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_____________________________________________________________________________________________ 

Abstract 

 

 Amyloid deposition is a vital biomarker in the process of Alzheimer’s diagnosis. Florbetapir PET scans can 

provide valuable imaging data to determine cortical amyloid quantities. However the process is labor and doctor 

intensive, requiring extremely specialized education and resources that may not be accessible to everyone, making 

the amyloid calculation process inefficient. 

 Deep learning is a rising tool in Alzheimer’s research which could be used to determine amyloid 

deposition. Using data from the Alzheimer’s Disease Neuroimaging Initiative, we identified 2980 patients with PET 

imaging, clinical, and genetic data. We tested various ResNet and EfficientNet convolutional neural networks and 

later combined them with Gradient Boosting Decision Tree algorithms to predict standardized uptake value ratio 

(SUVR) of amyloid in each patient session. We tried several configurations to find the best model tuning for 

regression-to-SUVR. 

 We found that the EfficientNetV2-Small architecture combined with a grid search-tuned Gradient Boosting 

Decision Tree with 3 axial input slices and clinical and genetic data achieved the lowest loss. Using the mean-

absolute-error metric, the loss converged to an MAE of 0.0466, equating to 96.11% accuracy across the 596 patient 

test set. 

 We showed that this method is more consistent and accessible in comparison to human readers from 

previous studies, with lower margins of error and substantially faster calculation times. Deep learning algorithms 

could be used in hospitals and clinics with resource limitations for amyloid deposition, and shows promise for more 

imaging tasks as well. 
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_____________________________________________________________________________________________ 

Introduction 

 

 Alzheimer’s disease is a worldwide health concern which has many neurological effects. This common 

neurological disorder results in brain atrophy, causing patients to experience cognitive decline, behavioral change, 

and memory loss (Lane & Schott et al. 2018). Diagnosis (particularly early diagnosis) for Alzheimer’s is imperative 

in order to implement proper treatment plans and delay the progression of the disease (Rasmussen et al. 2019). 

Efficient and accurate diagnosis is also important in order to save time and reduce error. There is also an overlap in 

what doctors consider abnormal change and normal age-related change (Mayo Clinic Staff 2022); this creates 

assessment variability which is an inconsistent practice.  

 Imaging, clinical data, and physiologic biomarkers are major factors in AD prognosis. Positron Emission 

Tomography (PET) scans indicate the location of biomarkers in the cerebral cortex. The radiopharmaceutical 

Florbetapir (18F-AV-45) traces amyloid deposition, an important biomarker which correlates to the progression of 

Alzheimer’s disease (King Robinson & Wilson et al. 2021). 
 The Standard Value Uptake Ratio (SUVR) is commonly used as a quantitative measurement of the 

radiotracer uptake in the brain (Vemuri & Lowe et al. 2016). Pre-existing SUVR values calculated from Florbetapir 

PET imaging scans were used in our model. To streamline the process of calculating SUVR, we used novel deep 

learning architecture, a powerful tool that improves efficiency and accuracy in Alzheimer’s prognosis (Saleem & 
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Zahra et al. 2022). We combined deep learning architecture, which was optimized for linear regression, and gradient 

boosted decision trees to create a SUVR prediction model for this analysis.  

 

Background Literature 
  

 Extracellular amyloid plaques are important in AD characterization (Bloom 2014). Amyloid-β (Aβ) 

peptides, derived from the amyloid beta precursor protein, are made from amyloid plaques. The accumulation of 

amyloid plaques disrupt the synapses that facilitate cognition and memory, which show a correlation to similar 

pathological deficits in AD subjects.  

Several studies have examined the relationship between amyloid and AD pathology. Biomarkers use 

parameters to measure the presence of a disease in a patient. Camus et al. (2012) determined that Florbetapir (18F-

AV-45) is a core radiotracer biomarker for AD which binds to amyloid plaques. This study found that the mean 
quantity values of SUVR were higher in AD subjects than HC (Healthy Controls) subjects in cortical regions when 

using Florbetapir. Because 18F-labeled tracers bind to amyloid plaques, the higher cortical uptake of Florbetapir in 

MCI and AD subjects compared to HC subjects show that there is a strong correlation between amyloid and AD 

pathology.  

The standardized uptake value ratio (SUVR) is a common way to quantify the severity of a disease. Vemuri 

et al. (2016) wrote that SUVR is a quantitative measurement which is calculated by the uptake of a radiotracer with 

respect to the reference region. SUVR can be measured with the uptake values of the Florbetapir 18F radiotracer. 

Kinahan & Fletcher (2011) quantified the radioactivity concentration from the radiotracer in the region of interest 

(ROI) over the injection dose of the 18F tracer divided by the weight of the patient with respect to the reference 

region to measure the SUVR value. 

 Although studies indicate that an accumulation of amyloid-β corresponds to the characteristics of AD 
pathology, Ingeno et al. (2019) showed that the removal of amyloid from the brain resulted in the same, or worsened 

cognitive state when performing clinical trials. However, data on amyloid-β can be utilized for AD prognosis in a 

given subject.  

 

Materials and Methods 

 

General Subject Data 
  

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) provided the Positron Emission Tomography 
(PET) scans; Mini-Mental State Exam (MMSE) scores; Functional Activities Questionnaire (FAQ) scores; 

Apolipoprotein (APOE) indication; age, gender, and weight classification that were used in this analysis. ADNI 

provides biomarker, imaging, clinical, and genetic data across three different groups: CN, MCI, AD. PET scans, 

MMSE scores, APOE gene indication, FAQ scores, age, gender, and weight were collected for 1298 individuals and 

2980 total scans across the amyloid cohort. There were subjects in this cohort that took at least one PET scan. Out of 

the 1298 individuals from the amyloid cohort, 574 individuals were females and 646 were males.  

  

Imaging information and SUVR Acquisition 

 
The subjects in the amyloid cohort had the Florbetapir (18F-AV-45) injection for a PET protocol: 370 MBq 

(10.0 mCi) ± 10%, 20 min (4X5min frames) acquisition at 50-70 min post-injection.   

For each subject, all scans were collected from ADNI’s image and data archive using a specific advanced 

search (“AV45 Coreg, Avg, Std Img and Vox Siz, Uniform Resolution”). The scans from this search were 

coregistered PET-MR and intensity normalized images that used Statistical Parametric Mapping (SPM8), a process 

which performs many voxel-wise comparisons to assess the significance of cerebral blood flow changes (Vieira et 

al. 2020). Over the 20 minute acquisition time, each image was resized to a uniform voxel size and each uniform 

size was 160×160 in-plane, along with 96 axial slices (Landau et al. 2021; Reith et al. 2020). All images were 

normalized and rescaled to 224×224 to accommodate the ImageNet pretraining. 

We obtained the Florbetapir cortical summary SUVR (“SUMMARYSUVR_WHOLECEREBNORM”) for 

each scan from the UC Berkeley AV45 Analysis. This calculation required FreeSurfer processing which included 

skull-stripping, segmentation, and delineation of cortical and subcortical regions in MRI scans which were co-
registered to PET scans using SPM8. The cortical summary region (“COMPOSITE_SUVR”) was calculated by 

taking the mean uptake of all SUVR values from the subregions. These SUVR (“COMPOSITE_SUVR”) values 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.22280712doi: medRxiv preprint 

https://ida.loni.usc.edu/pages/access/imageDetail/imageDetails.jsp?project=ADNI&imageId=240521
https://doi.org/10.1101/2022.10.04.22280712
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

were calculated with respect to the reference region (“WHOLECEREBELLUM_SUVR”) to derive the summary 

SUVR value for the whole cerebellum (“SUMMARYSUVR_WHOLECEREBNORM”) for each scan (Landau et al. 

2021).  

 

Equation 1: Standardized Uptake Value Ratio. 

𝑺𝑼𝑽(𝒕) =
𝒄𝒊𝒎𝒈(𝒕)

𝑰𝑫/𝑩𝑾
 

 
SUV(t) represents the radioactivity concentration in a region during the period of time over the quantity of the 

injected dose (kBq/mL) divided by the weight (kg). This ratio is calculated with respect to the reference region. The 

SUVR is visualized below in Figure 1. 

 

 
Figure 1: Distribution of the SUVR values. 

 

Clinical Data 
 

An individual's age, gender, and weight were included in the clinical data for this analysis. Each individual 

in the ADNI dataset received a Mini-Mental State Exam (MMSE) after their testing session. CN or MCI subjects 

normally score between 24 and 30 inclusive while AD subjects normally score between 20 and 26 inclusive, 
showing that subjects who score lower than normal on this exam have cognitive impairment which is an indicator of 

Alzheimer’s (Peterson et al. 2010).  

Individuals also took a Functional Activities Questionnaire (FAQ) after their testing session. FAQ tests 

subjects with daily activities; the questionnaire has a range of 0-30 and subjects with a score of 6 or greater is 

suggestive of functional, cognitive impairment (Marshall et al. 2015). 

Apolipoprotein E is a multifunctional protein with three isoforms: APOE ε2, APOE ε3, and APOE ε4. 

APOE ε4 has the possibility of forming stable complexes with Aβ peptides and it enhances Aβ aggregation. This 

suggests that there is a correlation between APOE ε4 and pathogenesis of AD (Huang et al. 2014). While APOE ε4 

is more of a genetic risk factor AD, subjects with APOE ε3 are generally neutral and subjects with APOE ε2 are 

protective (Huang et al. 2017).  

 

Deep Learning Implementation 
 

 The deep learning was implemented using TensorFlow (https://www.tensorflow.org/). The data was split 

into training (80%, n=2384), and testing (20%, n=596) subsets in order to isolate training and testing results. We 

first used the ResNet convolutional neural network (CNN) architecture, which solves the vanishing/exploding 
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gradient problem via skip connections (He, Zhang, Ren, & Sun 2015). Skip connections calculate the identity 

function of an earlier layer output and add it to the output value of the succeeding layer, preserving the gradient 

(Adaloglou 2020). Skip connections (per block) are represented by the following function: 

 

Equation 2: RELU activation. 

 
 We also tested EfficientNet, which uses compound model scaling to achieve better results than ResNet 

(Tan & Le 2021). EfficientNet uses a specific set of scaling coefficients to uniformly scale the resolution, width, and 

depth in order to achieve a constant ratio (Sarkar 2021).  

 

Equation 3: Compound model scaling. 

 
1 Conditions for αٰ, β, and γ where ɸ is a user-specified coefficient 

 
 Adam was used to optimize loss via backpropagation (Kingma, & Ba 2014). An initial learning rate of 

either 0.001 or 0.0003 was used with a batch size of 32. All models were pre trained on ImageNet weights. 

 

Gradient Boosted Decision Trees 
 

 Gradient Boosted Decision Trees sequentially build simple prediction models while constantly correcting 

the preceding model. This process improves the mistakes of the previous learner while simultaneously filtering out 

the correct observations (Gaurav 2021). LightGBM is an open-source library that provides automatic feature 

selection and larger gradients which improves predictive performance of gradient boosted decision trees (Brownlee 
2020).  

 The GBM (Gradient Boosting Machine) was trained for 50,000 iterations with an early stopping sensitivity 

of 500 iterations. A random grid search was used to find the optimal hyperparameters for the GBM, by substituting 

random parameters and evaluating which parameters performed the best. Random state variables were never tested, 

with the intent to preserve scientific integrity. 

 

Prediction Approaches 
 

 Several prediction approaches were used with the data. First, ResNet50 was used to classify amyloid 
positivity in a single slice. Slice 48 was chosen out of the 96 axial slices, as it covers the central region of the brain 

which Alzheimer’s often affects. The proposed cutoff value of 1.1 for SUMMARYSUVR_WHOLECEREBNORM 

was used (Landau & Jagust 2015). The average pooling layer preceding the fully connected layer outputs 2048 

activations in the standard ResNet model. The fully connected layer was changed to down sample the 2048 

activations to 2 classes through linear down sampling. Binary CrossEntropy was used as the loss function: 
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Equation 4: Binary Cross Entropy Loss. 

𝑳𝑩𝑪𝑬 = −
𝟏

𝒏
∑(𝒀𝒊 ∙ 𝐥𝐨𝐠 𝒀̂𝒊

𝒏

𝒊=𝟏

+ (𝟏 − 𝒀𝒊) ∙ 𝐥𝐨𝐠(𝟏 − 𝒀̂𝒊)) 

 

 Second, regression to SUVR was performed with three slices, slice 36, 48, and 60. Color composites were 

created by overlapping slices 36, 48, and 60 into the R, G, and B color channels respectively. Since the images are 
all black and white (thus governed by one color channel), no imaging information was lost by doing this, and during 

the prediction, the model will split the image into their respective color channels regardless, effectively providing 

three images worth of information in one. Examples are shown in Figure 2. 

 

 
 

 

Figure 2: Color composites of various subjects with ground truth SUVR values. 

 

 For regression, the last fully connected was changed to one output which is linear only. Mean Absolute 
Error (MAE) was used to measure regression loss. MAE is the average difference between predicted and ground 

truth values, used in order to quantify the average difference between a patient’s true SUVR value in the field versus 

the model prediction. 

 

Equation 5: Mean Absolute Error. 

𝐌𝐀𝐄 =
∑ |𝒚𝒊 − 𝒙𝒊|
𝒏
𝒊=𝟏

𝒏
 

 

Finally, the best performing architecture was once again trained on the RGB color composites. The last fully 

connected layer was then removed and the activations were extracted from the GlobalAveragePooling layer. The 

activations, as well as the clinical and genetic data, were fed into the Gradient Boosted Decision Tree, which then 

performed regression to reach a SUVR value. In effect, the linear layer was being replaced by GBDT functions, 

which has been shown to be more accurate (Ke et al. 2017). 
 

Results 
 

Binary Classification 
 

 First, we trained on binarized amyloid classification for SUVR (positive/negative), found using the cutoff 

value discussed above. Binary classification can be useful in determining positivity of Alzheimer’s, although it lacks 

to precision of an exact SUVR value. Using pre-trained ImageNet weights, 30 epochs, and a batch size of 32, we 

used an initial learning rate of 0.001 to achieve an accuracy of 100% for the training set and an accuracy of 91.8% 

for the testing set. The CrossEntropy losses for training and testing set after 30 epochs were 0.0 and 0.444, 

respectively. Out of 596 subjects from the testing set, 547 subjects were classified correctly. Accuracy is plotted in 

Figure 3, which seems to have leveled off for the training and testing sets after 15 epochs, likely because of the 

simplistic binary task. 
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Figure 3: Binary Classification Accuracy for Amyloid Positivity/Negativity up to 30 epochs 

 

Amyloid Regression Model 
 
 For regression we used 100 epochs, and an initial learning rate of 0.0003. We used four different regression 

models: ResNet50, ResNet101, ResNetRS50, and EfficientNetV2B3. ResNetRS is a modern revision of the original 

ResNet architecture, outperforming the original ResNet by ~4.5% (Bello et al. 2021). EfficientNetV2 is the updated 

version of the original EfficientNet Architecture, using less memory and achieving better and faster results. The 

MAE loss for the training set and testing set of the four regression models are shown in Table 1. 

 

Table 1: Various Linear Regression Model MAE Loss Results for training and testing sets 

 

CNNs MAE for train set MAE for test set 

ResNet50 0.0380 0.0665 

ResNet101 0.0341 0.0580 

ResNetRS50 0.0320 0.0533 

EfficientNetV2B3 0.0312 0.0517 

1 Each trial was run a single time and results were taken (n=2980). 

 
The best results were achieved on the EfficientNetV2 architecture. EfficientNetV2 was the smallest of all the models 

with only ~10 million parameters, yet outperformed substantially compared to more costly models, such as 

ResNet101 and ResNetRS50. The increase in layers from 50 to 101 in ResNet decreased error, although 

outperformed by the more costly ResNetRS architecture. This seems to suggest that the compound scaling 

mechanism of the EfficientNet architecture is effective at scaling layers based on the image size. Additionally, the 

difference between the train set and test set accuracy was lowest in the EfficientNetV2B3 model, signifying less 

overfitting.

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.22280712doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.04.22280712
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

(4a) Training 

 

(4b) Testing 

 
1 EfficientNetV2B3 produced the lowest MAE loss value at the end of 100 epochs. 

 

Figure 4: Epoch vs loss for training and testing sets of ResNet50, ResNet101, ResNetRS50, and EfficientNetV2B3.  

 

 Minimal consistency improvements were made after 60 epochs, thus we decided to train for 60 epochs in 

succeeding tests. The EfficientNetV2 architecture performed the best out of all the models. Table 1 shows that 

EfficientNetV2B3 achieved the lowest MAE loss value compared to the other three regression models. 

EfficientNetV2B3 had a 3% improvement compared to the best residual neural network. This improvement is also 

visually shown in the epoch vs loss graphs for training and testing sets with the four regression models in Figure 4. 
Because of this, EfficientNetV2B3 was the architecture that was used with the Gradient Boosted Decision Tree. 

 

Amyloid Regression and Gradient Boosted Decision Tree Model 
 

 We used the EfficientV2S network for regression and gradient boosted decision trees for this model. The 

EfficientV2S regression model used 60 epochs and an initial learning rate of 0.0003. GlobalAveragePooling was the 

layer preceding the fully connected layer, outputting 1280 activations per subject in the EfficientNetV2 architecture. 

This regression model achieved an MAE loss value of 0.0477 for the testing set, already a significant improvement 

from all previous models. Model accuracy improved insignificantly after 30 epochs but did have noticeable 
consistency improvements.  

 

 
Figure 5: Epoch vs loss for training and testing sets of the EfficientNetV2S CNN 
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We then used the LightGBM library for our GBDT because it has improved predictive performance 

compared to other GBDTs. We used clinical data with LightGBM. We also used random grid search for 100 

iterations to find the best hyperparameters for the GBDT model which resulted in the lowest MAE loss. The optimal 

hyperparameters were a max_depth of 9, a feature_fraction of 0.5, and a learning_rate of 0.045. With EfficientV2S 
and LightGBM, the MAE loss value for the testing set was 0.0466, outperforming all previous configurations by a 

high margin and improving the loss from the CNN by 0.0011. The basic model flow is shown below in Figure 6. 

 
1 Patient shown is an actual patient. 3 images are overlaid to form a color composite, which is then imputed into the 

Gradient Boosted Decision Tree as activations with the clinical data. 

 

Figure 6: Basic model diagram.  

 

 To observe the consistency improvements in Figure 6, a predicted vs ground truth plot was drawn using all 

2980 data points. This way, any outliers could be spotted and skews could be identified. The model shows a 

consistent, fairly tight correlation between the ground truth and predicted values, as shown in Figure 7, with little to 

no skew. 

 

 
Figure 7: Predicted vs Actual for Efficient V2S and LightGBM model. 

 

Discussions 

 
 Optimizing a deep learning network for linear regression is a more efficient and accurate way to predict 
SUVR. Reith et al. (2020) used a convolutional neural network (ResNet-50) to predict SUVR by optimizing network 

depth, using 3 axial slices per subject and ImageNet pretraining. This model achieved an RMSE loss value of 0.054 

for the SUVR prediction.  

 We first used four regression models (ResNet50, ResNet101, ResNetRS50, and EfficientNetV2B3) to see 

which network architecture is best for MAE loss. Similarly to Reith et al. (2020), we used 3 axial slices per subject 

and ImageNet pretraining. However, our slice selection was different from Reith et al. (2020). We used axial slices 
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36, 48, and 60; the areas of these slices have the highest amyloid burden in subjects. We found that 

EfficientNetV2B3 performed the best out of all four models with an MAE loss of 0.0517 for the testing set.  

 After determining that EfficientNetV2 is the best network architecture, we used the EfficientNetV2S 

network which has twice as many parameters than EfficientNetV2B3. We used axial slices 36, 48, 60 and ImageNet 

pretraining for this network and achieved an MAE loss of 0.0477. EfficientNetV2S had a 17.8% improvement 
compared to the most accurate residual neural network and a 7.7% improvement compared to EfficientNetV2B3.  

 Consequently, we used the LightGBM library for GBDT after determining that EfficientNetV2S is the 

highest performing convolutional neural network. For LightGBM, we implemented a random grid search algorithm 

which found the optimal hyperparameters for GBDT. We also added three new variables: MMSE scores, FAQ 

scores, and APOE indication. This resulted in an MAE loss of 0.0466 for the testing set which outperformed our 

best CNN model by 0.0011. 

 Results from our study show that the use of axial slices 36, 48, 60 per subject, MMSE scores, FAQ scores, 

APOE indication, and LightGBM paired with EfficientNetV2S improved the linear regression model’s prediction 

performance of SUVR significantly. Our best regression model (0.0466 MAE loss) achieved an accuracy of 96.1%. 

Our proposed regression model (EfficientV2S and LightGBM) improved by 22.3% compared to the network in the 

Kim et al. (2019) study and improved by 13.7% compared to the Reith et al. (2020) study.  

 Although the calculation of SUVR for a given subject provides the uptake quantification of the radiotracer 
(18F-AV-45) in malignant cells, this calculation approach is inefficient and less accurate compared to a deep 

learning approach. When comparing SUVR prediction performance from a linear regression model to SUVR 

calculations by readers, Reith et al. (2020) found that the three SUVR readers took 24:28 minutes for 100 test 

samples. Our study used 600 test samples and took ∼18 seconds while the SUVR readers would have taken ∼147 

minutes to calculate all SUVR values. Individual SUVR calculations are not ideal when diagnosing a patient with a 

Florbetapir PET scan. Our proposed model solves the efficiency problem that SUVR readers experience when 

calculating SUVR values.  

 Noise in the ground truth SUVR calculations for each subject’s scan needs to be considered with the result 

of the regression model. Reith et al. (2020) showed that each reader calculated the SUVR value at a different pace 

and accuracy which contributes to the SUVR variability factor. There was also noticeable noise in the Florbetapir 
PET scans. The pixel count was 160×160 which is not a very clear resolution. The scans were also in black and 

white, another factor which might have contributed to the noise of the scans. There was noise in the chosen slices 

because there might have not been enough coverage for parts of the brain which have more present amyloid or are 

highly correlated to AD.  

 There are several limitations to consider in this study. Firstly, we were only able to examine the 

information in the input and the output layers of the CNN but not the middle layers which are responsible for tasks 

such as data transformation and automatic feature creation. For future use of this model, images fed as input data 

would require a specific process. Each Florbetapir image needs to be co-registered using Statistical Parametric 

Mapping (SPM8) to the same subject’s MRI image. This process requires the subject to get a PET and MRI scan. 

Also SPM8 software is necessary for the co-registering process. This process alone questions the practicality and 

financial cost of the imaging (Landau et al. 2021). 

 

Conclusions 

 

 Ultimately, we used deep learning architecture and Gradient Boosting Decision Trees along with imaging, 

clinical, and SUVR data to construct a regression model. The proposed model predicts SUVR values of subjects at a 

higher accuracy and efficiency than previous studies. Our model quantifies amyloid from Florbetapir radiotracer 

uptake in PET scans. Our automated model can overcome the difficulties of quantifying SUVR for patients with a 

Florbetapir PET scan. Our model can be used for processing large amounts of data from clinical trials. The achieved 

accuracy from our model provides greater reliability compared to calculations made by trained SUVR readers. 

Future work includes an application which allows a scan to be fed into the network in order to predict the SUVR 

quantification with our best performing linear regression model. Future research should investigate a more accurate 

way to individually calculate SUVR values so that deep learning networks can provide better accuracy for the 

regression model. Solving noise factors should be considered in future research in order to limit variability in SUVR 

and make PET visualizations better quality. Better PET imaging would also result in better accuracy from regression 
models when training the network. 
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