-subject variance. In fact, when inspecting the residuals and the187

systematic changes in the curve, one may very well be tempted to reject the null hypothesis.188

Creating the feature space189

After the granule cell nuclei are segmented and several properties have been extracted, we next in-190

vestigate whether the structural properties of the nuclei (as opposed to their spatial arrangement191

and ordering treated above) exhibit significant systematic changes associated with MS pathology.192

To this end, we have created a workflow in which the nuclei are characterized by several quan-193

tifiable properties, which we denote as features. Accordingly, each segmented nucleus can be194

considered as a point in a so-called “feature space”. The coordinates of the point are given by the195

respective feature values, where each dimension corresponds to one feature. For every subject,196

the population of all granule nuclei then forms a point cloud in this feature space. The point cloud197

can be thought as a sum of Dirac masses with uniform weights 𝜇 = 1
𝑁𝜇

∑𝑁𝜇
𝑖=1 𝛿𝑥𝑖 . Thus, one receives198

a multidimensional discrete distribution, which represents an individual by the properties of its199

nuclei. The following six features were chosen for the analysis:200

• volume 𝑣201

• sphericity 𝜑202

• mean of electron density 𝜌203

• heterogeneity 𝑠204

• number of neighbors within local vicinity 𝑛𝑛205

• distance to nearest neighbor 𝑑𝑛𝑛206

The heterogeneity describes the standard deviation of the electron density within the nucleus,207

given by 𝑠 =
√

1
𝑁−1

∑𝑁
𝑖=1(𝑥̄ − 𝑥𝑖)2 where 𝑥𝑖 are the gray values (=̂ electron density) of the voxels208

enclosed by a segment. The number of neighbors 𝑛𝑛 is given by the number of cells located within209
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Figure 4. Features space and individual feature analysis. (a) From the segmented nuclei, a feature space is constructed in which individuals arerepresented by the features of their nuclei. The figure shows 2d projections of the 6d feature space, example shown for one subject. Singlepoints refer to granule cell nuclei, a whole point cloud to one subject. (b) Histograms of single nuclei feature plotted, example shown for onesubject, revealing all features are approximately Gaussian distributed. (d) Violin plot of the heterogeneity for all subjects. (d) Median values of allsubjects and each feature. A significant difference between controls and MS patients can be observed for the feature heterogeneity. Since 𝑛𝑛takes only integer values, the mean instead of the median was used for reasons of accuracy. Note that all properties are shown centered to thepopulation mean and normalized to the population standard deviation. (e) A matrix containing the Wasserstein-2 distance between any twoindividuals, calculated here between the histograms for the feature heterogeneity. Dashed lines separate the groups.

a radius of 7.45µm from the original cell. The value of 7.45µm was chosen such that it corresponds210

to the average position of the local minimum between the first and second correlation shell of211

the pair correlation function. Prior to analysis, the data is standardized and normalized. To do so,212

the mean value 𝜇 of the total population, that is all granule cells of all subjects, is subtracted from213

each individual measurement 𝑥 and divided by the standard deviation 𝜎 of the population with214

𝑧 = (𝑥 − 𝜇)∕𝜎. This is done separately for each feature. The standardized population then has an215

expectation value of zero and a variance of one. After standardization, we construct a 6d feature216

space out of the six features. Figure 4a shows 2d projections of a point cloud in feature space.217

Plotting the individual features of all nuclei from a subject as histograms (see Fig. 4b), shows that218

all features are approximately Gaussian distributed. We first examine differences between groups219

by creating violin plots out of the 1d histograms. When doing this for the heterogeneity 𝑠, a clear220

trend between groups can be identified (see Figure 4c). The median values of the MS group are221

all higher than those of the Control group. However for the remaining features, no distinct trends222
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can be found (cf. Appendix 3). Furthermore, themedian values over the neuron populations for all223

features are calculated. Figure 4d shows the median values of all individuals and for each feature.224

Again, a significant difference between the groups can be found for the heterogeneity 𝑠, whereas225

for the remaining features, no statistically significant result can be inferred. In order to quantify226

group differences, a t-test (Welch, double-sided) is applied to the median values. The calculated227

p-values are listed together with the averaged median values of the nuclei parameters in Table 1.228

A 𝑝 value of 0.001 confirms a significant difference in heterogeneity, whereas for the other features229

no differences were found between Controls and MS patients. Note that the 𝑝 values reflect group230

differences with respect to the twelve median values rather than to the entire neuron population,231

which we investigate next in more detail.232

In fact, in addition to t-testing the median values, the entire distribution in the multidimensional233

feature space can be compared by metrics of optimal transport (OT) theory. Since the neuronal234

nuclei of each subject are not sufficiently well represented by only their median or mean values,235

comparing the entirety of recorded nuclei between subjects will allow for a more complete and236

powerful comparison, and hence also a more sensitive test of possible pathological alterations.237

Originally developed to model logistic transport problems, today OT is a popular tool in data anal-238

ysis Peyré and Cuturi (2019) since it allows measuring the similarity of distributions by the minimal239

“transportation cost”. As explained above, OT has the decisive advantage over classical statisti-240

cal approaches that it takes the entire neuron population into account, enabling to detect small241

movements of subpopulations as well as to compare distributions not only in a single dimension242

(feature) but in high dimensional space taking all features into account simultaneously. We will use243

OT in two steps: first we compare single feature histograms one-by-one and then compare the full244

6d point clouds with OT. To analyze the former, we compute the pairwise Wasserstein-2 distance245

between all histograms, which for two discrete measures 𝜇 and 𝜈 and Euclidean ground metric is246

formulated as247

2(𝜇, 𝜈) = min
𝑃∈Π(𝜇,𝜈)

𝑁𝜇
∑

𝑖=1

𝑁𝜈
∑

𝑗=1

|

|

|

𝑥𝑖 − 𝑦𝑗
|

|

|

2
𝑃𝑖,𝑗 , (3)

where 𝐏 is the optimal coupling between 𝜇 and 𝜈, Π the set of all couplings, and 𝑥, 𝑦 denote the248

positions of the bins. For the calculation of  the Python Optimal Transport - package by Flamary249

et al. (2021) was used. The calculated pairwise Wasserstein distances are arranged in a matrix,250

which is shown in Fig. 4e. Dashed lines separate the two groups and divide the matrix into four251

quadrants. The higher values for  in the upper right quadrant compared to the lower right and252

upper left quadrants implies that the distances between subjects of different groups are larger253

than within a group. This indicates a group segregation in the feature heterogeneity, as already254

Median over subject ALL CTRL MS 𝑝∗

neuron population mean std mean std mean std
Rel. electron density 𝜌 (1∕nm3

)

31.23 5.38 29.19 5.02 33.26 4.85 0.225
Heterogeneity 𝑠 (1∕nm3

)

8.78 0.94 8.01 0.56 9.55 0.51 0.001
Volume 𝑣

(µm3
)

26.83 4.41 28.35 5.35 25.3 2.38 0.283
Sphericity 𝜑 0.62 0.01 0.63 0.01 0.62 0.01 0.569
𝑛𝑛 within radius of 7.45µm* 7.24 1.2 6.83 0.75 7.66 1.41 0.281
Nearest-neigh. dist. 𝑑nn(µm) 4.38 0.22 4.44 0.2 4.32 0.22 0.391
Cell density 𝜌̄𝑛 (⋅106∕mm3

)

3.05 0.64 2.99 0.43 3.61 0.64 0.091
Table 1. Overview of granule cell parameters. The data and 𝑝 values are calculated from the median values ofthe subject populations prior to standardization. The 𝑝 value is with 0.001 very low for heterogeneity. Thevalues of the electron density indicate the difference to the electron density of the average medium, which isparaffin in this case. *Since 𝑛𝑛 takes only integer values, the population mean instead of the median was usedfor reasons of accuracy.
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suspected from the median values. For the remaining features, whose charts can be seen in the255

Appendix 3, again no clear trends can be identified.256

Multidimensional analysis with OT257

In addition to the 1d-histograms, we next analyze the full six-dimensional point cloud distribution258

with optimal transport. Since the OT calculations of the point clouds are computationally expen-259

sive, they will be approximated by multidimensional Gaussian distributions, whose mean and co-260

variance matrix are given by the empirical mean and covariance matrix of the point clouds. Note261

that the above analysis can also be applied to the point clouds, yielding the same results (com-262

pare Appendix 4). Figure 5a shows the Gaussian distributions in a 2d subspace represented by263

ellipses. The ellipses are centered around the mean, the orientation of the principal axes is given264

by the eigenbasis of the covariance matrix, and their length by the square root of the correspond-265

ing eigenvalues, which gives the 1-𝜎 range around the mean. The Gaussians have the advantage266

that theWasserstein distance between them can be calculated analytically by combining the Bures267

metric Forrester and Kieburg (2016) on the covariance matrices Σ with the Euclidean distance on268

the mean values 𝐦 according to269

2
2 (𝛼, 𝛽) =

‖

‖

‖

𝐦𝛼 −𝐦𝛽
‖

‖

‖

2
+ 

(

𝚺𝛼 ,𝚺𝛽
)2 , (4)

where the Bures metric  is defined for positive definite matrices as270


(

𝚺𝛼 ,𝚺𝛽
)2 def.

= tr
(

𝚺𝛼 + 𝚺𝛽 − 2
(

𝚺1∕2
𝛼 𝚺𝛽𝚺1∕2

𝛼

)1∕2
) (5)

Before using the Wasserstein distances in further steps below, it must be noted that the Wasser-271

stein space of distributions is not a linear vector space. Contrarily, it forms a Riemannian manifold272

(curved hypersurface), which impedes straightforward application of standard linear algebra tools273

such as principal component analysis (PCA). To get around this, we follow the Linearized Optimal274

Transport-framework (LOT) introduced byWang et al. (2013) (for a review see Kolouri et al. (2017))275

in order to approximate the manifold locally by its tangent space at a suitable reference point (for276

full details see appendix 2 and references). As reference point, we choose the barycenter of all277

samples (whole population), which itself is a Gaussian distribution with mean and covariance ma-278

trix given by the fixed-point algorithm of Álvarez-Esteban et al. (2016). After projecting the samples279

to the linear tangent space the Wasserstein distance between two embedded samples is approx-280

imated by the Euclidean distance between the embedding vectors. Figure 5 shows the linearized281

Wasserstein distances between any two subjects. The values are higher in the inter-group quad-282

rant, than in the intra-group quadrants, (inter = 2.039, compared tointraMS = 1.41,intraCTRL = 1.56)283

indicating a possible segregation of the groups. Moving to the tangent space comes with a change284

of perspective: in tangent space, each subject is now represented by a single point instead of a285

whole point cloud on feature space. We can thus interpret it as a “space of subjects”. The di-286

mensionality of the tangent space equals that of the manifold of covariance matrices and mean287

values, given by 21 independent entries of the covariance matrix (accounting for symmetry) and288

6 mean values, totaling in 27 dimensions. Before performing further analysis in tangent (or sub-289

ject) space, we apply principal component analysis (PCA) to reduce the number of dimensions to290

3. The three principal components capture 95% of the data variance. Plotting the coordinates of291

the subjects in the reduced 3d PCA eigenbasis as depicted in Fig. 5c, reveals that the subjects form292

two clusters according to their groups. Each principal component contributes almost equally to293

the segregation of the groups. Note that the construction of the subject-space is done without any294

prior categorization into groups. We further apply a simple linear support vectormachine (SVM), in295

3d which returns a hyperplane for classification. Figure 5d shows the distances of the samples to296

the hyperplane. The hyperplane divides the samples exactly into their classes, demonstrating the297

data are linearly separable. By the so-called “push-forward” it is possible to map from the tangent298

space back to the space of Gaussian distributions and thus movements in tangent space can be299
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Figure 5. Optimal Transport Analysis. (a) The point clouds are approximated by multivariate Gaussian distributions, such that distances can beevaluated in closed form via the Bures metric (5)). The multivariate Gaussians are represented here by 1 − 𝜎 ellipses around the center of massin 2d projections of the feature space. (b) After projection to the linear tangent space, all pairwise distances between the 6d ellipsoids arecomputed in linear approximation. Distances are arranged in a matrix chart, where dashed lines separate groups. (c) Following a PCA in tangentspace, a low-dimensional embedding can be constructed, in which individuals are represented by single points instead of distributions. Asegregation of the two groups into two clusters is observed. Note that this space is constructed without any prior knowledge about the sampleclasses. (d) Applying an SVM to the subject coordinates in the PCA-reduced space reveals a hyperplane separating the two groups. (e) Theconnection vector between the means of both groups in the subject space is used to generate “prototypical” distributions for both MS andControl via the so-called “push forward” operation. Histograms of these distributions, plotted for each feature and each group separately,inform about the pathological alterations of the nuclei from Control(- -) to MS(++).

translated to changes in the distributions of the individual features. We use this to study the differ-300

ence between the prototypical distributions of both classes. For this purpose, the mean values of301

both groups in the subject space are calculated, whose difference vector can be interpreted as the302

main direction of discrimination between healthy and pathological. Via the “push-forward” we then303
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generate distributions corresponding to the (purely virtual) subjects obtained by moving from the304

origin of the tangent space along the difference vector, once into the Control- and once into theMS305

direction. We interpret these as prototypical representatives of MS- and Control subjects. From306

these distributions, histograms can be generated for each feature separately, which are shown in307

Figure 5e. It can be seen that the histograms differ in several features. This result allows to indicate308

a pathological transformation, which the granule cell nuclei undergo during the disease. Accord-309

ing to the histograms, granule cells of multiple sclerosis patients compared to those of healthy310

Controls have:311

• a smaller volume 𝑣312

• a higher electron density 𝜌313

• a higher heterogeneity 𝑠314

Discussion315

The first structural property and question to be discussed is a simple one: does the spatial density316

of neurons, which is already exceptionally high in the granular layer of the cerebellum, increase317

further in MS, and if so why could this possibly the case? Indeed, this study finds a 16% increase in318

density for theMS group, albeit only atmarginally statistical significance 𝑝 = 0.09. Cell segmentation319

and counting in the reconstructed volumes gave a direct assessment of cellular density, obviously320

superior to conventional estimates based on 2d observation. The increase is further corroborated321

and detailed by comparing the structure factors 𝑆(𝑞) describing the short range order of granule322

cells. Note that the center of mass positions for all cellular nuclei in a certain volume makes it pos-323

sible to statistically analyze the short range order in quantitative terms. Here, the overall increase324

in density is reflected by a shift of the first maximum of 𝑆(𝑞) towards higher 𝑞, indicating a smaller325

next neighbor distance in the MS group. We can tentatively put forward the following interpreta-326

tion: Since it is unreasonable to assume that new neurons have been formed in the course of the327

disease, the observation of higher density and shorter next neighbor distance could be explained328

only by tissue shrinkage, possibly as a response to a less active state of neurons (see below) and329

tissue remodeling in the inter-neuronal space, the neuropil. This would be in line with earlier stud-330

ies which discussed tissue loss and brain atrophy as a result of axonal damage by demyelination331

and neurodegenerationWeier et al. (2015); Lassmann et al. (2007); Haider et al. (2016).332

Next, we address the structural properties (features) of the neuronal nuclei: heterogeneity, which333

quantifies the density variation with the nucleus, is the most significant feature changing between334

MS and Control. Already on the level of the median values it shows a significant increase. This335

if further corroborated by OT analysis, which compares the entire histogram of a feature, and336

therefore can also account for changes in neuronal population of a subject when its mean value337

remains constant. If, for example, transitions occur in the width or shape of the distribution such338

as increased tails, this may not affect median or mean by left/right symmetry but clearly changes339

the distribution. In this sense, OT is a more complete and more sensitive probe of structural al-340

terations between the groups. For a more transparent analysis we approximate the non-linear341

OT space by a linear tangent space and subsequent reduction with PCA to three dimensions. The342

resulting embedding shows a clear separation between the groups, which is identified without a343

prior hypothesis by the OT analysis. A simple SVM classifier is then able to perfectly separate the344

two classes along an axis. Alternatively we consider the axis spanned by the difference of the class345

means. Via the push-forward we find that this axis encodes a transition to increased heterogeneity,346

smaller volume, and higher density. We might call it an axis of compactness.347

How can this shift towards a more compact nuclear state, i.e. more heterogeneous, smaller and348

denser nuclei be interpreted? By considering the spatial scales which contribute to heterogeneity,349

it is plausible to attribute this feature to an increased ratio of heterochromatin to euchromatin350

Le Gros et al. (2016). In fact, we put this interpretation forward in our preceding study on hip-351

pocampal granule cells in AD, where a very similar observation was made Eckermann et al. (2021).352
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Accordingly, a transcriptionally less active state of the neuron corresponds to the more compacti-353

fied nucleus. These states could be interpreted as a phenomenon of cellular senescence Kritsilis354

et al. (2018). The fact that this is found similarly in the present work for cerebellar granule cells in355

MS as for hippocampal granule cells in AD before, suggests the hypothesis that a more compact356

nucleus resulting from cellular senescence is a more general phenomenon in neurodegeneration,357

downstream from various patho-metabolic processes.358

The largest weakness of the present study is its still too small size (𝑁𝑀𝑆 = 6∕𝑁𝐶𝑇𝑅𝐿 = 6). The power359

of OT may not or not sufficiently compensate for this, and a higher number of subjects should360

certainly be probed in future extension of this work. While this would not be much of a problem361

per se in view of method throughput (XPCT data acquisition and analysis with a fully automated362

pathway), the post mortem collection of human tissue is not easily extended to higher numbers,363

given necessary procedures of consent and authorizations. Further improvements may require364

concerted efforts in operation of tissue banks, proper documentation, and curated collections.365

What the current study has not touched upon is the important role of demyelinated lesions in366

MS. We did not make any attempt to find specific structural signs of lesions or to identify them367

by correlative imaging with immunohistochemistry. To this end, one must also critically put into368

question whether this is best carried out with unstained and unlabeled tissue as in the present369

case, or whether heavy metal stains or labels for XPCT would be required, for example also to370

locate regions of de- and remyelination. Further, it would make sense to increase the scan volume371

at the cost of lower resolution, and to use very clear cases to ’train’ any search for lesions. Given372

the substantial role that magnetic resonance imaging (MRI) can play in MS diagnosis as an in vivo373

imaging methodWattjes et al. (2015), there is a further very worthwhile goal for future extension374

of this work: using XPCT analyses and correlative XPCT/MRI imaging, one could correlate the post375

mortem 3d histology and the tissue fine structure with more coarse grained but also functional376

signals of MRI. Note that as 3d imaging technique XPCT is particularly well suited for a multiscale377

histopathology underpinning of MRI data.378

Finally, a critical reflection regarding the relevance of structural data: while it is undisputed that ge-379

nomics, proteomics and metabolics are relevant to gain a quantitative understanding of neurode-380

generative diseases, the relevance of the cytoarchitecture is admittedly less clear. In view of the381

intrinsic polydispersity of structural features on the cellular and tissue level, differences between382

individuals can easily screen effects associated with disease progression. Further, it is less known383

than for biochemical processes, whether structural alterations are upstream or downstream from384

a particular pathological development. If studies of cytoarchitecture are to become an ’omics’,385

structural data has to be very comprehensive, covering large patient- and control-groups, quan-386

titative and fully digital. It should certainly also represent the full three-dimensionality of tissue.387

Finally, without segmentation and morphometric analysis, 3d data alone will remain illustrative388

and anecdotal, since visual inspection is not as easily possible as for 2D sections by a pathologist.389

While the present work can surely not meet all expectations of how structural brain tissue studies390

should be carried out in future, it is meant as an example and to provide useful components to391

further develop the analysis workflow. We can expect significant future progress in segmentation392

by deep learning and in optimal transport theory, as for the data acquisition itself and its image393

quality.394

In order to help this become a reality, the present work is carried out as part of a larger effort to395

advance quantitative assessment of neuronal cytoarchitecture by XPCT. The method can extend396

conventional histology by a further dimension and therefore is particularly well suited for digital-397

ization and automated analysis of tissue structures. To this end it is a decisive advantage that398

XPCT does not rely on tissue sectioning, is non-destructive, and compatible with all other analy-399

ses which can be carried out subsequently. Furthermore, XPCT can be performed on unstained400

tissue preserved in FFPE blocks, which is the conventional way to store and preserve tissues in401

neuropathology.402
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Materials and Methods403

Data acquisition and reconstruction404

Tissue asservation, data acquisition, phase retrieval and tomographic reconstruction of all data405

analyzed here was performed previously, as reported in Töpperwien et al. (2018). In short, hu-406

man cerebellum tissue samples were obtained post mortem from twelve individuals (six healthy407

control, six multiple sclerosis) by routine autopsy in agreement with local ethics guidelines and408

approval procedures at the University Medical Center Göttingen. Small biopsy-punches from the409

formalin fixed and paraffin embedded tissue (FFPE) were placed in a Kapton tube for scanning. X-410

ray phase contrast tomography experiments were carried out at the GINIX endstation of the P10411

undulator beamline at the PETRAIII storage ring at the Deutsches Elektronen Synchrotron (DESY) in412

Hamburg. The undulator beamwas monochromatized to an energy of 13.8 keV (Si(111) monochro-413

mator). Note that for one sample (CTRL5, different beamtime), the data was collected at 8 keV.414

After prefocussing the x-rays by a pair of Kirkpatrick-Baez (KB) mirrors and coupling into a waveg-415

uide, the coherence and spatially filtered beam illuminates the sample at distance 𝑧01 ≃ 0.1m be-416

hind the waveguide exit, and the magnified Fresnel diffraction pattern (hologram) is recorded by a417

fibre-coupled sCMOS detector positioned at distance 𝑧02 ≃ 5.1mm, resulting in a geometric magnifi-418

cation𝑀 = 𝑧02
𝑧01
. From the measured magnified holograms (wave optical projection images), phase419

retrieval was performed using the contrast transfer function (CTF)-based algorithm Cloetens et al.420

(1999), implemented in Lohse et al. (2020). The 3d information was reconstructed with the Matlab421

implemented function of the inverse Radon-transformation (’iradon’) combined with a standard422

Ram-Lak filter. The reconstructed samples cover a field of view of 336 × 336 × 375 µm3 with a voxel423

size of 187 nm, sufficient to resolve various histological features, including the nuclei of the granule424

cells.425

Segmentation of the granule cell nuclei426

The segmentation was carried out with the segmentation and visualization software package Arivis427

Vision4D (Zeiss AG, Germany). Using the Blob Finder operation of Arivis - well suited to find round,428

roughly spherically shaped objects - several ten thousand neurons were detected in each sam-429

ple. After applying different filters and removing objects outside the granular layer with a mask,430

a homogeneous distribution of sphere-like segments was obtained, adequately representing the431

granule cell nuclei. From the segmented nuclei, several features were extracted for the analysis.432

Detailed information about the full segmentation workflow is given in Appendix 1.433

Structural features of the granule cell nuclei434

For the analysis, six features of the segmented nuclei were chosen: the volume 𝑣, the mean of the435

electron density 𝜌, the heterogeneity (variance of the electron density within the nucleus) 𝑠, the436

sphericity 𝜙, the distance to the nearest neighbor nuclei 𝑑𝑛𝑛 and the number of neighbors 𝑛𝑛within437

a radius of 7.45µm. The radius for the latter definition was chosen as the local minimum between438

the first and second correlation shell of the pair correlation function 𝑔(𝑟).439

Optimal Transport analysis440

Optimal transport distances between 1d feature histograms were computed by using the Wasser-441

stein - 2 metric 2, as implemented in Flamary et al. (2021). For the analysis of the multidimen-442

sional distributions, each point cloud was approximated by a normal distribution with covariance443

matrix Σ and mean 𝜇. Between Gaussians, the Wasserstein metric can be rapidly calculated by us-444

ing the Bures metric , see Forrester and Kieburg (2016). To overcome the Riemannian structure445

of , we used the Linearized OT framework as described inWang et al. (2013) and project the dis-446

tributions into a linear tangent space. An approximate Wasserstein barycenter, computed by the447

fixed-point algorithm Álvarez-Esteban et al. (2016), served as reference point for linearization. This448

allowed us to construct a subject space, in which subjects were arranged in two clusters according449
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to their groups (without prior classification) and could be linearly separated by SVM (implemented450

in Pedregosa et al. (2011)). For more details of the OT framework, see Appendix 2.451
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Appendix 1565

Segmentation Workflow566

567

Appendix 1 Figure 1. Flowchart of the Arivis pipeline used for the segmentation of the granule cellnuclei. Orange fields indicate segment generating operations.568

569570
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In order to segment the granule cell nuclei, the software Arivis was used. The workflow in
Arivis is performed by pipelines - a sequence of operations which are executed consecu-
tively. In the following the structure of the pipeline used for the segmentation is presented
and the individual operations are briefly described.

571

572

573

574

• Blob Finder: The Blob Finder is the most important operation which generates the
segments representing the granule cell nuclei used in the analysis. The algorithm
is designed to find rounded, sphere-like 2d or 3d objects and has three parameters
which can be customized. The concept is to find seed points with high probability to
be the centre of a round object, followed by a watershed algorithm, letting objects
grow outwards starting from the seed points. The following description of the algo-
rithm is based on the Arivis manuals. Consider a gray scale image 𝑓 ∶ ℝ3 → ℝ which
is convolved by a Gaussian Kernel 𝑔 with:

575

576

577

578

579

580

581

582

𝑔(𝐱, 𝑡) = 1
2𝜋𝑡

𝑒−
𝐱⋅𝐱
2𝑡 . (6)

583

584

585

586

𝐱 represents the pixel position and 𝑡 is the scale of the convolution kernel given by587

𝑟 = 𝑡
√

𝑛 (7)

588

589

590

591

where 𝑛 is the dimension (here = 3) and 𝑟 is the “diameter”, which is one of the param-
eters that can be set manually. After the convolution

592

593

𝐿(𝐱, 𝑡) = 𝑔(𝐱, 𝑡) ∗ 𝑓 (𝐱), (8)

594

595

596

597

a Laplace operator is applied to the result ∇2𝐿(𝐱, 𝑡) which gives a probability map of
possible blobs. This probability map is thresholded to create a binary mask and to
find the seed points.

598

599

600

𝑀(𝐱, 𝑡) =
⎧

⎪

⎨

⎪

⎩

0 ∇2𝐿(𝐱, 𝑡) < 𝜖

1 else (9)

601

602

603

604

The adjustable parameter 𝜖 is used to vary the number of considered objects. Subse-
quently, the local maxima of the Laplacian image ∇2𝐿(𝐱, 𝑡) are used as markers for a
topological Watershed transform Najman and Couprie (2003). The result is masked
with𝑀(𝐱, 𝑡). In this way 𝜖 determines not only the number of created objects, but also
their size. The last parameter is the “split sensitivity”, which defines whether two seed
points in close vicinity are merged together or remain separated. The parameter op-
erates like a threshold on the values of the probability map and determines whether
many small objects or a few larger objects are observed. For the segmentation of the
GC nuclei, the parameter were set as follows:

605

606

607

608

609

610

611

612

613

– Diameter: 3.74µm614

– Probability Threshold: 26%615

– Split Sensitivity: 24.72%616

These parameters were determined by visual inspection and were chosen the same
for all samples.

617

618

• Creating a mask: Next a mask is drawn manually, which encloses only the granular
layer. Segments created by the Blob Finder lying in the molecular layer, Purkinje layer
or in the corners of the dataset, where the tomographic reconstruction does not yield
completed information, are filtered out.

619

620

621

622
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• Compartments: This operation creates a hierarchy between the mask and the Blob
Finder segments. All segments which are not part of this hierarchy, i.e. all segments
outside the mask, will be filtered out.

623

624

625

• Clear mask: Removes the mask object.626

• Touching Edge Filter: This filter removes segments touching the edges of the dataset,
since these could be truncated cells which would distort the statistics.

627

628

• Volume Filter: The volume filter removes segments which clearly do not represent
granule cells, e.g. small artifact segments. The filter limits are determined by display-
ing all segments in a 2d scatter plot according to the properties volume 𝑣 and sphericity
𝜑 (using the Object chart tool of Arivis) as shown in figure 2b. In this representation,
three groups of segments can be identified: granule cells (middle), multiple cells (mid-
dle) and artifacts (right). This assertion is corroborated by selecting segments of each
group and inspect the 3d rendering. The artifact segments are filtered out, and the
multiple cell segments are kept and split (see below). By visual inspection of the scatter
plot, the filter limits are set to 𝑣 < 10µm3 and 𝑣 > 100µm3.

629

630

631

632

633

634

635

636

637

• Multiple Cell Filter: Multiple cells occur when several cells close to each other are
covered by only one segment. To ensure each cell is covered by exactly one segment,
the multiple cell segments can be split (next operation). By visual inspection of the
scatter plot, filters of 𝜑 < 0.58 and 𝑣 < 30µm are determined to segregate the multiple
cells from the single cells.

638

639

640

641

642

• Splitting: The splitting operation divides the multiple cell segments into well-defined
segments covering single cells. The splitting uses a Watershed-Algorithm which takes
the maxima found in a distance map as seed points. The distance map labels each
pixel of a segment with the distance to the nearest non-segment pixel. The operation
has the parameter “split sensitivity”, which operates like a threshold in the watershed
algorithm and controls into howmany parts the segments are split. For all samples, a
value for the split sensitivity of 70% was chosen.

643

644

645

646

647

648

649

• Volume Filter: After splitting, small artifact segments can occur which can be re-
moved again with a volume filter of 𝑣 > 10µm3.

650

651

• Combine Output The single cells and the split multiple cell are merged to one group
representing the granule cells.

652

653

• Geometry Filter: Finally, segments are removedwhich have an elongated, non-round
shape. They can occur due to the segmentation of blood vessels and other tissue
structures. To discriminate them from the granule cell segments, a bounding box
in the shape of a cuboid is calculated (Arivis function) for each segment. Segments
where the long side of the bounding box being 2.5 times larger than the shortest side
are removed.

654

655

656

657

658

659

Note that the limits for the different filters may slightly vary from sample to sample, but
always remain very close to the values specified above. From the segmented granule cells,
the following properties are extracted and stored in .txt-tables: Center of geometry in x, y,
z-position, volume, sphericity, mean value of intensity (gray values), standard deviation of
intensity (gray values).

660

661

662

663
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Appendix 2665

Optimal Transport Analysis666

667

Appendix 2 Figure 1. The figure schematically illustrates all steps of the optimal transport workflowstarting from the Gaussian representation of the subjects to the final so-called push forwardhistograms. The individual operations shown in the scheme here are described in detail below.
668

669

670671

For themultidimensional analysis with OT, we used the Linearized Optimal Transport - frame-
work Wang et al. (2013) which provides several advantages. The key idea is to pick a refer-
ence sample and calculate the pairwise optimal transport plans and Wasserstein distances
between the samples and the reference sample instead of calculating them between all
samples. All other pairwise distances can then be in a simple way approximated from the
initial 𝑀 optimal plans. Hence, one needs to compute for 𝑀 samples only 𝑀 plans rather
than 𝑀(𝑀 − 1)∕2 distances. This also implies a linear approximation of the Riemannian
structure of the Wasserstein space (formally a curved hypersurface), which enables to ap-
ply standard analysis tools. In the following, it is described by the figure above, how we
applied the framework to the Gaussian data. The described steps correspond to that in the
figure.

672

673

674

675

676

677

678

679

680

681

682

• 1) Local Linearization: Consider a point cloud distribution for each individual, ob-
tained by locating all GC nuclei according to their features. In a first step, we approxi-
mate the point clouds by Gaussian distribution to strongly reduce the computational
effort. This is valid since each single feature is well approximated by a Gaussian distri-
bution. TheGaussians are determined by the empiricalmean and covariancematrices
of the point clouds. Following the LOT framework, we first compute the Wasserstein
barycenter 𝜎 which serves as reference point for the local linearization (green ellipse).
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The barycenter itself is a Gaussian distribution with mean and covariance matrix ap-
proximately calculated by the fixed point algorithmÁlvarez-Esteban et al. (2016). Start-
ing from the barycenter, each subject can now be projected into the linear tangent
space via the Riemannian logarithmic map, in this case given by

683

684

685

686

687

688

689

690

691

692

693

𝚺̃𝛼 =
(

𝚺1∕2
𝜎 𝚺𝛼𝚺1∕2

𝜎

)1∕2
⋅ 𝚺1∕2

𝜎 − 𝚺1∕2
𝜎 (10)

𝝁̃𝛼 = 𝝁𝛼 − 𝝁𝜎 (11)

694

695

696

697

where 𝚺𝜎 is the covariance matrix of the barycenter and 𝚺𝛼 the covariance matrix of
the corresponding sample. These can be interpreted as encoding the direction from
𝜎 to 𝛼, visualized in the figure by grey arrows representing the linear embedded sam-
ples.

698

699

700

701

702

• 2) Interpretationas Subject Space: After projecting the samples in the tangent space,
we take on a different perspective. For each sample we now consider the combined
and flattened entries of 𝚺̃𝛼 and 𝝁̃𝛼 as a single vector. Thus, a single point / single vec-tor 𝒙𝑛 with 27 dimensions (21 independent covariance matrix entries, accounting for
symmetry, and 6 mean values) is obtained for each subject. This space is denoted
as the subject space, in which subjects are represented as single points and not by
Gaussians anymore, but information about mean and covariance of the samples are
preserved. The pairwise Wasserstein distances between subjects can now be simply
approximated by the euclidean norm on the coordinates.

703

704

705

706

707

708

709

710

711

712

3) PCA and SVM To better investigate the high dimensional subject space, we further
reduce its dimensionality by a principal component analysis (PCA) and truncation of
the number of dimension from 27 to 3. This choice is based on the spectrum of eigen-
values, where the first 3 eigenvalues cover 95% of the variance while the rest does not
significantly contribute. Solving the eigenvalue problem and arranging the eigenvec-
tors to a transformation matrix 𝐓, the projection of the samples 𝒙𝑛 (after centering) tothe eigenbasis is carried out according to:

713

714

715

716

717

718

719

𝒙𝑛
′ = 𝐓𝒙𝑛. (12)

720

721

722

723

In this representation, the subjects fall - without any prior information - into two clus-
ters corresponding to the two groups. We perform a simple classification approach
by applying a linear support vector machine (SVM, regularization parameter 𝐶 = 5) to
the subjects in the reduced 3d PCA-eigenbasis. The SVM returns a hyperplane exactly
segregating the subjects according to their groups. The obtained normal vector of
the hyperplane is used to calculate the distances of the samples to the plane (see Fig.
5d). Next we investigate how this clear discrepancy between MS- and Control group
is reflected in the individual features. To do so, the mean points of both groups are
calculated in the 3d subject space, whose difference vector 𝐍′ can be considered as
an alternative axis of discrimination (which we expect to be more robust than the axis
given by SVM). Moving along this axis to the groupmeans, results in two virtual points
representing a typical MS- and a typical Control subject (blue and red dashed circle).

724

725

726

727

728

729

730

731

732

733

734

735

736

• 4) Back Projection to Gaussian Distributions: From the points in the 3d PCA - eigen-
basis, Gaussian distributions with covariance matrix and mean can now be generated
by inverting the above transformations. First, we return from the reduced eigenbasis
to the full tangent space ℝ27 using the inverse of the transformation matrix 𝑇 −1
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𝐍 = 𝐓−1𝐍′. (13)

741

742

743

744

Afterwards the vectors in ℝ27 can be decomposed back to the covariance matrix and
mean, according to the inverse order as in the initial transformation. This way a Gaus-
sian distribution is obtained for the typical MS- and Control sample which can be com-
pared (blue and red ellipses). This corresponds to the push-foward of the barycenter
under the respective tangent vectors.
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• 5) Push forward histograms: Based on the Gaussians for the typical Control and MS
patient, histograms can be generated for each of the six features separately and com-
pared. The resulting histograms, shown in Fig. 5e, reveal the pathological alteration
of the granule cells towards a more compact structure in MS.
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Note that other axes can also be selected as push forward direction 𝐍′, such as the normal
vector of the SVM hyperplane or the PCA principal axes (see also Eckermann et al. (2021)).
Further, we evaluated the data also on the level of point clouds. The workflow is completely
analogous to the Gaussians with a few exceptions: The reference sample 𝜎 is (analogous to
the Gaussians) approximated by the fixed-point algorithm but from the resulting 𝝁 and 𝚺
we sample a point cloud distribution with 104 particles and uniform weights
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760

𝜎 =
𝑁𝜎
∑

𝑘=1
𝑞𝑘𝛿𝑧𝑘 . (14)
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764

Local linearization is then performed by solving the transport problem between samples
and reference sample with entropic regularization and Sinkhorn’s algorithm Cuturi (2013).
From the resulting couplings, we calculate mean mass transport from the particles of the
barycenter 𝑧𝑘 to each sample. The connections between 𝑧𝑘 and the centers of the aver-
aged transport now become the set of approximated tangent vectors 𝑥̄𝑘. Thus, we obtainan approximated coupling Π induced by a Monge map. Between two samples 𝜂 and 𝜈, the
Wasserstein distance can then be approximated by the 2 norm on the set of tangent vec-
tors
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lin (𝜎; 𝜂, 𝜈)
2 =

𝑁𝜎
∑

𝑘=1
𝑞𝑘 ||𝑥̄𝑘 − 𝑦̄𝑘||

2 . (15)
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Appendix 3777

Supplementary Plots778

779

Appendix 3 Figure 1. The figure shows all supplementary plots of the 1d analysis, which were notshown in the main part. (a) Violin plots of structural features for each individual. Note that thewavelike structure of the number of neighbors - plot is due to the fact that this feature always takeson integer values. (b) Histograms of structural features revealing all features are approximatelyGaussian distributed. (c) Matrix chart of pairwise Wasserstein-2 distances between 1d featurehistograms of all individuals.
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Appendix 4787

Supplementary Plots788

789

Appendix 4 Figure 1. Structure factors and OT- analysis of the point cloud distributions (a) Powderaveraged structure factors of each subject. By averaging over both group, the structure factors shownin Figure 3a are obtained. (b-e) OT analysis of the point cloud distributions with a workflow mostlyanalogous to the Gaussian distributions. The results for the Wasserstein distance chart (b), thesubject space in PCA-eigenbasis (c) and the SVM classification (d) are very similar to those obtained inthe analysis based on the Gaussian approximation. In the push forward of the barycenter (e), oneobtains a histogram of a point cloud rather than that of an Gaussian. However, the trends of theindividual features, towards compact nuclei in MS, are the same. Overall, the Gaussian distributionscan be considered as a valid approximation of the point clouds, giving very similar results at a verylow computational cost.
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