Applying Transcriptomics for an Enhanced Clinical Research Framework, 1

- 2 Implications for an Improved Research Strategy based on an Omics Approach: A
- Scoping Review 3
- 4
- Asrar Rashid^{*1}, Feras Al-Obeida², Hari Krishnan³, Govind Benakatti⁴, Wael Hafez⁵, Joe Brierley⁶, 5
- Benjamin Hanisch⁷, Praveen Khilnani⁸, Christos Koutentis⁹, Berit S Brusletto¹⁰, Mohammed Toufiq¹¹, 6
- Zain Hussain¹², Harish Vyas¹³, Zainab Malik¹⁴, Maike Schumacher¹⁵, Rayaz Malik^{16,17}, Shriprasad Deshpande⁷, Nasir Quraishi¹⁸, Raziya Kadwa¹⁹, Amrita Sarpal^{17,20}, M.Guftar Shaikh²¹, Javed Sharief¹⁹, Syed Ahmed Zaki²², Rajesh Phatak²³, Akash Deep²⁴, Ahmed Al-Dubai¹, Amir Hussain¹ 7
- 8
- 9
- 10 *Corresponding Author Dr. Asrar Rashid, Edinburgh Napier University, Sighthill Campus, Sighthill
- Court, Edinburgh EH11 4BN Asrar.rashid@napier.ac.uk 11
- 1. School of Computing, Edinburgh Napier University, UK 12
- 2. College of Technology, Zayed University, Abu Dhabi, UAE 13
- 3. Birmingham Children's Hospital, Birmingham, UAE 14
- 15 4. Yas Clinic, Abu Dhabi, UAE
- 16 5. The National Research Centre, Egypt
- 6. Great Ormond Street Children's Hospital, London, UK. 17
- 18 Children's National Hospital, Washington DC
- 8. Medanta Gururam, Delhi, India 19
- Department of Anesthesiology, SUNY Downstate Medical Center 20
- 10. The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital; 21
- 22 Ullevål, Norway
- 11. The Jackson Laboratory, USA 23
- 12. Edinburgh Medical School, University go Edinburgh, Edinburgh, UK. 24
- 25 13. Nottingham University, Nottingham, UK
- 26 14. College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai,
- UAE 27
- 28 15. Sheikh Khalifa Medical City, UAE
- 16. Institute of Cardiovascular Science, University of Manchester. Manchester, UK. 29
- 17. Weill Cornell Medicine-Qatar, Doha, Qatar 30
- 18. Centre for Spinal Studies & Surgery, Queen's Medical Centre. The University of Nottingham. 31
- 32 Nottingham, UK
- 33 19. NMC Royal Hospital, Abu Dhabi, UAE
- 34 20. Sidra Medicine, Doha, Qatar
- 35 21. Department of Endocrinology, Royal Hospital for Children, Glasgow, UK
- 22. All India Institute of Medical Sciences Hyderabad 36
- 23. Pediatric Intensive Care, Burjeel Hospital, Najda, Abu Dhabi 37
- 24. Pediatric Intensive Care Unit, King's College Hospital, London, United Kingdom 38

- 40
- 41
- 42
- 43

³⁹

44 Abstract

Sepsis remains a major global health issue in pediatric and adult populations, 45 largely due to a lack of understanding of its complex pathophysiology. Despite 46 its high mortality rate, there have been few advancements in sepsis-specific 47 therapies over recent decades. The study aimed to investigate the potential 48 benefits of a genome-wide transcriptomic approach to sepsis in pediatric and 49 adult populations in reducing sepsis-related mortality and enhancing sepsis 50 guidelines. The scoping review explored gene expression data pertinent to 51 developing sepsis guidelines related to its definition, classification, disease 52 severity, molecular biomarking, and benchmarking. A system-biology 53 approach using transcriptomics was adopted to enhance the understanding of 54 sepsis at the mRNA gene expression level. The study involved a search of the 55 PubMed database for original research or systematic reviews that involved 56 transcriptomic application in the context of clinical sepsis published over a ten-57 year period, from 2012-2022. Of the 14,048 studies retrieved, a full-text 58 analysis was performed. Five main concepts emerged: case definition, 59 classification, quantifying severity of sepsis, transcriptomic biomarkers, and 60 benchmarking. Studies were categorized according to these five categories. 61 The results showed evidence of a connection between the transcript and 62 clinical sepsis, demonstrating that transcript-driven sepsis categorization is 63 possible. Integrating transcriptomic data with clinical endpoints holds promise 64 for more precise sepsis treatment. Although further exploration is needed, the 65 methodology shows potential for disease modification. 66

68 Introduction:

Sepsis continues to be a major contributor to in-hospital mortality 69 globally and poses a significant public health burden, particularly in 70 pediatric populations¹. Consensus guidelines have been developed for 71 managing sepsis in both adult and pediatric patients, emphasizing early 72 recognition and intervention, aiming to standardize sepsis management 73 practices ^{2,3}. However, challenges persist in creating protocols due to 74 gaps in clinical evidence, as a relevant framework to understand sepsis 75 has not been finalised. A reason why adult sepsis definitions have 76 undergone many iterations in the past decades ^{4,5}. The pediatric 77 surviving sepsis guidelines exemplify the impact of an unclear definition 78 for developing guidelines feature mostly weak recommendations due to low-79 guality evidence ⁶. These knowledge gaps have helped identify numerous 80 research priorities and pathophysiological questions. The prevailing view of 81 sepsis as a clinical phenomenon has potentially limited the 82 comprehension of its molecular underpinnings, which may hinder the 83 identification of diagnostic and therapeutic targets, as well as the 84 establishment of a definitive sepsis definition applicable to all age 85 groups⁷⁻⁹. 86

87

⁸⁸ Despite potential therapeutic breakthroughs for sepsis, such as vitamin
 ⁸⁹ C¹⁰ and activated protein-C (APC), these have shown limited success in

90	clinical trials or meta-analyses ¹¹ . While successful in cancer and viral
91	infections, immunotherapy has not gained traction in bacterial sepsis
92	due to its affect on a multitude of molecular pathways, resulting in
93	immune dysfunction. The slow progress in sepsis treatment emphasizes
94	gaps in scientific knowledge ^{12,13} and the need for early recognition,
95	diagnosis, and resuscitation. Current laboratory protein biomarkers like
96	CRP and Pro-calcitonin have limited predictive capabilities ¹⁴ , and the
97	inability to stratify sepsis patients based on biochemical and
98	immunological profiling further complicates matters ^{15 16} .
99	
100	Sepsis represents a complicated challenge due to its multifactorial
101	heterogeneity resulting in a variable disease process ¹⁷ . Further, the
101 102	heterogeneity resulting in a variable disease process ¹⁷ . Further, the transition from infection to septic shock remains poorly understood due
101 102 103	heterogeneity resulting in a variable disease process ¹⁷ . Further, the transition from infection to septic shock remains poorly understood due to factors such as innate and adaptive immune mechanisms, the severity
101 102 103 104	heterogeneity resulting in a variable disease process ¹⁷ . Further, the transition from infection to septic shock remains poorly understood due to factors such as innate and adaptive immune mechanisms, the severity of infection, host age, adequacy of treatment, and genetic
101 102 103 104 105	 heterogeneity resulting in a variable disease process ¹⁷. Further, the transition from infection to septic shock remains poorly understood due to factors such as innate and adaptive immune mechanisms, the severity of infection, host age, adequacy of treatment, and genetic variability/susceptibility ¹⁸. Moreover, Genetic determinants for sepsis are
101 102 103 104 105 106	 heterogeneity resulting in a variable disease process ¹⁷. Further, the transition from infection to septic shock remains poorly understood due to factors such as innate and adaptive immune mechanisms, the severity of infection, host age, adequacy of treatment, and genetic variability/susceptibility ¹⁸. Moreover, Genetic determinants for sepsis are only partially understood, adding to the complexity. Additionally, the
101 102 103 104 105 106	 heterogeneity resulting in a variable disease process ¹⁷. Further, the transition from infection to septic shock remains poorly understood due to factors such as innate and adaptive immune mechanisms, the severity of infection, host age, adequacy of treatment, and genetic variability/susceptibility ¹⁸. Moreover, Genetic determinants for sepsis are only partially understood, adding to the complexity. Additionally, the quality of clinical care provided to patients with severe infections
101 102 103 104 105 106 107 108	 heterogeneity resulting in a variable disease process ¹⁷. Further, the transition from infection to septic shock remains poorly understood due to factors such as innate and adaptive immune mechanisms, the severity of infection, host age, adequacy of treatment, and genetic variability/susceptibility ¹⁸. Moreover, Genetic determinants for sepsis are only partially understood, adding to the complexity. Additionally, the quality of clinical care provided to patients with severe infections influences the disease's natural history, with serious consequences in

Omic approaches, including lipidomics, metabolomics, proteomics, and 110 transcriptomics, have been employed to understand complex disease 111 paradigms like sepsis. Transcriptomics focuses on analyzing all RNA 112 transcripts in a biological system, allowing a study of gene expression 113 patterns, detection of differentially expressed genes, and description of 114 alternative splicing events. Hasson et al. (2022) highlighted the potential 115 of transcriptomic analysis in understanding sepsis-associated acute 116 kidney injury and uncovering underlying pathophysiological mechanisms 117 ²⁰. Transcriptomics offers a systems-based approach to understanding 118 biological processes ²¹ and facilitates precision medicine strategies ^{22,23}. 119 The enhancement of in silico techniques has facilitated system-wide 120 gene expression analyses, contributing to a burgeoning body of 121 knowledge. Consequently, the current study seeks to explore the 122 application of transcriptomic analysis to deepen our understanding of 123 sepsis. This progression is the next sequence in the genetic dogma, 124 signifying a transition from DNA to mRNA, including not only the study of 125 protein-encoding genes (from coding regions of the DNA) but also non-126 coding regions that generate microRNA, circular RNA, and long 127 noncoding RNAs. One of the key advantages of RNA-based 128 technologies over DNA studies is the ability to reveal real-time dynamic 129 changes to develop a temporal understanding of sepsis. 130

131

132	Hence a scoping leview was ondertaken to onderstand whether findings
133	from transcriptomic studies can be implemented into clinical practice,
134	particularly into international sepsis guidelines. As a part of this gaps in the
135	literature were also to be identified.

136

Therefore a principal aim of this scoping review was to scrutinize the 137 peer-reviewed literature spanning a decade, from 2014 to 2023, with a 138 primary focus on applying transcriptomic findings to clinical sepsis. In 139 order to translate facets from the research literature and interdigitate 140 these with gene expression studies, a framework is presented (Figure 1). 141 An enhanced framework holds potential clinical advantage, such as 142 paving the way for guideline development, standardizing care pathways 143 and advancing the principles of precision medicine. The framework as 144 illustrated uses key aspects crucial in establishing evidence-based 145 sepsis guidelines. An important objective was to discern whether 146 transcriptomic studies can lend support for an enhanced understanding 147 sought by peer-lead sepsis committees. This work will have important 148 implications for research as gaps shall be highlighted with implications 149 for guidelines and clinical practice depending on the presence of 150 relevant research literature. 151

152

153

162 Materials and Methods

In accordance with the PRISMA-ScR guidelines ^{24,25}, a scoping review 163 was conducted to investigate the use of systems-biology approaches in 164 examining gene expression and its relation to clinical sepsis. The 165 protocol was registered on the Open Science Framework 166 (https://osf.io/3jbv2), with the associated project osf.io/5c2wr. 167

168

Identifying the research question

170 This study hypothesized that transcriptional research could support a

clinical research framework based on components important for sepsis

¹⁷² guideline design. The research question posed was: What gene

expression studies can be utilized to capture relevant information for the

development of sepsis guidelines concerning sepsis definition,

classification, disease severity, molecular biomarkers, and

176 benchmarking?

177

This study incorporates gene expression investigations that span both
coding and non-coding domains. The research encapsulates micro RNA
studies (<200 NBP), along with the exploration of circular (Circ) RNAs
and IncRNAs.

182

183 Study Selection

184	A systematic review of peer-reviewed literature was undertaken from
185	PubMed-indexed journals utilizing PubMed's online search tool, which
186	incorporates MEDLINE, PMC, and BookShelf databases. Pertinent
187	literature from a 10-year period leading up to the search date, 29th June
188	2023 was undertaken. The primary search title terms included 'gene
189	expression' and 'Sepsis' in conjunction with one of the thematic research
190	terms (Endotype, Biomarker, Definitions, Diagnosis, Progression,
191	Severity, and Benchmark) (Figures 2A-G). The derived search string is
192	shown (Supplement Table 7). At the subsequent stage, articles were
193	filtered to include human studies in English, whilst excluding review
194	articles, drug and vaccine studies. As the key theme 'Benchmark' yielded
195	zero selections, the filtration step was expanded beyond the title for a full
196	article search. This modification was also applied to the 'Endotype'
197	theme to secure a more comprehensive collection of studies.

198 Study Inclusion and Exclusion Criteria

199	Articles were included in the review if they met three criteria: (1) focused
200	on sepsis as the primary disease process and incorporated
201	transcriptional (mRNA) analysis; (2) addressed one of five clinical areas
202	of sepsis, including case definition, classification, Sepsis Severity
203	Endotyping, Biomarkers and Benchmarking; and (3) involved human
204	subjects.

²⁰⁵ Exclusions comprised conference abstracts and articles lacking full-text

access or were not available in the English language. AR and JA

²⁰⁷ independently screened the articles, resolving disagreements through

discussion until consensus. Relevant information on applying transcript

²⁰⁹ studies to sepsis was extracted and tabulated from the selected article

using the Artificial Intelligence (AI) engine 'Bing' incorporated in the

²¹¹ Microsoft Edge browser. The words "summarise the paper into header,

²¹² methods, results and conclusions" were input into the AI engine, and the

²¹³ information generated was tabulated (Supplement: Tables 1 to 6).

However, additional human scrutiny was applied to the tabulated studies

with the discussion by the authors in the main text of the narrative

²¹⁶ review.

215

217 Data Charting

218	We developed a data extraction form using Microsoft Excel (AR). Two
219	independent reviewers (AR and JA) extracted data from the full-text
220	articles to ensure consistency. The extracted data included population
221	and study characteristics (e.g., demographics, aim, transcript
222	information, significant genes, study outcomes, and conclusions).
223	

224 Data Collation and Result Reporting

The descriptive quantitative analysis undertaken in this study involved 225 aggregating the number of articles based on key words in accordance to 226 the aforementioned sepsis framework (Figure 1). The acquired studies 227 were partitioned into two main framework categories. The first category 228 encompassed concepts associated with cellular changes related to 229 sepsis, such as endotypes and biomarkers. The second category 230 addressed elements more directly related to the clinical presentation of 231 sepsis, including its definition, diagnosis, progression, and severity. The 232 results are subsequently presented according to this sequence, with a 233 discussion of the relationship between the framework terms and gene 234 expression. 235

236

237 **Results**

238	The sepsis framework search terms identified 2,333 articles (Figure 2) and are
239	detailed below (see headings) according to the framework search terms. A
240	duplicate occurred once with the 'Endotype' and 'Diagnosis' searches and was
241	recorded in both these sections.
242	The Sepsis Endotype
243	"Endotype," derived from "endogenous phenotype," refers to disease subtypes
244	defined by distinct biological mechanisms rather than just observable
245	symptoms. Leveraging transcriptomic analysis can identify unique endotypes,
246	transforming sepsis diagnosis and prognostics based on molecular
247	characteristics and mechanisms.
248	
249	Several studies have explored sepsis endotypes and mortality. Zhang et al.
250	(2020) used deep learning to identify two sepsis classes - immunosuppressed
251	Class 1 with higher mortality and relatively immunocompetent Class 2 with
252	elevated mortality risk from hydrocortisone therapy ²⁶ . The VANISH trial found
253	SRS2 endotype was associated with higher mortality when treated with
254	corticosteroids ²⁷ . Pediatric sepsis had two endotypes (A and B), with
255	Endotype A associated with higher 28-day mortality rates in patients with
256	acute hypoxemic respiratory failure (AHRF) ²⁸ .
257	
258	Transcriptomic analysis is valuable in understanding sepsis pathogenesis.

²⁵⁹ Baghela et al. (2022) demonstrated gene expression signatures accurately

260	predicting sepsis severity and identifying mechanistic endotypes in early
261	sepsis ²⁹ . Got et al. (2020) linked sepsis-induced Epstein-Barr virus (EBV)
262	reactivation to an immunosuppressed host transcriptomic endotype ³⁰ . Kwok
263	et al. (2023) investigated neutrophils and emergency granulopoiesis in sepsis,
264	finding altered gene expression in sepsis patients' circulating hematopoietic
265	stem and progenitor cells ³¹ . Darden et al. (2021) used single-cell RNA
266	sequencing to reveal the role of non-myeloid cells in chronic critical illness
267	(CCI) and persistent inflammation, immunosuppression, and catabolism
268	syndrome (PICS) after sepsis ³² .
269	
270	Combined with gene expression data, machine learning is a promising tool for
271	identifying sepsis endotypes and improving prognosis. Sweeney et al. (2021)
272	classified patients into Inflammopathic, Adaptive, and Coagulopathic
273	endotypes, which are significantly associated with clinical outcomes and
274	guiding personalized therapy ³³ . Banerjee et al. (2021) used Machine Learning
275	to identify 20 differentially expressed genes predicting sepsis severity and
276	outcome ³⁴ . Scicluna et al. (2017) identified four molecular endotypes (Mars1-
277	4) in sepsis patients, linked to severity scores, septic shock, and mortality ³⁵ .
278	
279	Endotype-based research continues to evolve, supporting the potential for
280	personalized sepsis management. Wong et al. (2012) developed
281	'PERSEVERE,' a sepsis outcome prediction tool ³⁶ , while Lu et al. (2022)
282	identified eight hub immune-related genes for sepsis diagnosis and prognosis

283	³⁷ . Baghela et al. (2023) utilized blood sepsis gene expression signatures to
284	predict severity and endotypes in COVID-19 patients ³⁸ . They determined five
285	endotypes reflecting distinct sepsis etiologies and therapeutic possibilities.
286	
287	Efforts are underway to consolidate dysregulated gene sets linked to sepsis in
288	the form of a library, such as 'SeptiSearch,' a compendium of 103 unique gene
289	sets developed by Baghela et al. (2023) ³⁹ . SeptiSearch includes a description
290	of certain endotypes, thus included in this section. In summary, endotyping,
291	along with machine learning techniques, holds significant promise for
292	advancing sepsis management and delivering personalized care to patients.

Sepsis Biomarker 294

Biomarkers, especially those derived from gene expression, are becoming 295 increasingly vital in diagnosing and monitoring sepsis, providing measurable 296 indicators of disease presence or severity. Among them, Zheng et al. (2020) 297 distinguished bacterial and fungal sepsis via specific gene sets, introducing 298 the bacterial sepsis Gene Set Variation Analysis (GSVA) index that exhibits 299 remarkable discriminatory power between bacterial sepsis and non-sepsis 300 samples⁴⁰. Moreover, Zhang et al. (2022) spotlighted the potential of ARG1 301 as a biomarker for diagnosing and prognosticating sepsis, linking ARG1 302 expression to disease severity and treatment response⁴¹. MicroaRNAs also 303 demonstrate their utility in this field, with Huang et al. (2014) identifying eight 304 novel miRNAs associated with the early diagnosis of sepsis⁴², and Li et al. 305 (2022) showcasing the diagnostic and prognostic value of BCL2A1 as a novel 306 biomarker for sepsis management ⁴³. 307

308

309

In a pivotal study, De Almeida et al. (2023) identified genes that linked Non-Thyroidal Illness Syndrome (NTIS) and sepsis, providing a critical insight into 310 shared molecular mechanisms. Importantly, certain mitochondrial genes 311 (mitGenes) stood out as potential survival prediction biomarkers. These 312 mitGenes could differentiate between sepsis survivors and non-survivors, 313 underlining the significant role they could play in sepsis endotyping. Among 314 these, ROMO1, SLIRP, and TIMM8B emerged as potential predictive 315 biomarkers of mortality in pediatric sepsis patients ⁴⁴. 316

318	Transcriptomic biomarker panels also offer promise in the management of
319	sepsis. Bauer et al. (2016) developed such a panel, which effectively
320	quantified systemic inflammation and immune dysfunction in sepsis while also
321	differentiating infected patients from those without infection. Additionally, this
322	panel associated a down-regulated component of the genomic score with
323	mortality ⁴⁵ .
324	
325	
326	

327 Sepsis Definition

The sepsis definition serves as a crucial basis for conveying research and clinical findings, with few studies taking on this challenge head-on. The Sepsis-3 committee acknowledged the complexity involved in matching the clinical physiological approach to the initial immunological changes in sepsis, noting that ambiguity in the definition could lead to inconsistent mortality reporting¹⁷.

334

The Sepsis-3 definition tackled this challenge by designating sepsis as a 335 syndrome, recognizing the absence of a definitive diagnostic test. While 336 the adult Sepsis-3 definition attempts to embody the intricacies of sepsis, 337 it remains vague. It underscores the dysregulated immunological 338 aspects of sepsis without fully being able to encompass the intricate and 339 complex details. Transcriptomic perspectives could shed light on 340 functional alterations in sepsis. For instance, Schaack et al. (2018) found 341 distinct sepsis patient clusters exhibiting varying degrees of T-cell and 342 monocyte functional loss, alongside dysregulated granulocytic neutrophil 343 activation ⁴⁶. Reves et al. (2020), employing scRNA-seq analyses, 344 identified 16 unique immune cell states, indicating that a transcriptomic 345 functional interpretation of sepsis might aid in understanding its 346 dysregulation. Nonetheless, a unifying immunological pattern that 347 defines sepsis across various studies remains elusive⁴⁷. 348

349

The pursuit of a comprehensive sepsis definition that encompasses age 350 and pathogen type is a complex endeavor. Wynn et al. (2011) posited 351 that age-related differences exist in septic shock, as neonates exhibit 352 diminished gene expression in crucial immune-related pathways unlike 353 other age groups⁴⁸. This revelation prompts doubts about the viability of 354 a universal, age-independent definition. Regarding the relationship of a 355 sepsis definition according to pathogen type, research on SARS-CoV-2 356 has underscored the parallels between bacterial sepsis and COVID-19 357 dysregulated mechanisms. Karakike et al. (2021) reported that most 358 ICU-hospitalized COVID-19 patients satisfied the Sepsis-3 criteria⁴⁹. 359 Further, the emergence of SARS-CoV-2 has redirected research focus 360 towards viral sepsis, unveiling shared features between bacterial sepsis 361 and COVID-19 dysregulated mechanisms ⁵⁰. Additionally, Sohn et al. 362 (2020) suggested that the immune-related transcriptome profiles of 363 COVID-19 patients mirrored those in bacterial sepsis, advocating for a 364 pathogen-agnostic innate host response ⁵¹. Furthermore, Barh et al. 365 (2020) showed that transcriptome studies of lung tissue post-SARS-366 CoV-2 infection revealed shared pathways with bacteria, parasites, and 367 protozoa ⁵². These findings hint at the possibility of a pathogen-agnostic 368 sepsis definition, even though its actualization remains riddled with 369 hurdles ⁵⁰. Innovative methods like transcriptomic approaches discussed 370

- in this review might be instrumental in bridging the gap in sepsis
- ³⁷² understanding, heading to an improved definition of sepsis.

374 Sepsis Diagnosis

Kalantar et al. (2022) found that host gene expression from whole blood and 375 plasma from 221 ICU patients could accurately differentiate sepsis from non-376 sepsis⁵³. They used machine learning to develop classifiers based on host 377 gene expression and pathogen detection. Combining host and microbial 378 features improved sepsis diagnosis and predicted sepsis in patients with 379 negative or indeterminate microbiological testing. Lukaszewski et al. (2022) 380 identified specific gene signatures predicting infection or sepsis three days 381 before clinical presentation⁵⁴. Machine learning techniques accurately 382 distinguished infection from uncomplicated recovery and sepsis from other 383 postoperative presentations. Also, Xu et al. (2022) showed that microRNAs 384 combined with TLR4/TDAG8 mRNAs and proinflammatory cytokines had 385 utility as sepsis diagnosis biomarkers for early sepsis diagnosis⁵⁵. Zhou et al. 386 (2021) developed a 10-core gene expression panel for diagnosing pediatric 387 sepsis, with ROC showing an AUC of the 10 core genes for diagnosing 388 pediatric sepsis above 0.9⁵⁶. Given the importance of the immune system in 389 sepsis, Lu et al. (2022) focused on immune-related genes (IRGs) and their 390 association with sepsis diagnosis and prognosis ³⁷. Here, machine learning 391 approaches identified hub IRGs from multiple datasets, establishing an IRG 392 classifier based on 8 hub IRGs, which showed superior diagnostic efficacy 393 and prognostic value compared to clinical characteristics alone (see the 394 section on endotyping). The study also correlated the IRG classifier with 395 immune-related characteristics, such as immune cell infiltration and cytokine 396

397	expression. Sweeney et al (2018) validated a gene-expression test, the
398	Sepsis Metacore (SMS), for sepsis in neonates. The SMS was accurate in
399	three different cohorts of neonates with sepsis, and better than standard
400	laboratory tests. Thereby suggesting that the SMS could help reduce
401	unnecessary antibiotic use and improve outcomes for neonates with sepsis ⁵⁷ .
402	
403	

405 Sepsis Progression

The capacity to anticipate sepsis complications early, based on gene 406 expression profiles, could offer the prospect of disease modification, allowing 407 for individualized and targeted therapies. Fiorino et al (2022) undertook a 408 prospective observational cohort study of 277 patients with infection, sepsis, 409 or septic shock⁵⁸. They used RNA sequencing of whole blood to measure the 410 host gene expression response to infection and to identify signatures that 411 could predict sepsis progression and mortality. The researchers found no 412 gene expression signature for sepsis progression defined by the Sepsis-3 413 category, but they found signatures for sepsis progression defined by new 414 organ dysfunction or ICU admission/mortality. They also validated four 415 previously published gene signatures for sepsis mortality. By comparing the 416 gene expression patterns of patients who progressed to more severe forms of 417 sepsis or died within 28 days with those who did not, the authors identified 418 genes and pathways associated with sepsis progression. Thus showing the 419 ability to label sepsis progression based on host gene expression as a 420 biomarker of the host response to infection. The elicited genes and molecular 421 pathways could reflect different mechanisms (endotypes) of sepsis 422 progression. The authors also used predictive modeling to generate gene 423 expression signatures that classify patients into risk groups according to 424 sepsis progression and mortality. Here a molecular score was provided 425 according to g to the gene expression signature elicited, complementing 426 clinical parameters to guide personalized approach to clinical care. Glibetic 427

428	(2022) used transcriptomic analysis to identify patient subgroups with altered
429	biological responses to sepsis, investigating the ethnic basis for viral infection
430	risk and sepsis progression in colorectal cancer (CRC) patients ⁵⁹ . Their
431	analysis revealed distinct sepsis gene signatures classified as early and late
432	response sepsis genes in the Native Hawaiian cohort compared to Japanese
433	patients. Furthermore, canonical pathway analysis showed significant up and
434	downregulation of mechanisms related to viral exit from host cells and
435	epithelial junction remodeling. These findings suggest that genetic background
436	plays a crucial role in sepsis heterogeneity, which could enable personalized
437	approaches for risk stratification and targeted therapies.

439 **Sepsis Severity**

440	De Jong et al. (2021) developed an innovative method to scrutinize disease-
441	associated molecular changes using gene ensemble noise ⁶⁰ . This measure,
442	which represents the variance of gene groups, disrupts the conventional gene
443	regulation model. The authors argue that cellular dynamics aren't simply
444	responsive to gene up- or down-regulation. Instead, they suggest the
445	stochastic nature of gene expression impacts cellular responses. This
446	approach allowed them to identify disturbances in sepsis-relevant pathways
447	and protein complexes. They also noted its successful application to H1N1
448	infection and sepsis mortality. Their model predicted patient survival post-
449	sepsis, and they incorporated WGCNA, emphasizing its value in
450	understanding non-linear relationships. This approach predicted COVID-19
451	disease severity, revealing potential pharmaceutical targets.
452	

In a parallel study, Baghela et al. (2022) sought gene expression signatures 453 for sepsis severity and endotypes upon initial clinical presentation²⁹. They 454 proposed that sepsis is a syndrome comprising different endotypes, each 455 representing a distinct group with unique severity and outcomes. Using whole 456 blood RNA-Seq and machine learning, they analyzed gene expression profiles 457 from ER and ICU patients with suspected sepsis. Their analysis identified five 458 distinct endotypes with diverse underlying mechanisms. Two of them were 459 associated with high severity and mortality, while one showed benign 460 characteristics. The researchers developed a classification tool based on a 461

- ⁴⁶² multinomial regression model with LASSO regularization. This model, built on
- 463 40 genes, accurately predicted endotype status in sepsis patients and could
- ⁴⁶⁴ be instrumental in early triage, potentially guiding personalized therapies. The
- study shed light on sepsis as a heterogeneous syndrome and provided
- valuable insights for predicting endotypes in sepsis patients.

468 Sepsis Benchmark

469	Benchmarking, the process of comparing a system's or method's performance
470	against a recognized standard, plays a crucial role in clinical research,
471	especially in sepsis studies ⁶¹ . However, the core challenge is identifying the
472	correct standard against which to benchmark. One solution involves
473	classifying gene patterns based on disease conditions or processes, thereby
474	creating a reference library of gene patterns. In this vein, Altman et al. (2021)
475	developed a transcriptomic benchmarking framework called
476	BloodGen3Module, designed to facilitate the analysis of gene expression data
477	62
478	
479	In a notable study by Sweeney et al. (2017), three gene expression diagnostic
480	classifiers, namely the 11-gene Sepsis MetaScore, FAIM3:PLAC8 ratio, and
481	the Septicyte Lab, were tested on 39 publicly available sepsis datasets ⁶³ . The
482	objective was to determine how well these classifiers could distinguish
483	patients with infection from those with non-infectious inflammation. The three
484	diagnostic classifiers performed similarly in separating non-infectious SIRS
485	from sepsis, but the Septicyte Lab performed less well in separating infections
486	from healthy controls. In a subsequent study, Sweeney et al. (2018)
487	conducted a validation study of the Sepsis MetaScore for diagnosing sepsis in
488	neonates, demonstrating its superior performance over standard laboratory
489	measurements across three distinct cohorts ⁵⁷ .

490

491	Another significant contribution to sepsis benchmarking was made by Scicluna
492	et al. (2020). The authors carried out a next-generation microarray analysis of
493	leukocyte RNA from 156 patients with sepsis and 82 healthy subjects, eight of
494	whom underwent a lipopolysaccharide challenge in a clinically controlled
495	setting, a process known as human endotoxemia ⁶⁴ . The study found
496	significant alterations in long non-coding RNA and, to a lesser extent, small
497	non-coding RNA, in sepsis patients compared to healthy subjects. Moreover,
498	their results highlighted the potential relevance of non-sensory olfactory
499	receptor activity among other pathways, and suggested that long non-coding
500	RNA profiles in sepsis could serve as a benchmark for future studies.
501	
502	While sepsis benchmarking remains invaluable, it is not without challenges.
503	The need for well-labeled transcriptomic data and the necessity of a
504	universally accepted definition of sepsis across studies are significant hurdles.
505	Nonetheless, sepsis benchmarking continues to be a vital tool in the
506	evaluation of gene transcriptomics tools and methodologies, serving to guide
507	researchers in their quest for effective prediction methods, biomarker
508	discovery, and the development of novel therapeutics.
509	

510

511 **Discussion**

512	A system-wide approach, using transcriptomic analysis, was undertaken
513	connecting conventional sepsis themes as a part of ten-year literature scoping
514	review. Hence, a transcriptomics-oriented approach was proposed using gene
515	expression studies spanning various categories—diagnostic, organ
516	dysfunction, sepsis severity, endotyping, classification, biomarking, and
517	benchmarking. In the presented framework, the terms were broadly grouped
518	into two categories. The first provides scientific insights based on changes at
519	the molecular or cellular level (Biomarkers and Endotypes). The other
520	category provided more high-level insights appropriate to a clinical
521	understanding. The interplay between scientific (biological) or clinical terms to
522	features of genomic data seemed intuitive.
523	

Biomarkers and endotypes formed components of the scientific category. A 524 biomarker refers to objectively measurable signs, such as molecules found in 525 the blood or changes in body function, that indicate biological or pathogenic 526 processes or responses to the rapeutic intervention ⁶⁵. Conversely, an 527 endotype is employed in classification, highlighting the connection between a 528 disease and a distinct pathophysiological mechanism⁶⁶. Biomarkers have 529 proven their worth in sepsis studies, providing a convenient and objective 530 method for disease observation, tracking, and patient response monitoring⁶⁷. 531 Nonetheless, endotypes could offer a more profound bridge between the 532 biological and clinical contexts. Endotypes, representing distinct underlying 533

. . .

534	disease pathways and mechanisms, are typically identified using advanced
535	diagnostic techniques like genetic analysis, molecular profiling, and biomarker
536	identification. By discerning specific gene expression patterns or molecular
537	signatures unique to a patient subgroup within a broader disease category,
538	endotypes enable more personalized treatment strategies. Continuous
539	research and technological advancements promise to refine our
540	understanding of endotypes, heralding a future of increasingly personalized
541	and effective medical care.
542	
543	The disparity between scientific insights in sepsis and their clinical application

remains a limitation across sepsis studies in general. Factors contributing to 544 the difficulty in transferring insights across RNA-based studies, including 545 dealing with the variability due to platform heterogeneity, sample collection 546 timing, and host-pathogen differences, including demographic aspects. These 547 factors make the linkage of different studies of sepsis problematic. Most 548 importantly, a clear definition of sepsis is a major obstacle in creating an 549 effective research framework. This may be the reason for a further limitation of 550 this study due to the blurred boundaries between research terms, especially 551 those related to clinical descriptors such as sepsis severity and progression. 552 Moreover, although there is abundant research on the use of the chosen 553 framework terms, the lack of a universally accepted structure to ensure their 554 clinical relevance added to the complexity. 555

556

Future development should bridge the two domains, scientific and clinical, in 557 forwarding sepsis research. This would facilitate the application of omic 558 approaches to clinical practice. Then this could allow a more seamless 559 application of omics-based methods, such as transcriptomics, to fill knowledge 560 gaps. Hence the application of high-resolution metrics based on gene 561 expression technologies for personalized diagnostics in sepsis should remain 562 a future research goal. Moreover, given the likely highly non-linearity of gene 563 expression data, future research could explore the application of artificial 564 intelligence to further address the issue of ambiguity. Advanced algorithms 565 and machine learning techniques could help interpret complex gene 566 expression data and other omics information, offering further clarity and 567 precision to disease classification and treatment strategies. These strategies 568 may be instrumental in overcoming the inherent challenges and moving closer 569 to more precise and personalized care for sepsis patients. Advancements in 570 defining sepsis and identifying biomarkers can positively impact 571 benchmarking, thereby extending applicability across various clinical sepsis 572 realms. Moreover, the exciting development of technologies towards faster 573 processing of high throughput gene expression data may allow the application 574 of transcriptomics in acute sepsis. Importantly, gene expression methods, as 575 detailed in this study, hold the future promise of validating a consensus-driven 576 approach for sepsis management, bridging existing knowledge gaps in sepsis 577 pathophysiology and allowing the refinement of clinical protocols using 578 precision strategies. 579

584 Conclusion

585	This narrative review underscored the potential of a transcriptomics-oriented
586	approach as a pivotal tool for bridging knowledge gaps between
587	pathophysiological changes, and cellular modifications applied to the clinical
588	context. The transcriptomics-oriented approach used gene expression studies
589	spanning various sepsis categories—diagnostic, progress, severity,
590	endotyping, classification, biomarking, and benchmarking. This revealed the
591	application of transcriptomics across numerous aspects of sepsis, offering
592	promising avenues for integration with other omic strategies and interpretive
593	frameworks. Nonetheless, the inherent complexities and interpretive
594	challenges of sepsis persistently echoed throughout the review. Future omic
595	research should look at sealing the gaps between biological changes
596	translated to the clinical context. By adopting a transcriptomic-driven
597	approach, researchers and clinicians can collectively navigate the intricacies
598	of sepsis, directing future progress and facilitating improved patient outcomes
599	from sepsis.
600	
601	
602	
603	
604	

605 Funding

606 No Funding requirements

607 Author Contributions

- 608 Conceived and designed the methodology: AR
- 609 Performed the experiments: AR
- 610 Analyzed the data: AR, PAC
- 611 Contributed analysis, methods, and tools: AR
- 612 Wrote the first draft of the paper: AR
- 613 Supervision: MGS, AA, AH
- Revised critically for importance and intellectual content: AR, KW, HA, BH, PK, AS, CK, BSB, MT,
- 215 ZH, HV, GB, ZM, RN, RM, SD, NK, RK, AS, PW, MGS, JS, SAZ, RP, MT, WZ, MAZ, HS, AA, AH
- 616

618

621

623

617 Data Availability

All cited literature has been used for this scoping review and is available as per the references provided according to journals in the public domain.

622 Acknowledgments

The authors thank the anonymous reviewers for their insightful comments and suggestions. Nuha Kidwai, North London Collegiate, Dubai for online search term testing. Hussain acknowledges the support of the UK Engineering and Physical Sciences Research Council (EPSRC) - Grants Ref. EP/M026981/1, EP/T021063/1, EP/T024917/1. For Dr. Binu George for keeping us on track with the study goals. To Professor Hector Wong, a pioneer in the field of transcriptomics of sepsis; to his enduring contribution to the field.

- 630
- 631
- 632
- 633

Figure 1. Using transcriptomic information to support translating clinical sepsis research to the 636 bedside. Key questions linking gene expression (GE) to the framework are shown (central boxes). 637 These then support components of the research framework (Diagnosis/Definition, Disease 638 Progression, Disease Severity, Biomarking, and Benchmarking). mRNA is thus vital for cellular 639 function and consists of mRNA protein-coding and non-protein-coding RNA functions. The two facets 640 allow mRNA to play a role in gene code translation for protein synthesis and a gene regulatory role. 641 Essentially, mRNA is the genetic mediator guiding ribosomal protein synthesis based on information 642 provided in the DNA. At this moment, transcriptomics aims to document gene activity by quantifying 643 mRNA, analyzing gene expression patterns, and measuring gene levels in sepsis. 644 645

646

656

647 Gene-to-gene connections are shown, with genes illustrated as nodes. The interconnections between 648 the genes, then, represent the regulatory relationship. Therefore the network interactions amongst the 649 genes form a Gene Regulatory Network (GRN). Sepsis is a heterogeneous process impacted by host 650 factors such as age, infection timing, and pathogen-associated factors.

Red and dark blue are clinical attributes; green pertains to a biological construct related to a cellular
function or clinical end-point; yellow depicts a standard against which other parameters are
compared. In light blue are target end-points which can be deduced from the data features, according
to the generated (vector) of data-points for each patient.

1. The diagnosis and definition of sepsis are interrelated. Changes in cellular activity can be detected with respect to mRNA GE, providing patterns indicative of a pathophysiological response indicative of sepsis. Thereby resulting in GE patterns consistent with the diagnosis and definition of sepsis.

- 660
 661 2. Sepsis progression is important because, if unabated, this can then progress to multi-organ dysfunction
 662 syndrome (MODS). Single-organ dysfunction in sepsis is rare, with the subsequent failure of each organ
 663 being associated with an increased risk of a poor outcome⁶⁸. The Sepsis 3 task force concluded that the
 664 misleading model that sepsis follows a continuum from severe sepsis to shock was misleading¹⁷. Further, the
 665 task force concluded that the term severe sepsis was redundant.
- Applying transcriptomic methods to sepsis is in predicting organ dysfunction. Scoring systems exist
 to help quantify the degree of organ dysfunction. The sequential Organ Failure Assessment (SOFA)
 score is used in adult sepsis and pediatric logistic organ dysfunction (PELOD) in children.

670

666

4. An essential aim of the transcriptomic analysis is to improve the application of clinical therapies in a
 more precise approach, mindful of host-pathogen complexity. The aim is for therapies to be tailored
 according to a specific profile or sepsis sub-type. Sepsis Subtyping may be undertaken from a gene
 function perspective, such as according to a distinct pathophysiological mechanism known as
 Endotypes.

676

5. Understanding how the transcript correlated to disease severity allows the linkage of mRNA GE, a proxy of cellular function, to clinical categorization.

679

Clinical categories of different severity levels include sepsis, severe sepsis, and septic shock. Relating
 the gene transcript to different levels of disease severity could allow insights into sepsis pathogenesis
 and provide an interpretation of the host-infection relationship.

683

684 **6.** The relationship of biomarkers to gene expression is of particular interest, especially from a 685 temporal perspective allowing the tracking of sepsis, therefore, understanding disease trends when 686 managing patients. This can be used in a predictive capacity and to pre-empt disease progression, 687 thereby providing information to the clinician to make management choices.

7. The transcript may also have value in benchmarking sepsis, such as correlating to clinical
variables, standards, and endpoints.

691

Transcriptomics provides the ability to enhance endpoint analysis, aiding in disease categorization/classification and with respect to prognostication.

694

One of the challenges in developing a clinical research framework for sepsis is that the components defining the framework may not be clear due to the lack of clarity in the original definition of sepsis. Therefore the likely overlap between components, for example, thought endotype, could allow the

- clustering of groups of patients; this approach may also have value as part of a biomarking strategy.
- 699
- 700
- 701
- 702
- 703
- 704

705 Figure 2: Search Terms

709 Figure 2. Studies were first selected (10th July 2023) using the Pubmed web server according to

710 selective keywords related to the framework headings (see methods). The identified studies were then screened, excluding review articles and including gene expression studies [Keyword Search Term: 711 712 (gene expression) not (review)']. Human studies in the last ten years were then deemed eligible. Nondrug, vaccine, non-high throughput gene (HGT) studies and only research published in English were 713 included in the final narrative analysis [Keyword Search term: not (drugs) not (vaccines) and 714 715 (English)]. For the category 'Sepsis Endotype' the search strategy was changed as the title search 716 only eluded to three studies; instead, a search through the text identified 64 studies, of which 17 were 717 deemed eligible (2 were letters and comments to the editor and the third was a protein study). This left 14 included as HGT studies and for narrative review (Fig. 2A). In the category 'Sepsis Biomarker' 718 409 studies were identified after screening; this filtered the studies to 30, of which 23 were eligible, 719 and six were included after exclusion (Fig. 2B). In the 'Sepsis Definition' category 125 studies were 720 721 identified of which non were eligible after screening(Fig. 2C). For 'Sepsis Diagnosis' 19 papers were deemed eligible, which after the exclusion, led to 15 studies of which only 7 were HGT studies (Fig. 722 2D). For 'Sepsis Progression, '124 studies were identified, 17 after screening, of which only nine 723 were eligible, and two were included for narrative analysis (Fig. 2E). For 'Sepsis Severity,' 19 papers 724 were eligible; after exclusion, this eluded 2 HGT studies (Fig. 2F). For 'Sepsis Benchmark' the 725 search strategy was changed to extend the search strategy through the body of the document (Fig. 726 727 2G).

728

Figure 3: Correlation between changes at the cellular level, gene expression, and bioinformatic interpretation in sepsis.

732 733

Figure 3. This figure explores the relationship between changes at the cellular level (left) to various
 data parameters (right) and their relationship to the disciplines of statistics for biological interpretation
 and Machine learning for data modeling is shown.

737

A. Sepsis causes a multi-cellular response with associated activation of a complex immunological
 response. Various technologies are available to assess mRNA changes across the transcriptome
 (microarray, RNA-seq, sc-RNA-seq). This provides a holistic view of various processes and is
 advantageous over single-pathway approaches.

742

B. However, given the heterogeneity of sepsis, the complex situation is challenging to analyze and
 develop from an omic perspective. Correlating clinical data to an omic perspective, such as gene
 expression, is complicated by the non-linear relationship of data points.

746

C. Statistical method is required to adequately map biological changes at the cellular level, using
 gene expression data, to a bioinformatic interpretation. This has allowed the introduction of sepsis
 biomarkers. In an advancement from biomarking, the concept of endomarking allows the grouping of
 data according to functional biological characters. Statistical analysis requires a framework
 interpretation, which likely involves a degree of understanding of the data for simplification.

752

D. Machine learning is useful as a modeling technique as it does not require a deep understanding of
 the inherent data structure. It is possible to apply various algorithms to the gene expression
 information and use various methods to train the data to develop a certain model. The model can then
 be tested with retrospective data and then validated prospectively.

757

759

Supplement Table 1. Endotype

760	
761	

upplement	Table	••	Lindoty

Study	Description	Study Conclusion	Ref*
Deep learning- based clustering robustly identified two classes of sepsis with both prognostic and predictive values	The study aimed to develop a parsimonious class model to predict class membership and validate the model for its prognostic and predictive capability in external datasets. The Gene Expression Omnibus (GEO) and ArrayExpress databases were searched from inception to April 2020. Datasets containing whole blood gene expression profiling in adult sepsis patients were included. Autoencoder was used to extract representative features for k-means clustering. Genetic algorithms (GA) were employed to derive a parsimonious 5-gene class prediction model. The class model was then applied to external datasets (n = 780) to evaluate its prognostic and predictive performance. The study found that 12 datasets involving 1613 patients were included. Two classes were identified in the discovery cohort (n = 685). Class 1 was characterized by immunosuppression with higher mortality than class 2 (21.8% [70/321] vs. 12.1% [44/364]; p < 0.01 for Chisquare test). A 5-gene class model (C14orf159, AKNA, PILRA, STOM, and USP4) was developed with GA. In external validation cohorts, the 5-gene class model (AUC: 0.707; 95% CI: 0.664 – 0.750) performed better in predicting mortality than sepsis response signature (SRS) endotypes (AUC: 0.610; 95% CI: 0.521 – 0.700) and performed equivalently to the APACHE II score (AUC: 0.681; 95% CI: 0.595 – 0.767). In the dataset E-MTAB-7581, using hydrocortisone was associated with an increased mortality risk (OR: 3.15 [1.13, 8.82]; p = 0.029) in class 2.	The study concludes that their study identified two classes of sepsis that showed different mortality rates and responses to hydrocortisone therapy. Class 1 was characterized by immunosuppression with a higher mortality rate than class 2. They further developed a 5-gene class model to predict class membership.	26
Predicting sepsis severity at first clinical presentation: The role of endotypes and mechanistic signatures	The study aimed to identify gene expression signatures that predict subsequent severity in sepsis patients at first clinical presentation. Blood RNA-Seq and clinical data were collected from 348 patients in four emergency rooms (ER), one intensive- care unit (ICU), and 44 healthy controls. Gene expression profiles were analyzed using machine learning and data mining to identify clinically relevant gene signatures reflecting disease severity, organ dysfunction, mortality, and specific endotypes/mechanisms. The study found that gene expression signatures were obtained that predicted severity/organ dysfunction and mortality in both ER and ICU patients with an accuracy/AUC of 77-80%. Network analysis revealed these signatures formed a coherent biological program with specific but overlapping mechanisms/pathways. Patients with early sepsis could be stratified into five distinct and novel mechanistic endotypes, named Neutrophilic- Suppressive/NPS, Inflammatory/INF, Innate-Host-Defense/IHD, Interferon/IFN, and Adaptive/ADA, each based on approximately 200 unique gene expression differences, and distinct pathways/mechanisms. Endotypes had varying overall severity, with two severe (NPS/INF) and one relatively benign (ADA) groupings. A 40-gene classification tool (accuracy=96%) and several gene pairs (accuracy=89-97%) accurately predicted endotype status in both ER and ICU validation cohorts.	The study concludes that the severity and endotype signatures indicate that distinct immune signatures precede the onset of severe sepsis and lethality, providing a method to triage early sepsis patients.	29
Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study	This prospective observational cohort study included consecutive patients admitted for sepsis to two intensive care units (ICUs) in the Netherlands and patients admitted with sepsis due to community-acquired pneumonia to 29 ICUs in the UK. The researchers generated genome-wide blood gene expression profiles from admission samples and analyzed them using unsupervised consensus clustering and machine learning. Four molecular endotypes for sepsis designated Mars1–4, were identified in the discovery cohort found the worst outcome for patients classified as having a Mars1 endotype. A 140-gene expression signature reliably stratified patients with sepsis to the four endotypes in the first and second validation cohorts. Only Mars1 was consistently significantly associated with 28-day mortality across the cohorts.	This study provides a method for the molecular classification of patients with sepsis to four different endotypes upon ICU admission. Detection of sepsis endotypes might assist in personalized patient management and selection for trials.	35

A Novel Single Cell RNA-seq Analysis of Non-Myeloid Circulating Cells in Late Sepsis	This study used single-cell RNA sequencing (scRNA-seq) to perform a detailed transcriptomic analysis of lymphoid-derived leukocytes to better understand the pathology of late sepsis. A mixture of whole blood myeloid-enriched and Ficoll-enriched peripheral blood mononuclear cells from four late septic patients (post-sepsis day 14-21) and five healthy subjects underwent Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq). The study identified unique transcriptomic patterns for multiple circulating immune cell subtypes, including B- and CD4+, CD8+, activated CD4+ and activated CD8+ T-lymphocytes, as well as natural killer (NK), NKT, and plasmacytoid dendritic cells in late sepsis patients. The analysis demonstrated that the circulating lymphoid cells maintained a transcriptome reflecting immunosuppression and low-grade inflammation. The study also identified transcriptomic differences between patients with bacterial versus fungal sepsis, such as greater expression of cytotoxic genes among CD8+ T-lymphocytes in late bacterial sepsis.	Circulating non-myeloid cells display a unique transcriptomic pattern late after sepsis. Non-myeloid leukocytes in particular, reveal a host endotype of inflammation, immunosuppression, and dysfunction, suggesting a role for precision medicine- guided immunomodulatory therapy	32
Transcriptomic Signatures in Sepsis and a Differential Response to Steroids From the VANISH Randomized Trial	This was a post hoc analysis of a double-blind, randomized clinical trial in septic shock (VANISH [Vasopressin vs. Norepinephrine as Initial Therapy in Septic Shock]). Patients were included within 6 hours of the onset of shock and were randomized to receive norepinephrine or vasopressin followed by hydrocortisone or placebo. Genome-wide gene expression profiling was performed, and the SRS endotype was determined by a previously established model using seven discriminant genes. Samples were available from 176 patients: 83 SRS1 and 93 SRS2. There was no significant interaction between the SRS group and vasopressor assignment (P = 0.50). However, there was an interaction between assignment to hydrocortisone or placebo and SRS endotype (P = 0.02). Hydrocortisone use was associated with increased mortality in those with an SRS2 phenotype (odds ratio = 7.9; 95% confidence interval = 1.6–39.9).	Transcriptomic profile at onset of septic shock was associated with response to corticosteroids. Those with the immunocompetent SRS2 endotype had significantly higher mortality when given corticosteroids than placebo.	27
Epstein-Barr virus reactivation in sepsis due to community- acquired pneumonia is associated with increased morbidity and an immunosuppressed host transcriptomic endotype	This study aimed to determine the incidence and correlates of Epstein-Barr virus (EBV) positivity in a large sepsis cohort. The researchers assayed EBV from the plasma of intensive care unit (ICU) patients with sepsis due to community-acquired pneumonia. In total, 730 patients were evaluated by targeted metagenomics, digital droplet PCR, or both. Gene expression in peripheral blood leukocytes was analyzed for a subset of individuals. The study found a 37% incidence of EBV-positivity. EBV reactivation was associated with longer ICU stay and increased organ failure. EBV reactivation was also associated with the relatively immunosuppressed SRS1 endotype and differential expression of a few biologically relevant genes.	These findings are consistent with the hypothesis that viral reactivation in sepsis results from immune compromise and is associated with increasing severity of illness. However, further mechanistic studies are required to definitively illustrate cause and effect.	30
EVIDENCE OF ENDOTYPES IN PEDIATRIC ACUTE HYPOXEMIC RESPIRATORY FAILURE CAUSED BY SEPSIS	This study was a secondary analysis of a previously reported microarray-based study of pediatric sepsis. The researchers tested whether endotypes identified in pediatric sepsis apply to acute hypoxemic respiratory failure (AHRF). The study was conducted in multiple pediatric intensive care units in the United States, including 67 children with AHRF caused by sepsis. Of the larger septic shock cohort, 67 met eligibility for AHRF. Twenty-three subjects were assigned to Endotype A, and 44 to Endotype B. Subjects assigned to Endotype A had over 4-fold greater unadjusted 28-day mortality and nearly 3-fold greater rates of complicated course. The association with mortality and complicated course persisted after adjustment for age, severity of illness, and PaO2/FIO2.	Applying a previously reported endotyping strategy in children with septic shock identified endotypes of pediatric AHRF secondary to sepsis, with differential risk for poor outcomes. This is the first demonstration of endotypes in pediatric respiratory failure. The results support an investigation into using transcriptomics to identify mRNA-based endotypes in a dedicated, well-defined AHRF cohort.	28
Facilitating systems-level analyses of all- cause and Covid- mediated sepsis through SeptiSearch, a manually-curated compendium of	This study aimed to build a compendium of previously described gene sets that combine knowledge from sepsis-associated studies. PubMed was searched for transcriptomics studies to characterize acute infection/sepsis and severe sepsis. The molecules included in each gene set were collected in addition to the relevant study metadata. After extensive literature curation of 74 sepsis-related publications involving transcriptomics, 103 unique gene sets (comprising	SeptiSearch provides members of the sepsis community with the bioinformatic tools needed to leverage and explore the gene sets contained in the database. This will allow the gene sets to be further scrutinized and analyzed for	39

dysregulated gene sets	20,899 unique genes) from thousands of patients were collated with associated metadata. Frequently described genes included in gene sets and the molecular mechanisms they were involved in were identified. The SeptiSearch database is available in a web application created using the Shiny framework in R.	their enrichment in user- submitted gene expression data and used to validate in- house gene sets/signatures.	
Machine Learning Identifies Complicated Sepsis Course and Subsequent Mortality Based on 20 Genes in Peripheral Blood Immune Cells at 24 H Post-ICU Admission	The authors identified 20 genes differentially expressed between complicated and uncomplicated sepsis patients and developed a highly accurate machine-learning model that could predict complicated course outcomes and mortality. They also found eight novel (CLEC5A, TCN1, HCAR3, MS4A3, OLAH, PLCB1, SDC4, and NLRP1) genes associated with sepsis's overactive innate immune system and neutrophil function. In this study, the artificial intelligence model used was a combination of variable selection techniques, oversampling and undersampling methods, and tree-based classifiers and logistic regression. The authors used three variable selection techniques (random forest-based variable importance, LASSO, and Minimum Redundancy and Maximum Relevance) to reduce the dimensionality of the gene expression data and identify the most important genes. They also used different oversampling and undersampling techniques (such as SMOTE, Cluster Centroids, and Instance Hardness Threshold) to balance the imbalanced data ¹ [1]. They then developed machine learning algorithms using tree-based classifiers (such as Balanced Random Forest and Extra Trees) and logistic regression to classify the patients into complicated or uncomplicated course outcomes. They tuned the hyperparameters of the classifiers using a cross-validated grid search technique and evaluated their performance using metrics such as AUROC, sensitivity, specificity, and Mathews correlation coefficient. They also experimented with different classification thresholds to fine-tune the classifiers for imbalanced data. They repeated the process 10 times with 5-fold cross-validation to generate 50 iterations and averaged the results. They also validated their model and genes using similar methods on four external datasets.	The researchers proposed a new method and biomarkers for early identification of sepsis disease trajectory and clinical outcomes, which could help modify treatment options and improve patient survival.	34
Pediatric Sepsis Endotypes among Adults with Sepsis	The authors used transcriptomic data from adults with sepsis from the GAinS study and assigned them to SRS groups and endotype groups using previously reported gene expression signatures. They used multivariable logistic regression to assess the associations between endotype, SRS membership, age, and mortality. The researchers found that 30% of the subjects were assigned to endotype A and 70% to endotype B. A weak, positive correlation existed between endotype assignment and SRS membership. SRS1 membership, endotype A assignment, and older age were associated with an increased risk of mortality. The interaction between endotype and age was statistically significant, showing an increased mortality risk with endotype A and younger age. Subjects co-assigned to endotype A and SRS1 had the highest mortality. Pathway analysis revealed that the genes differentiating the A1 group from the others corresponded to the T cell receptor signaling pathway.	The authors concluded that the SRS and endotyping strategies might provide complementary, age- dependent biological and prognostic information for sepsis sub-classification. They suggested future studies directly assessing the specific biology reflected by these two signatures and how they interact in sepsis pathobiology.	69
Characterization of immune-related genes and immune infiltration features for early diagnosis, prognosis and recognition of immunosuppression in sepsis**	This study used a combination of machine learning approaches, including modified Lasso penalized regression and random forest (RF), to identify hub immune-related genes (IRGs) from multiple global datasets. The IRG score was generated through a linear combination of coefficients from logistic regression and the relative expression of each IRG. The diagnostic and prognostic values of the model were tested in independent validation cohorts from ArrayExpress databases. The authors also systematically correlated the IRG classifier with immunological characteristics from multiple perspectives, such as immune-related cells infiltrating, pivotal molecular pathways, and cytokine expression. The study identified 8 hub IRGs (ADM, CX3CR1, DEFA4, HLA-	The study established a diagnostic and prognostic model based on 8 IRGs that is closely correlated with responses to hydrocortisone and immunosuppression status. This model might facilitate personalized counseling for specific therapy. The results suggest that components of the immune system play a crucial role in the occurrence and development of sepsis.	37

	DPA1, MAPK14, ORM1, RETN, and SLPI) that were combined to construct an IRG classifier. In the discovery cohort, the IRG classifier exhibited superior diagnostic efficacy and performed better in predicting mortality than clinical characteristics or MARS/SRS endotypes. Encouragingly, similar results were observed in the ArrayExpress databases. The use of hydrocortisone in the IRG high-risk subgroup was associated with increased risk of mortality. In the IRG low-risk phenotypes, NK cells, T helper cells, and infiltrating lymphocyte (IL) were significantly richer, while T cells regulatory (Tregs) and myeloid- derived suppressor cells (MDSC) were more abundant in the IRG high-risk phenotypes.		
Predicting severity in COVID-19 disease using sepsis blood gene expression signatures	The authors analyzed the whole blood transcriptome of 124 patients with confirmed COVID-19 infections from hospitals in Quebec, Canada ¹ [1]. They compared the gene expression profiles of patients with different severity levels and outcomes, and assessed the dysregulation of sepsis signatures and endotypes that reflect distinct pathophysiology and underlying mechanisms. The authors found that signatures reflecting cellular reprogramming, organ dysfunction, and mortality were significantly enriched and predictive of severity and lethality in COVID-19 patients. They also identified five endotypes that reflected distinct sepsis aetiologies and therapeutic opportunities. The endotypes were associated with different clinical parameters, such as respiratory support group, ICU admission, and mortality. The authors also identified potential endotype-specific drug targets using protein-protein interaction networks.	The authors suggested that severe COVID-19 patients should be classified as having severe sepsis and that sepsis signatures could be useful for clinical risk stratification and treatment guidance. They also proposed that endotypes might enable personalized medicine approaches for COVID-19 disease.	38
Validation of Inflammopathic, Adaptive, and Coagulopathic Sepsis Endotypes in Coronavirus Disease 2019	The authors applied a 33-messenger RNA classifier to assign endotype (Inflammopathic, Adaptive, or Coagulopathic) to 97 patients with COVID-19 within 24 hours of hospital admission ¹ [1]. They tested endotype status against other clinical parameters including laboratory values, severity scores, and outcomes. The authors found that endotype assignment was associated with clinical outcomes and immune markers. They showed that the Adaptive endotype had no deaths, while the Inflammopathic and Coagulopathic endotypes had high mortality rates ³ [3]. Age and endotype probability were significant predictors of death in a multivariate regression model. The authors also explored the relationship between endotypes and coagulation parameters, such as d-dimers, fibrinogen, and ISTH DIC score. They observed significant differences across the endotypes, with the Coagulopathic group showing the highest levels of coagulopathy markers.	The authors suggest that the heterogeneity of sepsis is also present in COVID-19. The 33-messenger RNA classifier is one possible way to reduce the clinical heterogeneity and potentially inform therapeutic decisions. They suggest that future studies of immunomodulatory therapy in sepsis or COVID- 19 should consider the endotypes as a companion- diagnostic approach.	33
Neutrophils and emergency granulopoiesis drive immune suppression and an extreme response endotype during sepsis	The authors used single-cell multiomic analysis to profile the blood cells of patients with sepsis and healthy controls, and identified different subsets of neutrophils and hematopoietic stem and progenitor cells (HSPCs) that were altered in sepsis²[2]. They also performed functional assays to test the immunosuppressive properties of neutrophils and the granulopoietic profiles of HSPCs. They further analyzed the relationship between the neutrophil and HSPC features and the sepsis response signatures (SRSs), which are transcriptomic subphenotypes of sepsis associated with different outcomes and responses to infection. They found that neutrophils and emergency granulopoiesis, the rapid production of granulocytes from HSPCs, drove a maladaptive response during sepsis that resulted in immune suppression and an extreme response endotype, a subgroup of patients with poor outcome and a specific sepsis response signature (SRS1). They showed that neutrophils from patients with sepsis inhibited the proliferation and activation of T cells, and that this effect was mediated by prostaglandins and genes associated with granulocytic myeloid-derived suppressor cells (G-MDSCs). They also showed that circulating HSPCs from patients with sepsis had altered granulopoietic profiles, with increased expression of genes and transcription factors involved in emergency granulopoiesis and expanded myelopoiesis.	They concluded that their findings revealed potential therapeutic targets and opportunities for stratified medicine in severe infection. They suggested that modulating neutrophil function or granulopoiesis could improve the outcome of patients with sepsis, especially those with the SRS1 subphenotype.	31

- Table 1. Details the search results according to the chosen sepsis framework search term 'Endotype'.
- 765 * Literature Reference
- ⁷⁶⁶ ** This paper appears in 'Endotype' and 'Diagnosis' searches.

767

768

769 770

771

773 Table 2. Biomarker

Study	Descriptions	Study Conclusion	Ref*
Two Gene Set Variation Index as Biomarker of Bacterial and Fungal Sepsis	The study applied microarray data of bacterial sepsis, fungal sepsis, and mock-treated samples to perform differentially expressed gene (DEG) analysis to identify a bacterial sepsis-specific gene set and a fungal sepsis-specific gene set. Functional enrichment analysis was used to explore the body's response to bacterial sepsis and fungal sepsis. Gene set variation analysis (GSVA) was used to score individual samples against the two pathogen-specific gene sets, and each sample gets a GSVA index. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of sepsis. An independent data set was used to validate the bacterial sepsis-specific GSVA index. The study found that the genes differentially expressed only in bacterial sepsis and the genes differentially expressed only in fungal sepsis were significantly involved in different biological processes (BPs) and pathways. This indicated that the body's responses to fungal sepsis, and 23 genes were identified as fungal sepsis-specific genes and upregulated in fungal sepsis. ROC curve analysis showed that both of the two pathogen sepsis-specific GSVA indexes may be a reliable biomarker for corresponding pathogen-induced sepsis (AUC = 1:000), while the mRNA of CALCA (also known as PCT) have a poor diagnostic value with AUC = 0:512 in bacterial sepsis and AUC = 0:705 in fungi sepsis. In addition, the AUC of the bacterial sepsis-specific GSVA index in the independent data set was 0.762.	The study concludes that they proposed a bacterial sepsis- specific gene set and a fungal sepsis-specific gene set; the bacterial sepsis GSVA index may be a reliable biomarker for bacterial sepsis.	40
ARG1 as a promising biomarker for sepsis diagnosis and prognosis: evidence from WGCNA and PPI network	The study aimed to identify crucial genes and biomarkers for sepsis that could guide clinicians to make rapid diagnosis and prognostication. Preliminary analysis of multiple global datasets, including 170 samples from patients with sepsis and 110 healthy control samples, revealed common differentially expressed genes (DEGs) in peripheral blood of patients with sepsis. After Gene Oncology (GO) and pathway analysis, the Weighted Gene Correlation Network Analysis (WGCNA) was used to screen for genes most related with clinical diagnosis. Also, the Protein-Protein Interaction Network (PPI Network) was constructed based on the DEGs and the hub genes were found. The results of WGCNA and PPI network were compared and one shared gene was discovered. Then more datasets of 728 experimental samples and 355 control samples were used to prove the diagnostic and prognostic value of this gene. Last, real-time PCR was used to confirm the bioinformatic results.	The study concludes that they identified crucial genes that may play significant roles in sepsis by WGCNA and PPI network. ARG1 was the only overlapped gene in both results and could be used to make an accurate diagnosis, discriminate the severity and predict the treatment response of sepsis.	41

			-
Similar hypothyroid and sepsis circulating mRNA expression could be useful as a biomarker in nonthyroidal illness syndrome: a pilot study	The study aimed to compare the patterns of gene expression between hypothyroidism and nonthyroidal illness syndrome (NTIS) as models of NTIS. The researchers used Ion Proton System next-generation sequencing to build the hypothyroidism transcriptome. They selected two databanks in GEO2 platform datasets to find the differentially expressed genes (DEGs) in adults and children with sepsis. The ROC curve was constructed to calculate the area under the curve (AUC). The AUC, chi-square, sensitivity, specificity, accuracy, kappa and likelihood were calculated. Cox regression and Kaplan-Meier analyses were performed for the survival analysis. The study found that concerning hypothyroidism DEGs, 70.42% were shared with sepsis survivors and 61.94% with sepsis nonsurvivors. Some of them were mitochondrial gene types (mitGenes), and 95 and 88 were related to sepsis survivors and nonsurvivors, respectively. BLOC1S1, ROMO1, SLIRP and TIMM8B mitGenes showed the capability to distinguish sepsis survivors and nonsurvivors.	The study concludes that they matched their hypothyroidism DEGs with those in adults and children with sepsis. Additionally, they observed different patterns of hypothyroid-related genes among sepsis survivors and nonsurvivors. Finally, they demonstrated that ROMO1, SLIRP and TIMM8B could be predictive biomarkers in children's sepsis.	44
Identification of MicroRNA as Sepsis Biomarker Based on miRNAs Regulatory Network Analysis	The study aimed to identify novel microRNA biomarkers associated with the early diagnosis of sepsis by analyzing miRNA expression profiles and the miRNA regulatory network. Pathways analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited to testify the reliability of the predicted miRNAs. The study found that by analyzing the miRNA expression profiles and the miRNA regulatory network, they obtained novel miRNAs associated with sepsis. They finally identified 8 novel miRNAs which have the potential to be sepsis biomarkers.	The study concludes that by applying a miRNA regulatory network- based method, they were able to identify novel microRNA biomarkers associated with the early diagnosis of sepsis. These findings may have important implications for improving the diagnosis and treatment of sepsis.	42
Bulk RNA Sequencing With Integrated Single- Cell RNA Sequencing Identifies BCL2A1 as a Potential Diagnostic and Prognostic Biomarker for Sepsis	The study aimed to identify novel diagnostic and prognostic biomarkers related to monocytes and macrophages by using bulk RNA sequencing with integrated single-cell RNA sequencing. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were applied to detect sepsis and monocyte/macrophage-related genes. Least absolute shrinkage and selection operator (LASSO) and random forest regression analyses were used in combination to screen out prognostic genes. Single-cell RNA sequence profiling was utilized to further verify the expression of these genes on a single cell level. Receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were also applied to verify the diagnostic value of the target biomarkers.	The study concludes that BCL2A1 had good diagnostic and prognostic value for sepsis, and that it can be applied as a potential and novel biomarker for the management of the disease.	43

A Transcriptomic Biomarker to Quantify Systemic Inflammation in Sepsis — A Prospective Multicenter Phase II Diagnostic Study	The study concludes that quantifying systemic inflammation by assessment of both pro- and anti- inflammatory innate and adaptive immune responses provides a novel option to identify patients-at-risk and may facilitate immune interventions in sepsis.	45
---	---	----

- 774
- **Table 2.** Details the search results according to the chosen sepsis framework search term
- ⁷⁷⁶ 'Biomarker'.
- 777 * Literature Reference
- 778
- 779

780 **Table 3. Diagnosis**

Study	Methods and Results	Study Conclusion	Ref*
Integrated host- microbe plasma metagenomics for sepsis diagnosis in a prospective cohort of critically ill adults	Transcriptome profiling of colorectal tumors from patients with sepsis reveals an ethnic basis for viral infection risk and sepsis progression The study conducted a retrospective transcriptomic analysis of colorectal cancer (CRC) tumors and adjacent non-tumor tissue from adult patients of Native Hawaiian and Japanese ethnicity who died from cancer-associated sepsis. The researchers examined differential gene expression in relation to patient survival and sepsis disease etiology. The study found that Native Hawaiian CRC patients diagnosed with sepsis had a median survival of 5 months, compared to 117 months for Japanese patients. Transcriptomic analyses identified two distinct sepsis gene signatures classified as early response and late response sepsis genes that were significantly altered in the Native Hawaiian cohort. Analysis of canonical pathways revealed significant up and downregulation in mechanisms of viral exit from host cells and epithelial junction remodeling.	The study concludes that their transcriptomic approach advances understanding of sepsis heterogeneity by revealing a role of genetic background and defining patient subgroups with altered early and late biological responses to sepsis. Their findings may lead to personalized approaches in stratifying patient mortality risk for sepsis and in the development of effective targeted therapies for sepsis	53
Pre-symptomatic diagnosis of postoperative infection and sepsis using gene expression signatures	This study collected blood samples and clinical/laboratory data daily from 4385 patients undergoing elective surgery. An adjudication panel identified 154 patients with definite postoperative infection, of whom 98 developed sepsis. Transcriptomic profiling and subsequent RT-qPCR were undertaken on sequential blood samples taken postoperatively from these patients in the three days prior to the onset of symptoms. Comparison was made against postoperative day-, age-, sex- and procedure- matched patients who had an uncomplicated recovery (n =151) or postoperative inflammation without infection (n =148). Specific gene signatures optimized to predict infection or sepsis in the three days prior to clinical presentation using machine learning with cross-validation with separate patient cohorts and their matched controls gave high Area Under the Receiver Operator Curve (AUC) values. These allowed discrimination of infection non-infectious systemic inflammation (0.897), sepsis from other postoperative presentations (0.843), and sepsis from uncomplicated infection (0.703).	Host biomarker signatures may be able to identify postoperative infection or sepsis up to three days in advance of clinical recognition. If validated in future studies, these signatures offer potential diagnostic utility for postoperative management of deteriorating or high-risk surgical patients and, potentially, other patient populations.	54
Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis	This study was designed as a secondary data analysis of cohorts from previously published studies. The authors searched for genome-wide expression studies of neonatal sepsis in PubMed, NCBI GEO, and EBI ArrayExpress. They included data sets only from studies of both neonates with sepsis and a reference/control class. For each study, the authors contacted the authors to gather laboratory data, including white blood cell (WBC) count, absolute neutrophil count (ANC), and C-reactive protein (CRP) level. The authors found 3 cohorts with a total of 213 samples from control neonates and neonates with sepsis. The Sepsis MetaScore had an area under the receiver operating characteristic curve of 0.92–0.93 in all 3 cohorts. They also found that, as a diagnostic test for sepsis, it outperformed standard laboratory measurements alone and, when used in combination with another test(s), resulted in a significant net reclassification index (0.3–0.69) in 5 of 6 comparisons.	The Sepsis MetaScore had excellent diagnostic accuracy across 3 separate cohorts of neonates from 3 different countries. Further prospective targeted study will be needed before clinical application.	57

MicroRNAs combined with the TLR4/TDAG8 mRNAs and proinflammatory cytokines are biomarkers for the rapid diagnosis of sepsis.	This study included 40 patients with sepsis and 40 healthy controls. RNA-sequencing technology and bioinformatics analysis were applied to screen the DEMs between the two cohorts. The expression of these DEMs was subsequently verified by performing reverse transcription-quantitative PCR (RT-qPCR). In addition, IL-6, IL-21, C-X-C motif chemokine ligand-8 (CXCL8) and monocyte chemoattractant protein-1 (MCP-1) levels, along with T-cell death-associated gene 8 (TDAG8) and toll-like receptor 4 (TLR4) mRNA expression levels were assessed. The association between microRNA(miRNA/miR)-3663-3p and the secretion of various proinflammatory cytokines or TDAG8 and TLR4 mRNA expressions were subsequently evaluated by linear correlation analysis. The results revealed 305 DEMs (P<0.05; fold change >2) between patients with sepsis and healthy controls. Among these, the top 18 up- and downregulated miRNAs were selected for RT-qPCR verification. In addition, the serum content of IL-6, IL-21, CXCL8 and MCP-1, and the expression of TDAG8 and TLR4 mRNA were significantly increased in patients with sepsis, a positive correlation was identified between miR-3663-3p and the secretion of inflammatory cytokines or TDAG8 and TLR4 mRNA expression. A positive correlation was also elucidated between TDAG8 and TLR4 mRNA expression. A positive correlation was also elucidated between TDAG8 and TLR4 mRNA expression.	The results determined that miR-3663-3p may be a potentially powerful diagnostic and predictive biomarker of sepsis and that the combined and simultaneous detection of several biomarkers, including proteins, miRNAs, and mRNA may be a reliable approach for the fast diagnosis and early identification of sepsis	55
	expression, IL-6, IL-21, CXCL8 and MCP-1 secretion and TDAG8 and TLR4 mRNA expression demonstrated that miRNA analysis may be invaluable for the diagnosis of sepsis.		
Constructing a 10- core genes panel for diagnosis of pediatric sepsis	This study downloaded three sets of sepsis expression data (GSE13904, GSE25504, GSE26440) from GEO. Then, using the R limma package and WGCNA analysis to screen for core genes. Finally, the value of these core genes was confirmed by clinical samples. Compared to normal samples, many abnormally expressed genes were obtained in the pediatric sepsis. WGCNA co- expression analysis showed that genes from blue and turquoise module were closely correlated with pediatric sepsis. The top 20 genes of the blue module of pediatric sepsis were mainly enriched in neutrophil degranulation, etc. The top 20 genes for turquoise module were mainly enriched in rRNA-containing ribonucleoprotein complexes exported from the nucleus, etc. The selected hub gene of pediatric sepsis was combined with the markers of cell surface and found 10 core genes (HCK, PRKCD, SIRPA, DOK3, ITGAM, LTB4R, MAPK14, MALT1, NLRC3, LCK). ROC showed that AUC of the 10 core genes for diagnosis of pediatric sepsis was above 0.9.	There were many abnormally expressed genes in patients with pediatric sepsis. The panel constructed by the 10 core genes was expected to become a biomarker panel for clinical application of pediatric sepsis.	56

Characterization of immune-related genes and immune infiltration features for early diagnosis, prognosis and recognition of immunosuppression in sepsis**	This study used a combination of machine learning approaches, including modified Lasso penalized regression and random forest (RF), to identify hub immune-related genes (IRGs) from multiple global datasets. The IRG score was generated through a linear combination of coefficients from logistic regression and the relative expression of each IRG. The diagnostic and prognostic values of the model were tested in independent validation cohorts from ArrayExpress databases. The authors also systematically correlated the IRG classifier with immunological characteristics from multiple perspectives, such as immune-related cells infiltrating, pivotal molecular pathways, and cytokine expression.	The study established a diagnostic and prognostic model based on 8 IRGs that is closely correlated with responses to hydrocortisone and immunosuppression status. This model might facilitate personalized counseling for specific therapy. The results suggest that components of the immune system play a crucial role in the occurrence and development of sepsis.	37
	The study identified 8 hub IRGs (ADM, CX3CR1, DEFA4, HLA- DPA1, MAPK14, ORM1, RETN, and SLPI) that were combined to construct an IRG classifier. In the discovery cohort, the IRG classifier exhibited superior diagnostic efficacy and performed better in predicting mortality than clinical characteristics or MARS/SRS endotypes. Encouragingly, similar results were observed in the ArrayExpress databases. The use of hydrocortisone in the IRG high-risk subgroup was associated with increased risk of mortality. In the IRG low-risk phenotypes, NK cells, T helper cells, and infiltrating lymphocyte (IL) were significantly richer, while T cells regulatory (Tregs) and myeloid- derived suppressor cells (MDSC) were more abundant in the IRG high-risk phenotypes.		

782

783 **Table 3.** Details the search results according to the chosen sepsis framework search term 'Diagnosis'.

784 * Literature Reference

⁷⁸⁵ ** This paper appears in 'Endotype' and 'Diagnosis' searches.

Table 4. Sepsis progression

Study	Methods and Results	Conclusion	Ref*	
Host Gene Expression to Predict Sepsis Progression.	This study aimed to develop transcriptomic models to predict progression to sepsis or shock within 72 hours of hospitalization and to validate previously identified transcriptomic signatures in the prediction of 28-day mortality. The authors hypothesized that host gene expression could predict sepsis progression and mortality. The authors used RNA sequencing of whole blood from 277 patients with infection, sepsis, or septic shock enrolled at four hospitals. They performed differential gene expression analysis and predictive modeling to identify signatures for sepsis progression and mortality. The authors found no differential gene expression or predictive signature for sepsis progression defined by the Sepsis-3 category. However, they found differential gene expression and moderate predictive ability for sepsis progression defined by new organ dysfunction or ICU admission/mortality. They also validated four previously published gene signatures for sepsis mortality.	The authors concluded that host gene expression was unable to predict sepsis progression by the Sepsis-3 category, but could predict more severe outcomes ³ [3]. They suggested that transcriptomic methods should account for biological and clinical heterogeneity in sepsis.	1	
"Transcriptome profiling of colorectal tumors from patients with sepsis reveals an ethnic basis for viral infection risk and sepsis progression"	The study conducted a retrospective transcriptomic analysis of colorectal cancer (CRC) tumors and adjacent non-tumor tissue from adult patients of Native Hawaiian and Japanese ethnicity who died from cancer-associated sepsis. The researchers examined differential gene expression in relation to patient survival and sepsis disease etiology. The study found that Native Hawaiian CRC patients diagnosed with sepsis had a median survival of 5 months, compared to 117 months for Japanese patients. Transcriptomic analyses identified two distinct sepsis gene signatures classified as early response and late response sepsis genes significantly altered in the Native Hawaiian cohort. Analysis of canonical pathways revealed significant up and downregulation in mechanisms of viral exit from host cells and epithelial junction remodeling.	The study concludes that their transcriptomic approach advances the understanding of sepsis heterogeneity by revealing the role of genetic background and defining patient subgroups with altered early and late biological responses to sepsis. Their findings may lead to personalized approaches in stratifying patient mortality risk for sepsis and in the development of effective targeted therapies for sepsis.	59	

Table 4. Details the search results according to the chosen sepsis framework search term

'Progression'.

* Literature Reference

Table 5. Sepsis Severity

Study	Method and Results	Study Conclusion	Ref*
 The study affied to identify gene expression signatures that predict at first clinical presentation: The role of endotypes and mechanistic signatures" Blood RNA-Seq and clinical data were collected from 348 patients in four emergency rooms (ER) and one intensive-care-unit (ICU), and 44 healthy controls. Gene expression profiles were analyzed using machine learning and data mining to identify clinically relevant gene signatures reflecting disease severity, organ dysfunction, mortality, and specific endotypes/mechanisms. **Results:** The study found that gene expression signatures were obtained that predicted severity/organ dysfunction and mortality in both ER and ICU patients with accuracy/AUC of 77-80%. Network analysis revealed these signatures formed a coherent biological program, with specific but overlapping mechanisms/pathways. Patients with early sepsis could be stratified into five distinct and novel mechanistic endotypes, named Neutrophilic-Suppressive/NPS, Inflammatory/INF, Innate-Host-Defense/IHD, Interferon/IFN, and Adaptive/ADA, each based on approximately 200 unique gene expression differences, and distinct pathways/mechanisms. Endotypes had varying overall severity with two severe (NPS/INF) and one relatively benign (ADA) groupings. A 40 gene-classification tool (accuracy=96%) and several gene-pairs (accuracy=89-97%) accurately predicted endotype status in both ER and ICU validation cohorts. 		**** [Duplicate with endotype category]***** **Conclusions:** The study concludes that the severity and endotype signatures indicate that distinct immune signatures precede the onset of severe sepsis and lethality, providing a method to triage early sepsis patients.	29
Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients This study developed an alternative approach to dissect disease- associated molecular changes by defining gene ensemble noise as a measure that represents a variance for a collection of genes encoding for either members of known biological pathways or subunits of annotated protein complexes and calculated within an individual. The gene ensemble noise allows for the holistic identification and interpretation of gene expression disbalance on the level of gene networks and systems. By comparing gene expression data from COVID-19, H1N1, and sepsis patients, the study identified common disturbances in a number of pathways and protein complexes relevant to the sepsis pathology. The study found that among others, these include the mitochondrial respiratory chain complex I and peroxisomes. This suggests a Warburg effect and oxidative stress as common hallmarks of the immune host–pathogen response. Finally, it was shown that gene ensemble noise could successfully be applied for the prediction of clinical outcome namely, the mortality of patients.		The study concludes that gene ensemble noise represents a promising approach for the investigation of molecular mechanisms of pathology through a prism of alterations in the coherent expression of gene circuits.	60

Table 5. Details the search results according to the chosen sepsis framework search term 'Severity'.

⁷⁹⁸ * Literature Reference

801 Table 6. Benchmark

802

Study	Method and Results	Conclusion	Ref*
Benchmarking sepsis gene expression diagnostics using public data.	A systematic search for publicly available gene expression data in sepsis. The authors tested each gene expression classifier in all included datasets and created a public repository of sepsis gene expression data to encourage their future re-use. Several new gene expression classifiers have been recently published for better sepsis diagnostics, including an 11-gene 'Sepsis MetaScore', the FAIM3:PLAC8 ratio, and the Septicyte Lab. The authors performed a systematic search for publicly available gene expression data in sepsis and tested each gene expression classifier in all included datasets. They also created a public repository of sepsis gene expression data to encourage their future re-use.	Three diagnostics do not show significant differences in overall ability to distinguish non-infectious SIRS from sepsis, though the performance in some datasets was low (AUC<0.7) for the FAIM3:PLAC8 ratio and Septicyte lab. The Septicyte Lab also demonstrated significantly worse performance in discriminating infections as compared to healthy controls. Overall, public gene expression data is a useful tool for benchmarking gene expression diagnostics.	63
The leukocyte non-coding RNA landscape in critically ill patients with sepsis	The authors obtained whole blood from 156 patients with sepsis and 82 healthy subjects among whom eight were challenged with lipopolysaccharide in a clinically controlled setting (human endotoxemia). They performed next- generation microarray analysis of leukocyte RNA to evaluate protein-coding, long and small non- coding RNA expression. The authors found that long non-coding RNA and, to a lesser extent, small non-coding RNA were significantly altered in sepsis relative to health. Long non-coding RNA expression, but not small non-coding RNA, was largely recapitulated in human endotoxemia. Integrating RNA profiles and plasma protein levels revealed known as well as previously unobserved pathways, including non-sensory olfactory receptor activity.	The transcriptional changes in critically ill patients with sepsis are not exclusive to protein-coding RNAs. Whole blood long non-coding RNAs, and to a lesser extent small non- coding RNAs, were significantly altered in sepsis patients relative to healthy subjects. The pattern of protein-coding and long non-coding RNA profiles in sepsis was mimicked by expression profiles in a human endotoxemia model. This study provides a benchmark dissection of the blood leukocyte 'regulome' that can facilitate prioritization of future functional studies.	64

803

Table 6. Details the search results according to the chosen sepsis framework search term

805 'Benchmark'.

* Literature Reference

807

809 Supplement Table 7: Pubmed Search Strategies

810

			1	
Key Search Term	Pubmed Search Term	Next level Filtering	Online Filtering	Final Level Filtering
Sepsis Endotype	sepsis [Title]) and (endotype)	AND (gene expression) NOT (review)	Human studies in the last 10 years	not (drugs) not (vaccines) and (English[Language])
Sepsis Biomark	(sepsis [Title]) and (biomarker [Title]))	AND (gene expression) NOT (review)	Human studies in the last 10 years	not (drugs) not (vaccines) and (English[Language])
Sepsis Definition	(sepsis [Title]) and (definition [Title])	AND (gene expression) NOT (review)	Human studies in the last 10 years	not (drugs) not (vaccines) and (English[Language])
Sepsis Diagnosis	(sepsis [Title]) and (diagnosis [Title]))	AND (gene expression) NOT (review)	Human studies in the last 10 years	not (drugs) not (vaccines) and (English[Language])
Sepsis Prognosis	(sepsis [Title]) and ((progression [Title])	AND (gene expression) NOT (review)	Human studies in the last 10 years	not (drugs) not (vaccines) and (English[Language])
Sepsis Severity	(sepsis [Title]) and (severity [Title])	AND (gene expression) NOT (review)	Human studies in the last 10 years	not (drugs) not (vaccines) and (English[Language])
Sepsis Benchmark	(sepsis [Title]) and (benchmark)	AND (gene expression) NOT (review)	Human studies in the last 10 years	not (drugs) not (vaccines) and (English[Language])

811

Table 7. Table shows the different level of filtering applied to the different search terms. For sepsis

Endotype and Benchmark the search terms were expanded to include the full body of the text. This was in order to expand the search and ensure inclusion of all relevant inform

815

816

817

818

References 820

821		
822	1.	Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017:
823		analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200-211.
824	2.	Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of
825		septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(Suppl 1):10-67.
826	3.	Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of
827		sepsis and septic shock 2021. Intensive Care Medicine. 2021;47(11):1181-1247.
828	4.	Gül F, Arslantaş MK, Cinel İ, Kumar A. Changing Definitions of Sepsis. Turk J Anaesthesiol Reanim. 2017;45(3):129-
829		138.
830	5.	Obonyo NG, Schlapbach LJ, Fraser JF. Sepsis: Changing Definitions, Unchanging Treatment. <i>Frontiers in Pediatrics</i> .
831		2019;6.
832	6.	Weiss SL, Peters MJ, Alhazzani W, et al. Surviving Sepsis Campaign International Guidelines for the Management of
833		Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr Crit Care Med. 2020;21(2):e52-e106.
834	7.	Sprung CL, Trahtemberg U. What Definition Should We Use for Sepsis and Septic Shock? Crit Care Med.
835		2017;45(9):1564-1567.
836	8.	Souza DC, Brandao MB, Piva JP. From the International Pediatric Sepsis Conference 2005 to the Sepsis-3
837		Consensus. Rev Bras Ter Intensiva. 2018;30(1):1-5.
838	9.	McGovern M, Giannoni E, Kuester H, et al. Challenges in developing a consensus definition of neonatal sepsis.
839		Pediatr Res. 2020;88(1):14-26.
840	10.	Martimbianco ALC, Pacheco RL, Bagattini AM, de Fatima Carreira Moreira Padovez R, Azevedo LCP, Riera R.
841		Vitamin C-based regimens for sepsis and septic shock: Systematic review and meta-analysis of randomized clinical
842		trials. J Crit Care. 2022;71:154099.
843	11.	Sweeney DA, Danner RL, Eichacker PQ, Natanson C. Once is not enough: clinical trials in sepsis. Intensive Care
844		Medicine. 2008;34(11):1955-1960.
845	12.	Cohen J, Vincent JL, Adhikari NK, et al. Sepsis: a roadmap for future research. <i>Lancet Infect Dis.</i> 2015;15(5):581-
846		614.
847	13.	Berry M, Patel BV, Brett SJ. New Consensus Definitions for Sepsis and Septic Shock: Implications for Treatment
848		Strategies and Drug Development? Drugs. 2017;77(4):353-361.
849	14.	Vandewalle J, Libert C. Sepsis: a failing starvation response. Trends in Endocrinology & Metabolism. 2022;33(4):292-
850		304.
851	15.	Goldstein B, Giroir B, Randolph A, International Consensus Conference on Pediatric S. International pediatric sepsis
852		consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2-
853		8.
854	16.	van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential
855		therapeutic targets. Nat Rev Immunol. 2017;17(7):407-420.
856	17.	Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic
857		Shock (Sepsis-3). JAMA. 2016;315(8):801-810.
858	18.	Leligdowicz A, Matthay MA. Heterogeneity in sepsis: new biological evidence with clinical applications. Crit Care.
859		2019;23(1):80.
860	19.	Lorton F, Chalumeau M, Martinot A, et al. Prevalence, Characteristics, and Determinants of Suboptimal Care in the
861		Initial Management of Community-Onset Severe Bacterial Infections in Children. JAMA Netw Open.
862		2022;5(6):e2216778.
863	20.	Hasson D, Goldstein SL, Standage SW. The application of omic technologies to research in sepsis-associated acute
864		kidney injury. <i>Pediatr Nephrol.</i> 2021;36(5):1075-1086.
865	21.	Fernandez-Sarmiento J, Schlapbach LJ, Acevedo L, et al. Endothelial Damage in Sepsis: The Importance of
866		Systems Biology. Front Pediatr. 2022;10:828968.
867	22.	Ruiz-Rodriguez JC, Plata-Menchaca EP, Chiscano-Camón L, et al. Precision medicine in sepsis and septic shock:
868		From omics to clinical tools. World J Crit Care Med. 2022;11(1):1-21.
869	23.	McLean AS, Shojaei M. Transcriptomics in the intensive care unit. <i>Lancet Respir Med.</i> 2022;10(9):824-826.
870	24.	Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. <i>Implementation science</i> .
871		2010;5(1):1-9.
872	25.	Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation.
873		Annals of internal medicine. 2018;169(7):467-473.
874	26.	Zhang Z, Pan Q, Ge H, Xing L, Hong Y, Chen P. Deep learning-based clustering robustly identified two classes of
875		sepsis with both prognostic and predictive values. <i>EBioMedicine</i> . 2020;62:103081.
876	27.	Antcliffe DB, Burnham KL, Al-Beidh F, et al. Transcriptomic Signatures in Sepsis and a Differential Response to
877		Steroids. From the VANISH Randomized Trial. Am J Respir Crit Care Med. 2019;199(8):980-986.
878	28.	Yehya N, Thomas NJ, Wong HR. Evidence of Endotypes in Pediatric Acute Hypoxemic Respiratory Failure Caused
879		by Sepsis. Pediatr Crit Care Med. 2019;20(2):110-112.
880	29.	Baghela A, Pena OM, Lee AH, et al. Predicting sepsis severity at first clinical presentation. The role of endotypes and
881		mechanistic signatures. EBioMedicine. 2022;75:103776.
882	30.	Goh C, Burnham KL, Ansari MA, et al. Epstein-Barr virus reactivation in sepsis due to community-acquired
883		pneumonia is associated with increased morbidity and an immunosuppressed host transcriptomic endotype. Sci Rep.
884		2020;10(1):9838.
885	31.	Kwok AJ, Allcock A, Ferreira RC, et al. Neutrophils and emergency granulopoiesis drive immune suppression and an
886	~~	extreme response endotype during sepsis. Nat Immunol. 2023;24(5):767-779.
887	32.	Dargen DB, Dong X, Brusko MA, et al. A Novel Single Cell RNA-seq Analysis of Non-Myeloid Circulating Cells in
888	00	Late Sepsis. Front Immunol. 2021;12:696536.
889	33.	Sweeney I E, Liesenteid O, Wacker J, et al. Validation of Inflammopathic, Adaptive, and Coagulopathic Sepsis
890	24	Endotypes in Coronavirus Disease 2019. Crit Care Med. 2021;49(2):e1/0-e1/8.
091	34.	Daneijee S, wonammed A, wong HK, Palaniyar N, Kamaleswaran K. Machine Learning Identifies Complicated
092 902		Sepsis Course and Subsequent inortanty based on 20 Genes in Peripheral Blood Immune Cells at 24 H Post-ICU
893		Admission. Front Immunol. 2021;12:592303.

894 895	35.	Scicluna BP, van Vught LA, Zwinderman AH, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. <i>Lancet Respir Med</i> . 2017;5(10):816-826
896	36.	Wong HR, Salisbury S, Xiao Q, et al. The pediatric sepsis biomarker risk model. <i>Crit Care</i> . 2012;16(5):R174.
897	37.	Lu J, Chen R, Ou Y, et al. Characterization of immune-related genes andimmune infiltration features for early
898		diagnosis, prognosis and recognition of immunosuppression in sepsis. <i>Int Immunopharmacol.</i> 2022;107:108650.
899	38.	Baghela A, An A, Zhang P, et al. Predicting severity in COVID-19 disease using sepsis blood gene expression
900		signatures. Sci Rep. 2023;13(1):1247.
901	39.	Baghela AS, Tam J, Blimkie TM, Dhillon BK, Hancock REW. Facilitating systems-level analyses of all-cause and
902		Covid-mediated sepsis through SeptiSearch, a manually-curated compendium of dysregulated gene sets. Front
903	10	Immunol. 2023;14:1135859.
904	40.	Zheng X, Liu Y, Li Q, et al. 1 Wo Gene Set Variation index as Biomarker of Bacterial and Fungal Sepsis. Biomed Res
905	11	IIII. 2020,2020.0102500. Zhang UX Yu WH Xing XH Chon LL Zhao OL Wang X APG1 as a promising higmarker for sensis diagnosis and
900	41.	Zilalig JA, Au WH, Alig AH, OHELL, Zilao Qu, Walg T. ANG Las a promising biomarker for sepsis diagnosis and promotion with the set of the set o
908	42	Huang J. Sun Z. Yan W. et al. Identification of microRNA as sensis biomarker based on miRNAs regulatory network
909		analysis, Biomed Res Int. 2014:2014:594350.
910	43.	Li J, Zhou M, Feng JQ, et al. Bulk RNA Sequencing With Integrated Single-Cell RNA Sequencing Identifies BCL2A1
911		as a Potential Diagnostic and Prognostic Biomarker for Sepsis. Front Public Health. 2022;10:937303.
912	44.	de Almeida RJ, de Lima Hirata AH, de Jesus Rocha LA, et al. Similar hypothyroid and sepsis circulating mRNA
913		expression could be useful as a biomarker in onthyroidal illness syndrome: a pilot study. Arch Endocrinol Metab.
914		2023;67(5):e000625.
915	45.	Bauer M, Giamarellos-Bourboulis EJ, Kortgen A, et al. A Transcriptomic Biomarker to Quantify Systemic
916		Inflammation in Sepsis - A Prospective Multicenter Phase II Diagnostic Study. EBioMedicine. 2016;6:114-125.
917	46.	Schaack D, Siegler BH, Tamulyte S, Weigand MA, Uhle F. The immunosuppressive face of sepsis early on intensive
918	47	care unit-A large-scale microarray meta-analysis. PLOS Onel 2018;13(6):e0198555.
919	47.	Reves M, Flibin MR, Bhattacharyya RP, et al. An immune-cell signature of bacterial sepsis. Nat Med. 2020;26(3):333-
920	19	340. Www. II. Civilanovich NZ, Allen GL, et al. The influence of developmental age on the early transcriptomic response of
921	40.	children with service shock. Mol Med 2011:17(11-10):11/6-1156
923	49	Karakike E. Giamarellos-Bourboulis E.I. Kvorianou M. et al. Coronavirus Disease 2019 as Cause of Viral Sensis: A
924	10.	Systematic Review and Meta-Analysis. Crit Care Med. 2021;49(12):2042-2057.
925	50.	Aschenbrenner AC, Mouktaroudi M, Kramer B, et al. Disease severity-specific neutrophil signatures in blood
926		transcriptomes stratify COVID-19 patients. Genome Med. 2021;13(1):7.
927	51.	Sohn KM, Lee SG, Kim HJ, et al. COVID-19 Patients Upregulate Toll-like Receptor 4-mediated Inflammatory
928		Signaling That Mimics Bacterial Sepsis. J Korean Med Sci. 2020;35(38):e343.
929	52.	Barh D, Tiwari S, Weener ME, et al. Multi-omics-based identification of SARS-CoV-2 infection biology and candidate
930		drugs against COVID-19. Comput Biol Med. 2020;126:104051.
931	53.	Kalantar KL, Neyton L, Abdelghany M, et al. Integrated host microbe plasma metagenomics for sepsis diagnosis in a
932	F 4	prospective conorr or critically ill adults. <i>Nat Microbiol.</i> 2022; (11):1805-1816.
933	54.	Lukaszewski RA, Jones HE, Gersuk VH, et al. Presymptomatic diagnosis of postoperative infection and sepsis using
934	55	Serie expression signatures. Internate or enternation 2022, 40(9), 1132-1143.
936	55.	cutokines are biomarkers for the rapid diagonal diseasis. Mol Med Rep 2022;26(5)
937	56.	Zhou X, Wang Y, Chen J, Pan J. Constructing a 10-core genes panel for diagnosis of pediatric sepsis. J Clin Lab
938		Anal. 2021;35(3):e23680.
939	57.	Sweeney TE, Wynn JL, Cernada M, et al. Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. J
940		Pediatric Infect Dis Soc. 2018;7(2):129-135.
941	58.	Fiorino C, Liu Y, Henao R, et al. Host Gene Expression to Predict Sepsis Progression. Crit Care Med.
942		2022;50(12):1748-1756.
943	59.	Glibetic N, Shvetsov YB, Aan FJ, Peplowska K, Hernandez BY, Matter ML. Transcriptome profiling of colorectal
944		tumors from patients with sepsis reveals an ethnic basis for viral infection risk and sepsis progression. Sci Rep.
945	60	2022,12(1):20040.
940 0/7	00.	de obrig 17, Guiyer V, Mosinkin TM. Estimates of gene ensemble holse inginigrit chical partways and predict disease severity in H1N1 (COVID-19 and mortality in sensis nationals Sci Ren 2021:11(1):10793
948	61	Weber I M Saelens W Cannood B et al Essential guidelines for computational method benchmarking. Genome
949	01.	
950	62.	Altman MC, Rinchai D, Baldwin N, et al. Development of a fixed module repertoire for the analysis and interpretation
951		of blood transcriptome data. Nat Commun. 2021;12(1):4385.
952	63.	Sweeney TE, Khatri P. Benchmarking Sepsis Gene Expression Diagnostics Using Public Data. Crit Care Med.
953		2017;45(1):1-10.
954	64.	Scicluna BP, Uhel F, van Vught LA, et al. The leukocyte non-coding RNA landscape in critically ill patients with
955		sepsis. <i>eLife</i> . 2020;9:e58597.
956	65.	Robb MA, McInnes PM, Califf RM. Biomarkers and Surrogate Endpoints: Developing Common Terminology and
957	<u></u>	Definitions. JAMA. 2016;315(11):1107-1108.
958	66.	Lotvail J, Akois CA, Bacharler LB, et al. Astima endotypes: A new approach to classification of disease entities within the optimation of disease entits and disease entities within the optimation of
960 908	67	ute asuma synutome. Journal of Alleryy and Cillilical Infinitionogy. 2011, 127 (2):300-300. Kataria Y. Remick D. Sensis Riomarkers. In: Walker WE. ed. Sensis: Methods and Protocols. New York. NV:
961	01.	Springer LIS: 2021177-189
962	68.	Lelubre C, Vincent J-L, Mechanisms and treatment of organ failure in sepsis. Nature Reviews Nephrology.
963		2018;14(7):417-427.
964	69.	Wong HR, Sweeney TE, Hart KW, Khatri P, Lindsell CJ. Pediatric sepsis endotypes among adults with sepsis. Crit
965		Care Med. 2017;45.