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Abstract  
 
Clinician generated segmentation of tumor and healthy tissue regions of interest (ROIs) on 
medical images is crucial for radiotherapy. However, interobserver segmentation variability has 
long been considered a significant detriment to the implementation of high-quality and 
consistent radiotherapy dose delivery. This has prompted the increasing development of  
automated segmentation approaches. However, extant segmentation datasets typically only 
provide segmentations generated by a limited number of annotators with varying, and often 
unspecified, levels of expertise. In this data descriptor, numerous clinician annotators manually 
generated segmentations for ROIs on computed tomography images across a variety of cancer 
sites (breast, sarcoma, head and neck, gynecologic, gastrointestinal; one patient per cancer 
site) for the Contouring Collaborative for Consensus in Radiation Oncology challenge. In total, 
over 200 annotators (experts and non-experts) contributed using a standardized annotation 
platform (ProKnow). Subsequently, we converted data into NIfTI format with standardized 
nomenclature for ease of use. In addition, we generated consensus segmentations for experts 
and non-experts using the STAPLE method. These standardized, structured, and easily 
accessible data are a valuable resource for systematically studying variability in segmentation 
applications.  
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Background & Summary  
 
Since the advent of contemporary radiation delivery techniques for cancer treatment, clinician 
generated segmentation (also termed contouring or delineation) of target structures (e.g., 
primary tumors and metastatic lymph nodes) and organs at risk (e.g., healthy tissues whose 
irradiation could lead to damage and/or side effects) on medical images has become a 
necessity in the radiotherapy workflow 1. These segmentations are typically provided by trained 
medical professionals, such as radiation oncologists. While segmentations can be performed on 
any imaging modality that provides sufficient discriminative capabilities to visualize regions of 
interest (ROIs), the current radiotherapy workflow prioritizes the use of computed tomography 
(CT) for ROI segmentation due to its ubiquitous nature and use in radiotherapy dose 
calculations. Subsequently, clinicians spend a large fraction of their time and effort generating 
ROI segmentations on CT imaging necessary for the radiotherapy workflow.  
 
Interobserver and intraobserver variability are well-documented byproducts of the use of manual 
human-generated segmentations 2,3. While consensus radiotherapy guidelines to ensure ROI 
segmentation quality have been developed and shown to reduce variability 4, these guidelines 
are not necessarily followed by all practicing clinicians. Therefore, segmentation variability 
remains a significant concern in maintaining radiotherapy plan quality and consistency. Recent 
computational improvements in machine learning, particularly deep learning, have prompted the 
increasing development and deployment of accurate ROI auto-segmentation algorithms to 
reduce radiotherapy segmentation variability 5–7. However, for auto-segmentation algorithms to 
be clinically useful, their input data (training data) should reflect high-quality “gold-standard” 
annotations. While research has been performed on the impact of interobserver variability and 
segmentation quality for auto-segmentation training 8–11, it remains unclear how “gold-standard” 
segmentations should be defined and generated. One common approach, consensus 
segmentation generation, seeks to crowdsource multiple segmentations from different 
annotators to generate a high-quality ground-truth segmentation. While multi-observer public 
medical imaging segmentation datasets exist 12–17, there remains a lack of datasets with a large 
number of annotators for radiotherapy applications.  
 
The Contouring Collaborative for Consensus in Radiation Oncology (C3RO) challenge was 
developed to engage radiation oncologists across various expertise levels in cloud-based ROI 
crowdsourced segmentation 18. Through this collaboration, a large number of clinicians 
generated ROI segmentations using CT images from 5 unique radiotherapy cases: breast, 
sarcoma, head and neck, gynecologic, and gastrointestinal. In this data descriptor, we present 
the curation and processing of the data from the C3RO challenge. The primary contribution of 
this dataset is unprecedented large-scale multi-annotator individual and consensus 
segmentations of various ROIs crucial for radiotherapy planning in an easily accessible and 
standardized imaging format. These data can be leveraged for exploratory analysis of 
segmentation quality across a large number of annotators, consensus segmentation 
experiments, and auto-segmentation model benchmarking. An overview of this data descriptor 
is shown in Fig. 1.  
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Figure 1. Data descriptor overview. Multi-annotator segmentations were generated for the 
Contouring Collaborative for Consensus in Radiation Oncology (C3RO) challenge. Imaging and 
segmentation data were extracted from the ProKnow cloud-based platform in Digital Imaging 
and Communications in Medicine (DICOM) format, which were then converted to Neuroimaging 
Informatics Technology Initiative (NIfTI) format for ease of use. Consensus segmentation data 
were then generated from the available multi-annotator segmentations. The provided data 
collection contains all original DICOM files along with converted NIfTI files.  
 
Methods 
 
Patient population. Five separate patients who had undergone radiotherapy were retrospectively 
collected from our collaborators at various institutions. Each patient had received a 
pathologically confirmed diagnosis of cancer of one of the following sites: breast (post-
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mastectomy intraductal carcinoma), sarcoma (malignant peripheral nerve sheath tumor of the 
left thigh), head and neck (oropharynx with nodal spread, [H&N]), gynecologic (cervical cancer, 
[GYN]), and gastrointestinal (anal cancer, [GI]). Clinical characteristics of these patients are 
shown in Table 1. Of note, these five disease sites were included as part of the C3RO 
challenge due to being among the most common disease sites treated by radiation oncologists; 
additional disease sites were planned but were not realized due to diminishing community 
participation in C3RO. Specific patient cases were selected by C3RO collaborators on the basis 
of being adequate reflections of routine patients a generalist radiation oncologist may see in a 
typical workflow (i.e., not overly complex). Further details on the study design for C3RO can be 
found in Lin & Wahid et al. 19.  
 
Table 1. Clinical characteristics for cases included in this data descriptor. Cases included 
breast, sarcoma, head and neck (H&N), gynecologic (GYN), and gastrointestinal (GI) cancer.  
 

Clinical Characteristic Breast Sarcoma H&N GYN GI 

Sex Female Female Male Female Male 

T-stage T2 T1 T3 T3b T2 

N-stage N1 N0 N1  N1 N1c 

M-stage M0 M0 M0 M0 M0 

Misc.* ER-/PR-/HER2- FNCLCC 
grade 3 

HPV+ FIGO 
Stage IIIC1 

Moderately 
differentiated 

* Miscellaneous clinical characteristics specific to each cancer type are provided. ER-/PR-
/HER2- = triple negative breast cancer. FNCLCC = Fédération Nationale des Centres de Lutte 
Contre le Cancer. HPV = human papillomavirus. FIGO = International Federation of 
Gynaecology and Obstetrics.  
 
Imaging protocols. Each patient received a radiotherapy planning CT scan which was exported 
in Digital Imaging and Communications in Medicine (DICOM) format. CT image acquisition 
characteristics are shown in Table 2. All images were acquired on scanners that were routinely 
used for radiotherapy planning at their corresponding institutions with appropriate calibration 
and quality assurance by technical personnel. The sarcoma, H&N, and GI cases received 
intravenous contrast, the GU case received oral contrast, and the breast case did not receive 
any contrast. Of note, the H&N case had metal streak artifacts secondary to metallic implants in 
the upper teeth, which obscured anatomy near the mandible. No other cases contained 
noticeable image artifacts. Notably, the sarcoma case also received a magnetic resonance 
imaging (MRI) scan, while the H&N and GI cases received full body positron emission 
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tomography (PET) scans. The sarcoma MRI scan was acquired on a GE Signa HDxt device and 
corresponded to a post-contrast spin echo T1-weighted image with a slice thickness of 3.0 mm 
and in-plane resolution of 0.35 mm. The H&N PET scan was acquired on a GE Discovery 600 
device with a slice thickness of 3.3 mm and in-plane resolution of 2.73 mm. The GI PET scan 
was acquired on a GE Discovery STE device with a slice thickness of 3.3 mm and in-plane 
resolution of 5.47 mm. 
 
Table 2. Computed tomography (CT) acquisition parameters for cases included in this data 
descriptor. Cases included breast, sarcoma, head and neck (H&N), gynecologic (GYN), and 
gastrointestinal (GI) cancer.  
 

CT Acquisition Parameter Breast Sarcoma H&N GYN GI 

Manufacturer GE SIEMENS SIEMENS GE GE 

Model Discovery 
CT590 RT 

SOMATOM 
Confidence 

Sensation 
Open 

Discovery 
CT590 RT 

Discovery 
 CT590 RT 

Slice Thickness (mm) 2.5 3 3 2.5 2.5 

KVP (kV) 120 120 120 120 120 

Exposure Time (ms) 891 1000 1000 856 856 

X-Ray Tube Current (mA) 154 111 32 167 277 

Rows 512 512 512 512 512 

Columns 512 512 512 512 512 

In-plane Resolution (mm) 1.26 1.26 0.98 0.98 0.98 

Reconstruction diameter (mm) 650 650 500 500 500 

Number of axial slices 140 229 143 195 196 

 
IRB exemption and data storage. The retrospective acquisition, storage, and use of these 
DICOM files have been reviewed by the Memorial Sloan Kettering (MSK) Human Research 
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Protection Program (HRPP) Office on 05/26/2021 and were determined to be exempt research 
as per 45 CFR 46.104(d)(3),(i)(a), (ii) and (iii), (i)(b),(ii) and (iii), (i)(c), (ii) and (iii) and 
45.CFR.46.111(a)(7)). A limited IRB review of the protocol X19-040 A(1) was conducted via 
expedited process in accordance with 45 CFR 46.110(b), and the protocol was approved on 
May 26, 2021. DICOM files were obtained and stored on MIMcloud (MIM Software Inc., Ohio, 
USA), which is a HIPAA-compliant cloud-based storage for DICOM image files that has been 
approved for use at MSK by MSK's Information Security team. 
 
DICOM anonymization. For each image, the DICOM header tags containing the patient name, 
date of birth, and patient identifier number were consistently removed from all DICOM files using 
DicomBrowser v. 1.5.2 20. The removal of acquisition data and time metadata (if available in 
DICOM header tags) caused compatibility issues with ProKnow so were kept as is. Moreover, if 
institution name or provider name were available in the DICOM file, they were not removed as 
they were not considered protected health information. Select cases (breast, GYN, GI) were 
previously anonymized using the DICOM Import Export tool (Varian Medical Systems, CA, 
USA).  
 
Participant details. To register for the challenge, participants completed a baseline 
questionnaire that included their name, email address, affiliated institution, country, 
specialization, years in practice, number of disease sites treated, volume of patients treated per 
month for the designated tumor site, how they learned about this challenge, and reasons for 
participation. Registrant intake information was collected through the Research Electronic Data 
Capture (REDCap) system - a widely used web application for managing survey databases 21; 
an example of the intake form can be found at: 
https://redcap.mskcc.org/surveys/?s=98ARPWCMAT. The research conducted herein was 
approved by the HRRP at MSK (IRB#: X19-040 A(1); approval date: May 26, 2021). All subjects 
prospectively consented to participation in the present study, as well as to the collection, use, 
and disclosure of de-identified aggregate subject information and responses. Participants were 
categorized as recognized experts or non-experts. Recognized experts were identified by our 
C3RO team (EFG, CDF, DL) based on participation in the development of national guidelines or 
other extensive scholarly activities. Recognized experts were board-certified physicians with 
expertise in the specific disease site. Non-experts were any participants not categorized as an 
expert for that disease site. All non-experts had some knowledge of human anatomy, with the 
majority being composed of practicing radiation oncologists but also included resident 
physicians, radiation therapists, and medical physicists. Worthy of note, a participant could only 
be considered an expert for one disease site, but could have participated as a non-expert for 
other disease sites. Out of 1,026 registrants, 221 participated in generating segmentations, 
which were used for this dataset; due to the low participation rate, participants may represent a 
biased sample of registrants. Of note, participants could provide segmentations for multiple 
cases. Additional demographic characteristics of the participants can be found in Lin & Wahid et 
al. 19.  
 
ProKnow segmentation platform. Participants were given access to the C3RO workspace on 
ProKnow (Elekta AB, Stockholm, Sweden). ProKnow is a commercially available radiotherapy 
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clinical workflow tool that allows for centralization of data in a secure web-based repository; the 
ProKnow system has been adopted by several large scale medical institutions and is used 
routinely in clinical and research environments. Anonymized CT DICOM images for each case 
were imported into the ProKnow system for participants to segment; anonymized MRI and PET 
images were also imported for select cases as available. Each case was attributed a short text 
prompt describing the patient presentation along with any additional information as needed. 
Participants were allowed to utilize common image manipulation (scrolling capabilities, zooming 
capabilities, window leveling, etc.) and segmentation (fill, erase, etc.) tools for generating their 
segmentations. No auto-segmentation capabilities were provided to the participants, i.e., all 
segmentations were manually generated. Notably, for the sarcoma case, an external mask of 
the patient's body and a mask of the left femur was provided to participants. Screenshots of the 
ProKnow web interface platform for the various cases are shown in Fig. 2.  
 

 
Figure 2. Examples of ProKnow segmentation platform used by participants for the breast (A), 
sarcoma (B), head and neck (C), gynecologic (D), and gastrointestinal (E) cases. Participants 
were given access to the standard image visualization and segmentation capabilities for 
generating their segmentations of target structures and organs at risk. Participants were also 
given access to a short prompt describing the patient presentation along with any additional 
information as needed. For the sarcoma case, an external mask of the patient's body (green) 
and a mask of the left femur (pink) was provided to participants. Subplots for breast, sarcoma, 

A B

C D

E
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head and neck, gynecologic, and gastrointestinal cases are outlined in pink, red, blue, purple, 
and green borders, respectively.  
 
Segmentation details. For each case, participants were requested to segment a select number 
of ROIs corresponding to target structures or OARs. Notably, not all participants generated 
segmentations for all ROIs. ROIs for each participant were combined into one structure set in 
the ProKnow system. ROIs were initially named in a consistent, but non-standardized format, so 
during file conversion ROIs were renamed based on The Report of American Association of 
Physicists in Medicine Task Group 263 (TG-263) suggested nomenclature 22; TG-263 was 
chosen due its ubiquity in standardized radiotherapy nomenclature. A list of each ROI and the 
number of available segmentations stratified by participant expertise level is shown in Table 3.  
 
Table 3. Summary of all region of interest (ROI) segmentations generated by participants for 
this data descriptor. ROIs included radiotherapy target volumes and organs at risk (OARs).  
 

Case Type of ROI ROI Definition(s) Number of expert 
segmentations *  

Number of non-
expert 

segmentations * 

 
 
 
 
 
 

Breast 

 
 
 
 

Target volumes 

CTV_Ax 
Clinical target 

volume of axillary 
region 

8 115 

CTV_Chestwall 
Clinical target 

volume of chest 
wall 

8 117 

CTV_IMN 
Clinical target 

volume of internal 
mammary nodes 

8 118 

CTV_Sclav_LN 

Clinical target 
volume of 

supraclavicular 
lymph nodes 

8 119 

 
OARs 

BrachialPlex_L Brachial plexus left 6 88 

Heart Heart 7 121 

A_LAD Left anterior 
descending artery 7 88 

 
 

Sarcoma 

 
Target volumes 

GTV Gross tumor 
volume 5 60 

CTV Clinical tumor 
volume 5 48 

OARs Genitals Genitalia 4 51 

 
 

 
 GTVp Gross tumor 

volume primary - 14 59 
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Head and Neck 

 
 

Target volumes 

right tonsillar fossa 

GTVn 

Gross tumor 
volume of nodes - 
nodal spread to 

level II/III on 
ipsilateral side 

(with 
sternocleidomastoi
d muscle invaded) 

and no 
contralateral nodal 

involvement 

13 60 

CTV1 Clinical target 
volume (high-risk) 9 45 

CTV2 
Clinical target 
volume (low to 

intermediate risk) 
9 49 

 
 
 
 
 

OARs 

Brainstem Brainstem 13 58 

Glnd_Submand_L Submandibular 
gland left 13 57 

Glnd_Submand_R Submandibular 
gland right 12 52 

Larynx Larynx 12 57 

Musc_Constrict 

All pharyngeal 
constrictor 

muscles (superior, 
middle, and 

inferior) 

11 43 

Parotid_L Parotid left  13 59 

Parotid_R Parotid right  13 58 

 
 
 

Gynecologic 

 
 
 

Target volumes 

GTVn 

Gross tumor 
volume of the 
involved right 
common iliac 
lymph node 

5 42 

CTVn_4500 

Clinical target 
volume for the 
elective nodal 

volumes at risk 
that will receive 45 

Gy 

5 40 

CTVp_4500 

Clinical target 
volume primary will 

receive 45 Gy. 
This is the 

combination of 

5 41 
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“ctv1” and “ctv2” 
used in many 

RTOG protocols 

OARs Bowel_Small Small bowel 4 35 

 
 

Gastrointestinal 

 
Target volumes 

CTV_4500 
Clinical target 

volume that will 
receive 45 Gy 

4 25 

CTV_5400 
Clinical target 

volume that will 
receive 54 Gy 

4 23 

OARs Bag_Bowel Small and large 
bowel 4 23 

* Not all participants generated segmentations for all ROIs. 
 
 
Image processing and file conversion. For each case, anonymized CT images and structure 
sets for each annotator were manually exported from ProKnow in DICOM and DICOM 
radiotherapy structure (RTS) format, respectively. The Neuroimaging Informatics Technology 
Initiative (NIfTI) format is increasingly used for reproducible imaging research 23–27 due to its 
compact file size and ease of implementation in computational models 28. Therefore, in order to 
increase the interoperability of these data, we converted all our DICOM imaging and 
segmentation data to NIfTI format. For all file conversion processes, Python v. 3.8.8 29 was 
used. An overview of the image processing workflow is shown in Fig. 3A. In brief, using an in-
house Python script, DICOM images and structure sets were loaded into numpy array format 
using the DICOMRTTool v. 0.4.2 library 30, and then converted to NIfTI format using SimpleITK 
v. 2.1.1 31. For each annotator, each individual structure contained in the structure set was 
separately converted into a binary mask (0 = background, 1 = ROI), and was then converted 
into separate NIfTI files. Notably, voxels fully inside and outside the contour are included and 
not include in the binary mask, respectively, while voxels that overlapped the segmentation 
(edge voxels) were counted as surface coordinates and included in the binary mask; additional 
details on array conversion can be found in the DICOMRTTool documentation 30. Examples of 
random subsets of five expert segmentations for each ROI from each case are shown in Fig. 4. 
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Figure 3. Image processing Python workflows implemented for this data descriptor for an 
example case (head and neck case, parotid glands). (A) Original Digital Imaging and 
Communications in Medicine (DICOM) formatted images and DICOM radiotherapy structure 
(RTS) formatted region of interest (ROI) segmentations are transformed to Neuroimaging 
Informatics Technology Initiative (NIfTI) format. (B). ROIs from multiple annotators are 
combined into a single consensus segmentation using the Simultaneous Truth and Performance 
Level Estimation (STAPLE) method.  
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Figure 4. Examples of a random subset of five expert segmentations for each region of interest 
(ROI) provided in this data descriptor. Segmentations are displayed as green, yellow, blue, red, 
and orange dotted lines corresponding to annotators 1, 2, 3, 4, and 5, respectively, and overlaid 
on zoomed-in images for each case. Subplots for breast, sarcoma, head and neck, gynecologic, 
and gastrointestinal cases are outlined in pink, red, blue, purple, and green borders, 
respectively. Notably, the gastrointestinal case only had four expert annotators, so only four 
lines are displayed.  
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Consensus segmentation generation. In addition to ground-truth expert and non-expert 
segmentations for all ROIs, we also generated consensus segmentations using the 
Simultaneous Truth and Performance Level Estimation (STAPLE) method, a commonly used 
probabilistic approach for combining multiple segmentations 32–35. Briefly, the STAPLE method 
uses an iterative expectation-maximization algorithm to compute a probabilistic estimate of the 
“true” segmentation by deducing an optimal combination of the input segmentations and 
incorporating a prior model for the spatial distribution of segmentations as well as implementing 
spatial homogeneity constraints 36. For our specific implementation of the STAPLE method, we 
utilized the SimpleITK STAPLE function with a default threshold value of 0.95. For each ROI, all 
available binary segmentation masks acted as inputs to the STAPLE function for each expertise 
level, subsequently generating binary STAPLE segmentation masks for each expertise level 
(i.e., STAPLEexpert and STAPLEnon-expert). An overview of the consensus segmentation workflow is 
shown in Fig. 3B. Examples of STAPLEexpert and STAPLEnon-expert segmentations for each ROI 
are shown in Fig. 5. 
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Figure 5. Examples of consensus segmentations using the simultaneous truth and performance 
level estimation (STAPLE) method for each region of interest (ROI) provided in this data 
descriptor. STAPLE segmentation generated by using all available expert segmentations 
(STAPLEexpert) and STAPLE segmentation generated by using all available non-expert 
segmentations (STAPLEnon-expert) are displayed as green and red dotted outlines, respectively, 
and overlaid on zoomed in images for each case. Subplots for breast, sarcoma, head and neck, 
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gynecologic, and gastrointestinal cases are outlined in pink, red, blue, purple, and green 
borders, respectively.  
 
Data Records 
 
Medical images and multi-annotator segmentation data. This data collection primarily consists of 
1985 3D volumetric compressed NIfTI files (.nii.gz file extension) corresponding to CT images 
and segmentations of ROIs from various disease sites (breast, sarcoma, H&N, GYN, GI). 
Analogously formatted MRI and PET images are available for select cases (sarcoma, H&N, GI). 
ROI segmentation NIfTI files are provided in binary mask format (0 = background,1 = ROI); file 
names for each ROI are provided in TG-263 notation. All medical images and ROI 
segmentations were derived from original DICOM and DICOM RTS files (.dcm file extension) 
respectively, which for completeness are also provided in this data collection. In addition, 
Python code to recreate the final NIfTI files from DICOM files is also provided in the 
corresponding GitHub repository (see Code Availability section).  
 
Consensus segmentation data. Consensus segmentations for experts and non-experts 
generated using the STAPLE method for each ROI have also been provided in compressed 
NIfTI file format (.nii.gz file extension). Consensus segmentation NIfTI files are provided in 
binary mask format (0 = background, 1 = ROI consensus). Python code to recreate the STAPLE 
NIfTI files from input annotator NIfTI files is also provided in the corresponding GitHub 
repository (see Code Availability section).  
 
Annotator demographics data. We also provide a single Microsoft Excel file (.xlsx file extension) 
containing each annotator's gender, race/ethnicity, geographic setting, profession, years of 
experience, practice type, and categorized expertise level (expert, non-expert). Geographic 
setting was re-coded as “United States” or “International” to further de-identify the data. Each 
separate sheet corresponds to a separate disease site (sheet 1 = breast, sheet 2 = sarcoma, 
sheet 3 = H&N, sheet 4 = GU, sheet 5 = GI). Moreover, in order to foster secondary analysis of 
registrant data, we also include a sheet containing the combined intake data for all registrants of 
C3RO, including those who did not provide annotations (sheet 6).  
 
Folder structure and identifiers. Each disease site is represented by a top-level folder, 
containing a subfolder for images and segmentations. The annotator demographic excel file is 
located in the same top-level location as the disease site folders. Image folders contain 
separate subfolders for NIfTI format and DICOM format images. Segmentation folders contain 
separate subfolders for expert and non-expert segmentations. Each expertise folder contains 
separate subfolders for each annotator (which contains separate subfolders for DICOM and 
NIfTI formatted files) and the consensus segmentation (only available in NIfTI format). The data 
have been specifically structured such that for any object (i.e., an image or segmentation),  
DICOM and NIfTI subdirectories are available for facile partitioning of data file types. An 
overview of the organized data records for an example case is shown in Fig. 6. Segmentation 
files (DICOM and NIfTI) are organized by anonymized participant ID numbers and can be cross 
referenced against the excel data table using this identifier. The raw data, records, and 
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supplemental descriptions of the meta-data files are cited under Figshare doi: 
10.6084/m9.figshare.21074182 37.  
 

 
Figure 6. Overview of folder and file structure for dataset provided in this data descriptor. Each 
disease site folder contains separate subfolders for the computed tomography (CT) image and 
segmentations. Select cases had additional imaging modalities where available. Image 
subfolders contain separate subfolders for different data formats (Digital Imaging and 
Communications in Medicine [DICOM] and Neuroimaging Informatics Technology Initiative 
[NIfTI]). Segmentation subfolders contain separate subfolders which stratify expert and non-
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experts, which are further divided into subfolders for each annotator's segmented ROIs in 
DICOM and NIfTI formats. Consensus segmentations for each ROI generated by the 
simultaneous truth and performance level estimation (STAPLE) method are also provided in 
expert and non-expert folders.  
 
Technical Validation  
 
Data annotations: Segmentation DICOM and NIfTI files were manually verified by study authors 
(D.L., K.A.W., O.S.) to be annotated with the appropriate corresponding ROI names. 
 
Segmentation interobserver variability. We calculated the pairwise interobserver variability (IOV) 
for each ROI for each disease site across experts and non-experts. Specifically, for each metric 
all pairwise combinations between all available segmentations in a given group (expert or non-
expert) were calculated; median and interquartile range values are reported in Table 4. 
Calculated metrics included the Dice Similarity coefficient (DSC), average surface distance 
(ASD), and surface DSC (SDSC). SDSC was calculated based on ROI specific thresholds 
determined by the median pairwise mean surface distance of all expert segmentations for that 
ROI as suggested in literature 38. Metrics were calculated using the Surface Distances Python 
package 38,39 and in-house Python code. For specific equations for metric calculations please 
see corresponding Surface Distances Python package documentation 39. Resultant values are 
broadly consistent with previous work in breast 40, sarcoma 41, H&N 35,42,43, GYN 44, and GI 44–46 
IOV studies.  
 
Table 4. Pairwise interobserver variability values for experts and non-experts. Pairwise Dice 
similarity coefficient (DSC), average surface distance (ASD), and surface DSC (SDSC) are 
shown for experts and non-experts separately. Median values reported with interquartile range 
in parenthesis.  
 

Case Type of 
ROI 

ROI Expert 
DSC 

Expert 
ASD 

Expert 
SDSC 

Non-
Expert 
DSC 

Non-
Expert 
ASD 

Non-
Expert 
SDSC 

Breast Target 
volumes 

CTV_Ax 0.69 
(0.07) 

3.41 
(1.13) 

0.63 
(0.11) 

0.61 
(0.18) 

4.04 
(2.89) 

0.60 
(0.18) 

CTV_Chestwall 0.67 
(0.14) 

4.44 
(2.21) 

0.69 
(0.16) 

0.68 
(0.15) 

4.37 
(2.47) 

0.68 
(0.19) 

CTV_IMN 0.47 
(0.14) 

2.71 
(1.48) 

0.72 
(0.16) 

0.36 
(0.26) 

4.29 
(5.09) 

0.59 
(0.30) 

CTV_Sclav_LN 0.57 
(0.12) 

3.65 
(1.58) 

0.65 
(0.14) 

0.56 
(0.21) 

3.82 
(2.65) 

0.63 
(0.21) 
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OARs BrachialPlex_L 0.20 
(0.27) 

4.19 
(15.64) 

0.58 
(0.52) 

0.25 
(0.20) 

7.23 
(9.53) 

0.59 
(0.29) 

Heart 0.91 
(0.08) 

1.84 
(1.39) 

0.74 
(0.13) 

0.93 
(0.07) 

1.49 
(1.18) 

0.75 
(0.17) 

A_LAD 0.33 
(0.13) 

4.59 
(2.93) 

0.72 
(0.12) 

0.31 
(0.30) 

6.20 
(8.85) 

0.62 
(0.40) 

Sarcoma Target 
volumes 

GTV 0.94 
(0.02) 

0.39 
(0.24) 

0.80 
(0.09) 

0.92 
(0.14) 

0.47 
(1.11) 

0.69 
(0.40) 

CTV 0.72 
(0.16) 

5.36 
(4.66) 

0.72 
(0.23) 

0.67 
(0.31) 

4.73 
(6.43) 

0.64 
(0.47) 

OARs Genitals 0.69 
(0.04) 

3.19 
(0.58) 

0.73 
(0.06) 

0.58 
(0.31) 

4.27 
(5.93) 

0.61 
(0.32) 

Head and Neck Target 
volumes 

GTVp 0.79 
(0.06) 

1.40 
(0.77) 

0.68 
(0.15) 

0.74 
(0.12) 

2.35 
(3.44) 

0.62 
(0.20) 

GTVn 0.91 
(0.02) 

0.52 
(0.16) 

0.64 
(0.07) 

0.87 
(0.10) 

0.84 
(3.34) 

0.53 
(0.20) 

CTV1 0.85 
(0.07) 

1.32 
(0.77) 

0.65 
(0.16) 

0.62 
(0.34) 

6.75 
(9.16) 

0.35 
(0.32) 

CTV2 0.71 
(0.29) 

10.35 
(12.58) 

0.83 
(0.36) 

0.40 
(0.45) 

18.98 
(37.41) 

0.64 
(0.43) 

OARs Brainstem 0.82 
(0.24) 

1.08 
(1.20) 

0.74 
(0.33) 

0.75 
(0.16) 

1.59 
(1.27) 

0.61 
(0.26) 

Glnd_Submand_L 0.86 
(0.05) 

0.54 
(0.24) 

0.65 
(0.10) 

0.84 
(0.15) 

0.65 
(0.70) 

0.59 
(0.24) 

Glnd_Submand_R 0.80 
(0.12) 

1.03 
(0.95) 

0.78 
(0.15) 

0.71 
(0.30) 

1.27 
(1.19) 

0.68 
(0.23) 

Larynx 0.60 
(0.30) 

2.17 
(2.03) 

0.65 
(0.33) 

0.60 
(0.24) 

2.73 
(1.69) 

0.54 
(0.27) 
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Musc_Constrict 0.58 
(0.14) 

2.12 
(1.14) 

0.76 
(0.11) 

0.45 
(0.24) 

2.84 
(2.44) 

0.65 
(0.27) 

Parotid_L 0.86 
(0.04) 

0.90 
(0.45) 

0.51 
(0.08) 

0.80 
(0.09) 

1.49 
(1.23) 

0.40 
(0.13) 

Parotid_R 0.87 
(0.03) 

0.79 
(0.34) 

0.51 
(0.07) 

0.82 
(0.10) 

1.31 
(1.33) 

0.43 
(0.14) 

Gynecologic Target 
volumes 

GTVn 0.79 
(0.05) 

0.93 
(3.19) 

0.43 
(0.09) 

0.79 
(0.45) 

1.28 
(12.72) 

0.46 
(0.40) 

CTVn_4500 0.72 
(0.03) 

3.03 
(0.35) 

0.75 
(0.06) 

0.66 
(0.17) 

3.58 
(2.12) 

0.68 
(0.16) 

CTVp_4500 0.79 
(0.14) 

3.80 
(2.48) 

0.75 
(0.23) 

0.77 
(0.13) 

3.63 
(3.09) 

0.72 
(0.20) 

OARs Bowel_Small 0.80 
(0.14) 

5.04 
(3.02) 

0.70 
(0.11) 

0.57 
(0.40) 

8.38 
(7.08) 

0.52 
(0.27) 

Gastrointestinal Target 
volumes 

CTV_4500 0.76 
(0.03) 

4.10 
(0.40) 

0.71 
(0.08) 

0.65 
(0.21) 

4.75 
(3.12) 

0.66 
(0.16) 

CTV_5400 0.63 
(0.20) 

15.22 
(23.40) 

0.79 
(0.40) 

0.48 
(0.34) 

6.84 
(5.90) 

0.87 
(0.28) 

OARs Bag_Bowel 0.64 
(0.08) 

6.13 
(2.50) 

0.65 
(0.08) 

0.59 
(0.27) 

7.68 
(6.43) 

0.60 
(0.21) 

 
Usage Notes  
 
The image and segmentation data from this data collection are provided in original DICOM 
format (where applicable) and compressed NIfTI format with the accompanying excel file 
containing demographic information indexed by annotator identifiers. We invite all interested 
researchers to download this dataset for use in segmentation, radiotherapy, and crowdsourcing 
related research. Moreover, we encourage this dataset’s use for clinical decision support tool 
development. While the individual number of patient cases for this dataset is too small for 
traditional machine learning development (i.e., deep learning auto-segmentation training), this 
dataset could act as a benchmark reference for testing existing auto-segmentation algorithms. 
Importantly, this dataset could also be used as a standardized reference for future interobserver 
variability studies seeking to investigate further participant expertise criteria, e.g., true novice 
annotators (no previous segmentation or anatomy knowledge) could attempt to segment ROI 
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structures on CT images, which could then be compared to our expert and non-expert 
annotators. Finally, in line with the goals of the eContour collaborative 47, these data could be 
used to help develop educational tools for radiation oncology clinical training.   
 
The segmentations provided in this data descriptor have been utilized in a study by Lin & Wahid 
et al. 19. This study demonstrated several results that were consistent with existing literature, 
including: 1). target ROIs tended to exhibit greater variability than OAR ROIs 35, 2). H&N ROIs 
exhibited higher interobserver variability compared to other disease sites 43,48, and 3). non-
expert consensus segmentations could approximate gold-standard expert segmentations 49.  
 
Original DICOM format images and structure sets may be viewed and analyzed in radiation 
treatment planning software or select digital image viewing applications, depending on the end-
user’s requirements. Current open-source software for these purposes includes ImageJ 50, 
dicompyler 51, ITK-Snap 52, and 3D Slicer 53 with the SlicerRT extension 54.  
 
Processed NIfTI format images and segmentations may be viewed and analyzed in any NIfTI 
viewing application, depending on the end-user’s requirements. Current open-source software 
for these purposes includes ImageJ 50, ITK-Snap 52, and 3D Slicer 53. 
 
Code Availability  
Segmentations were performed using the commercially-available ProKnow (Elekta AB, 
Stockholm, Sweden) software. The code for NIfTI file conversion of DICOM CT images and 
corresponding DICOM RTS segmentations, along with code for consensus segmentation 
generation, was developed using in-house Python scripts and is made publicly available through 
GitHub: https://github.com/kwahid/C3RO_analysis. 
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