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2 

Abstract 1 

Alzheimer’s disease (AD) is a serious neurodegenerative disorder without a clear understanding of the etiology 2 

and pathophysiology. Recent experimental data has suggested neuronal excitation-inhibition (E-I) imbalance as 3 

an essential element and critical regulator of AD pathology, but E-I imbalance has not been systematically 4 

mapped out for either local or large-scale neuronal circuits in AD. By applying a Multiscale Neural Model 5 

Inversion (MNMI) framework to the resting-state functional MRI (rs-fMRI) data from the Alzheimer’s Disease 6 

Neuroimaging Initiative (ADNI), we identified brain regions with disrupted E-I balance based on impaired 7 

mesoscale excitatory and inhibitory connection strengths in a large network during AD progression. We 8 

observed that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively 9 

normal individuals, to mild cognitive impairment (MCI) and to AD, and E-I difference (or ratio) can be 10 

abnormally increased or decreased, depending on specific region. Also, we found that (local) inhibitory 11 

connections are more significantly impaired than excitatory ones and the strengths of the majority of 12 

connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we 13 

revealed a core AD network comprised mainly of limbic and cingulate regions including the hippocampus, 14 

pallidum, putamen, nucleus accumbens, inferior temporal cortex and caudal anterior cingulate cortex (cACC). 15 

These brain regions exhibit consistent and stable E-I alterations across MCI and AD, and thus may represent 16 

early AD biomarkers and important therapeutic targets. Lastly, the E-I difference (or ratio) of multiple brain 17 

regions (precuneus, posterior cingulate cortex, pallium, cACC, putamen and hippocampus) was found to be 18 

significantly correlated with the Mini-Mental State Examination (MMSE) score, indicating that the degree of E-19 

I impairment is behaviorally related to MCI/AD cognitive performance. Overall, our study constitutes the first 20 

attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate 21 

the development of new treatment paradigms to restore pathological E-I balance in AD.     22 

 23 

 24 

 25 

 26 
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3 

Introduction 27 

Alzheimer’s disease (AD) is neurodegenerative disorder characterized by progressive and irreversible cognitive 28 

decline (Bateman et al., 2012). It is the leading cause of dementia affecting more than 47 million people 29 

worldwide and this number is expected to increase to 131 million by 2050 (Tiwari et al., 2019). The healthcare 30 

cost for patients with AD and other dementias is enormous and is estimated to be 236 billion in the US for 2016 31 

alone and predicted to quadruple by 2050 (Alzheimer’s Association, 2016). Despite decades of extensive 32 

research, a clear understanding of the etiology and pathophysiology of AD remains elusive. Current treatments 33 

are only symptomatic without slowing down the progression of the disease (Aldehri et al., 2018). The lack of 34 

effective treatment highlights the paramount importance of identifying new pathophysiological and therapeutic 35 

targets (Thakur et al., 2018). 36 

       Excitation-inhibition (E-I) balance represents a promising pathophysiological and therapeutic target for 37 

AD. First, disrupted E-I balance may underlie the key pathophysiological mechanism of AD. One of the 38 

pathological hallmarks of AD is the accumulation of amyloid-β (Aβ) peptides in the brain that occurs long 39 

before clinical disease onset (Karran et al., 2011; Huang and Mucke, 2012). During this long extended 40 

preclinical stage, soluble Aβ oligomers and amyloid plaques disrupt neuronal circuit activity and function by 41 

altering synaptic transmission and E-I balance leading to cognitive malfunction (Palop and Mucke, 2010; 42 

Busche and Konnerth, 2016; Palop and Mucke, 2016). In particular, high Aβ levels elicit epileptiform 43 

discharges and non-convulsive seizures in both hippocampal and neocortical networks of human amyloid 44 

precursor protein (hAPP) transgenic mice (Palop et al., 2007), which closely relates to the increased incidence 45 

of epileptic seizures in AD patients (Palop and Mucke, 2009). Second, E-I disruption is not only the 46 

consequence of Aβ deposit, but also a driver of the amyloid pathology. Experimental data indicate that Aβ 47 

release is regulated by neuronal activity (Nitsch et al., 1993; Bero et al., 2011) and driven by increased 48 

metabolism (Cohen et al., 2009; Johnson et al., 2014). Also, Aβ accumulation is associated with enhanced 49 

neural activity in task-related regions during memory encoding (Mormino et al., 2012) and reduction of neural 50 

hyperactivity decreases Aβ aggregation as well as axonal dystrophy and synaptic loss (Yuan and Grutzendler, 51 

2016). Lastly, restoration of E-I balance has been shown to rescue circuit dysfunction and ameliorate cognitive 52 
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impairments in both AD mouse models (Verret et al., 2012; Busche et al., 2015; Yuan and Grutzendler, 2016) 53 

and humans with early AD (Bakker et al., 2012), suggesting a direct link between E-I imbalance and cognitive 54 

malfunction. Taken together, these findings emphasize the significance of identifying E-I imbalance in AD, 55 

particularly in the initial disease stage for early diagnosis and intervention.    56 

        Functional magnetic resonance imaging (fMRI) is a core noninvasive method to measure brain activity 57 

(Glover, 2011) and has been widely used to study functional network alterations in AD (e.g. Filippi and Agosta, 58 

2011; Brier et al., 2014; Dennis and Thompson, 2014). These studies have revealed both abnormal brain 59 

network activation/deactivation and dysfunctional connectivity patterns in AD involving the default mode 60 

(DMN), salience, executive control and limbic networks (Lustig et al., 2003; Dickerson et al., 2004, 2005; 61 

Celone et al., 2006; Greicius et al., 2004; Menon, 2011; Dhanjal and Wise, 2014; Badhwar et al., 2017; Schultz 62 

et al., 2017). However, conventional fMRI cannot distinguish E and I activity because fMRI signal increases 63 

regardless of selective E or I activation (Devor et al., 2007; Anenberg et al., 2015; Vazquez et al., 2018). This is 64 

not surprising, as activation of inhibitory neurons also consumes energy and triggers subsequent vascular 65 

signaling cascades that drive functional hyperemia (Anenberg et al., 2015; Uhlirova et al., 2016; Vazquez et al., 66 

2018). Moreover, most current analytic approaches for fMRI, including graph theory, seed-based approaches, 67 

and independent component analysis (Li et al., 2009; Sporns, 2014; Preti et al., 2017) do not allow for 68 

determination of causal relationships between regions, nor do they provide insight into the dynamic meso-scale 69 

neuronal relationships that underpin blood-oxygen-level-dependent (BOLD) signal variations, thus unable to 70 

identify E-I imbalance at circuit levels. Generative modeling, by comparison, builds on biologically plausible 71 

models of neural interactions (Friston et al., 2003; Friston, 2011; Stephan et al., 2015; Li and Yap, 2022) and 72 

thus can, in principle, resolve excitatory versus inhibitory neuronal activity. For example, de Hann et al.  (2012, 73 

2017) developed a large-scale neural mass model to examine the effects of excessive neuronal activity on 74 

functional network topology and dynamics. In the first study (de Hann et al., 2012), they demonstrated that 75 

synaptic degeneration induced by neuronal hyperactivity results in hub vulnerability in AD including loss of 76 

spectral power and long-range synchronization. In a subsequent study (de Hann et al., 2017), paradoxically, the 77 
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authors found that selective stimulation of all excitatory neurons in the network leads to sustained preservation 78 

of network integrity in the presence of activity-dependent synaptic degeneration. Using a computational 79 

framework termed “The Virtual Brain (TVB)”, Zimmerman et al., (2018) estimated personalized local 80 

excitation and inhibition parameters as well as global coupling strength based on resting-state fMRI (rs-fMRI) 81 

data from healthy individuals and patients with amnestic MCI (aMCI) and AD. They demonstrated that the 82 

model parameters required to accurately simulate empirical functional connectivity (FC) significantly correlate 83 

with cognitive performance, which surpasses the predictive capability of empirical connectomes. More recently, 84 

van Nifterick et al. (2022) proposed a multiscale brain network model to link AD-mediated neuronal 85 

hyperactivity to large-scale oscillatory slowing observed from magnetoencephalography (MEG) data in human 86 

early-stage AD patients. They modified relevant model parameters to simulate six literature-based cellular 87 

conditions of AD and compared them to healthy and non-AD scenarios. It was found that neuronal 88 

hyperactivity can indeed result in oscillatory slowing via either over-excitation of pyramidal cells or decreased 89 

excitability of inhibitory interneurons, supporting the hypothesis that E-I imbalance underlies whole-brain 90 

network dysfunction in prodromal AD. Nevertheless, all these previous studies focused on cellular/network 91 

simulation or AD differentiation rather than E-I estimation. In addition, these models used structural 92 

connectivity (SC) from Diffusion Tensor Imaging (DTI) as a proxy for synaptic efficiency, assumed the same 93 

local kinetic parameters for all regions and estimated only one global scaling coefficient for all long-range inter-94 

regional connections, which cannot infer region-specific E-I imbalance in AD.  95 

To overcome the aforementioned limitations of existing modeling studies, we applied a recently 96 

developed computational framework termed “Multiscale Neural Model Inversion (MNMI)” (Li et al., 2019; 97 

2021) to the rs-fMRI data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database to 98 

identify region-specific E-I imbalance in AD. Compared with other major generative modeling frameworks 99 

such as Dynamic Causal Modeling (DCM; Friston et al., 2003, 2014; Li et al., 2011) and Biophysical Network 100 

Model (BNM; Honey et al., 2007, 2009; Deco and Jirsa, 2012; Deco et al., 2013a, b), the strengths of MNMI 101 

include using a biologically plausible neural mass model to describe network dynamics, estimating both intra-102 
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regional and inter-regional effective connectivity (EC), and constraining EC estimation with structural 103 

information. Specifically, MNMI estimates within-region (local) recurrent excitation and inhibition coupling 104 

weights as well as inter-regional connection strengths at single subject level based on rs-fMRI, thus enabling the 105 

inference of region-specific E-I balance. We focused our analysis on four functional networks (DMN, salience, 106 

executive control and limbic) due to their critical role and significant disruption in AD pathophysiology (Lustig 107 

et al., 2003; Greicius et al., 2004; Menon, 2011; Dhanjal and Wise, 2014; Badhwar et al., 2017; Schultz et al., 108 

2017). Results indicated that MNMI is able to identify altered regional E-I balance in MCI and AD which 109 

deteriorates with disease progression and correlates with cognitive performance. This computational study 110 

offers mechanistic insights into the alteration of E-I balance during AD progression and the findings have the 111 

potential to contribute to the development of novel diagnostic techniques and treatment approaches by enabling 112 

the detection and modulation of E-I imbalance in AD.   113 

 114 

 115 

 116 

 117 

 118 
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Results 127 

To identify E-I imbalance in AD, we applied the MNMI model (Fig. 1) to a rs-fMRI dataset from ADNI 128 

consisting of 48 normal control (NC), 48 MCI and 48 AD subjects. At the heart of the MNMI framework is a 129 

neural mass model consisting of multiple brain regions each containing one excitatory and one inhibitory neural 130 

populations coupled with reciprocal connections. The excitatory neural populations are interconnected with 131 

long-range fibers whose baseline connection strengths are determined by structural connectivity (SC) from 132 

diffusion MRI. The neural activities are converted to simulated BOLD signals via a hemodynamic response 133 

function (HRF) and simulated FC is computed. MNMI then estimates both intra-regional and inter-regional 134 

connection strengths using genetic algorithm to minimize the difference between simulated and empirical FC 135 

(Fig. 1). We constructed a large network model with 46 regions of interest (ROIs) selected from the DMN, 136 

salience, executive control and limbic/subcortical networks (Table 1), and used the DTI data of 100 unrelated 137 

subjects from the Human Connectome Project (HCP) to calculate the baseline SC matrix. After model 138 

connection parameters (i.e., EC) are estimated for each individual subject, we derived regional E-I balance 139 

based on incoming excitatory and inhibitory connection strengths. We next performed statistical analysis to 140 

identify disrupted EC and E-I balance in MCI and AD. Lastly, we examined the association between E-I 141 

difference (ratio) and cognitive performance represented by the Mini-Mental State Examination (MMSE) score.      142 

MNMI performance 143 

The performance of MNMI is illustrated in Fig. 2. The average fitness value (i.e., Pearson’s correlation between 144 

simulated and empirical FC) was 0.6 ± 0.08 for NC, 0.61 ± 0.07 for MCI, and 0.62 ± 0.08 for AD, respectively. 145 

Both the simulated neural activity and simulated BOLD signals displayed rhythmic fluctuations (Fig. 2A, B). The 146 

oscillation frequency of the neural activity was about 7-10 Hz, consistent with α oscillations during relaxed 147 

wakefulness (Hughes and Crunelli, 2005). The frequency of the BOLD signals ranged between 0.01 and 0.05 Hz, 148 

in line with experimental observation (Tong et al., 2019). The empirical and simulated FC are displayed in Fig. 149 

2C, D respectively, where the pattern of the simulated FC closely matched that of the empirical FC (correlation 150 

coefficient 0.68).      151 
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 152 

Figure 1. Overview of the MNMI framework. The neural activity (x) is described by a neural mass network 153 
model containing multiple brain regions (R1, R2, etc.). Each region consists of one excitatory (E) and one 154 
inhibitory (I) neural population with reciprocal connections. Inter-regional connection strength is based on SC 155 
from diffusion MRI. The neural activity (x) is converted to corresponding BOLD signals (y) via a hemodynamic 156 
response function. The model parameters are optimized to minimize the difference between simulated FC and 157 
empirical FC obtained from rs-fMRI.   158 

 159 
Figure 2.  Performance of MNMI. (A) Sample activity of excitatory neural populations in eight randomly 160 
selected ROIs (four in top and four in bottom). (B) Sample BOLD signals in the same eight ROIs. (C) Empirical 161 
FC from a randomly selected subject. (D) Simulated FC from the same subject.   162 
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Table 1. Regions of interest (ROIs) selected in network modeling.  163 

Network ROI Abbreviation 

Default Mode 
Network 

Left inferior parietal cortex L.IPC
Right inferior parietal cortex R.IPC
Left isthmus cingulate cortex L.ICC
Right isthmus cingulate cortex R.ICC
Left middle temporal cortex L.MTC
Right middle temporal cortex R.MTC
Left precuneus L.PCU
Right precuneus R.PCU
Left rostral anterior cingulate cortex L.rACC
Right rostral anterior cingulate cortex R.rACC
Left superior frontal cortex L.SFC
Right superior frontal cortex R.SFC
Left superior temporal cortex L.STC
Right superior temporal cortex R.STC
Left posterior cingulate cortex L.PCC
Right posterior cingulate cortex R.PCC

Salience Network 

Left caudal anterior cingulate cortex L.cACC
Right caudal anterior cingulate cortex R.cACC
Left supramarginal cortex L.SMG
Right supramarginal cortex R.SMG
Left insula L.IN
Right insula R.IN

Executive Control 
Network 

Left caudal middle frontal cortex L.cMFC
Right caudal middle frontal cortex R.cMFC
Left rostral middle frontal cortex L.rMFC
Right rostral middle frontal cortex r.rMFC
Left superior parietal cortex L.SPC
Right superior parietal cortex R.SPC

Limbic/Subcortical 
Network 

Left entorhinal cortex  L.ETC
Right entorhinal cortex R.ETC
Left inferior temporal cortex L.ITC
Right inferior temporal cortex R.ITC
Left thalamus    T.THAL
Right thalamus R.THAL
Left caudate L.CA
Right caudate R.CA
Left putamen L.PUT
Right putamen R.PUT
Left pallidum L.PAL
Right pallidum R.PAL
Left hippocampus L.HPC
Right hippocampus R.HPC
Left amygdala L.AMY
Right amygdala R.AMY
Left nucleus accumbens L.ACB
Right nucleus accumbens  R.ACB

 164 

 165 

 166 
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Disrupted intra-regional E-I balance in MCI and AD 167 

We first examined whether intra-regional (local) E-I balance was altered in MCI and AD. The recurrent 168 

excitation weights within 46 ROIs are shown in Fig. 3A1 for NC and MCI, Fig. 3A2 for NC and AD, and Fig. 169 

3A3 for MCI and AD respectively. For the NC to MCI comparison of recurrent excitation, three regions (R.IPC, 170 

L.rACC and R.cACC) showed marginally significant decrease (p < 0.05, uncorrected), and three regions 171 

(R.ETC, L.PAL and R.ACB) showed marginally significant increase (p < 0.05, uncorrected) (Fig. 3A1). For NC 172 

versus AD, six regions displayed significant difference in recurrent excitation, including L.cMFC, R.PAL, 173 

L.HPC and L.AMY with decreased excitation, and L.PCC and R.ACB with increased excitation (Fig. 3A2). The 174 

significant excitation increase in R.ACB survived correction for multiple comparisons (p < 0.05, FDR 175 

corrected), and the R.ACB was the only region that showed significant and consistent excitation change across 176 

both MCI and AD. Regarding the comparison of MCI versus AD, only the region of R.AMY showed 177 

marginally significant decrease in AD (p < 0.05, uncorrected; Fig. 3A3). This suggests that as a prodromal stage 178 

of AD, MCI has similar recurrent excitation levels as AD, though AD shows more significant impairment in 179 

certain brain regions (e.g., R.ACB) when compared with NC.   180 

Comparison of the recurrent inhibition weights within 46 ROIs is shown in Fig. 3B1 for NC and MCI, 181 

Fig. 3B2 for NC and AD, and Fig. 3B3 for MCI and AD, respectively. Both MCI and AD showed significant 182 

difference in recurrent inhibition compared to NC. In MCI, the recurrent inhibition weight of five regions 183 

(L.cMFC, R.SPC, R.ITC, L.PAL and R.ACB) was significantly decreased (p < 0.05) while one region (L.SFC) 184 

showed significant increase (p < 0.05; Fig. 3B1). In particular, the change in L.cMFC survived multiple 185 

comparison correction (p < 0.05, FDR corrected). In AD, the change in recurrent inhibition was much more 186 

pronounced than in MCI (Fig. 3B2). Specifically, eleven ROIs exhibited a significant difference in AD 187 

compared with NC, and the change in seven ROIs passed multiple comparison correction. The recurrent 188 

inhibition of R.ICC, L.PCU, R.rACC, L.PCC, L.cMFC, R.SPC, R.ITC and L.PAL was significantly reduced, 189 

while that of L.SFC, R.cACC and L.HPC was significantly increased in AD. The regions that survived multiple 190 

comparison correction included R.ICC, R.cACC, L.cMFC, R.SPC, R.ITC, L.PAL and L.HPC (Fig. 3B2, 191 
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marked by double pink stars). Notably, five ROIs showed consistent change in recurrent inhibition across both 192 

MCI and AD (compare Fig. 3B1 with Fig. 3B2), specifically L.SFC, L.cMFC, R.SPC, R.ITC and L.PAL. 193 

Importantly, the difference in R.SPC, R.ITC and L.PAL was only marginally significant in MCI, but was robust 194 

to correction for multiple comparisons in AD, suggesting greater disruption of inhibitory interactions in AD 195 

than in MCI. Despite greater impairments of recurrent inhibition in AD than MCI, the difference between MCI 196 

and AD was only marginally significant in three ROIs including L.cACC, R.cACC, and R.ACB (Fig. 3B3). 197 

Again, this suggests that the changes in recurrent excitation and inhibition become more subtle from MCI to 198 

AD, compared with the changes from NC to MCI or AD. 199 

 200 
Figure 3. Impaired local recurrent excitation and inhibition in MCI and AD. Comparison of average 201 
recurrent excitation weight between NC and MCI (A1), NC and AD (A2), and MCI and AD (A3) for all 46 ROIs. 202 
Comparison of average recurrent inhibition weight between NC and MCI (B1), NC and AD (B2), and MCI and 203 
AD (B3) for all 46 ROIs. One star indicates uncorrected significance (p < 0.05) and double stars indicate 204 
corrected significance by FDR (p < 0.05). DMN: default mode network, SAL: salience network, EXE: executive 205 
control network, LIM: limbic network. Error bars indicate standard errors.  206 
 207 
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Table 2. Alterations in recurrent excitation and inhibition strength in MCI and AD (compared with NC). 208 
Up arrows indicate increase and down arrows indicate decrease. One star indicates uncorrected significance 209 
and double stars indicate corrected significance by FDR. 210 

Network ROI MCI AD 
Excitation Inhibition Excitation Inhibition

DMN R.IPC * ↓    
 

R.ICC      * *↓

L.PCU     * ↓

L.rACC * ↓     

R.rACC    * ↓ 
L.SFC  * ↑   * ↑ 
L.PCC   * ↑ * ↓

SAL R.cACC  * ↓    * *↑
EXE L.cMFC  * *↓ * ↓ * *↓

R.SPC    *↓ * *↓
LIM R.ETC  * ↑

R.ITC    * ↓   * *↓
L.PAL  * ↑ * ↓   * *↓
R.PAL    * ↓  
L.HPC   * ↓ * *↑
L.AMY    * ↓  
R.ACB * ↑ * ↓ * *↑  

 211 

To visualize the alterations in recurrent excitation and inhibition better, we listed the significant changes 212 

in MCI and AD (from NC) in Table 2 where an up arrow indicates a significant increase while a down arrow 213 

indicates a significant decrease. Several observations can be made. First, more connections were significantly 214 

different in AD than MCI. This is to be expected as AD represents a more severe disease stage than MCI. 215 

Second, the strength of the majority of connections (69%) was decreased in MCI/AD compared with NC. This 216 

is consistent with the widespread decrease in FC during the progression of AD (Filippi and Agosta, 2011; Brier 217 

et al., 2014; Dennis and Thompson, 2014). Third, if a region exhibited impairments in both recurrent excitation 218 

and inhibition, their directions of change were opposite to each other thus strengthening E-I imbalance, except 219 

for the executive control network where recurrent excitation and recurrent inhibition changed in the same 220 

direction. This suggests the existence of compensatory mechanisms in the executive control network to 221 

maintain similar E-I balance in the presence of AD pathology due to the critical role of this network in cognitive 222 

function (Miller et al., 2001; Petrides, 2005; Koechlin and Summerfield, 2007). Lastly, recurrent inhibition is 223 
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more significantly disrupted by MCI/AD than recurrent excitation, in agreement with the emerging viewpoint of 224 

interneuron dysfunction in network impairments (Li et al., 2016; Palop and Mucke, 2016; Xu et al., 2020). The 225 

consistent impairment of recurrent inhibition across MCI and AD also suggests that inhibitory connections are a 226 

more stable biomarker of AD than excitatory connections.     227 

 228 
Figure 4. Disrupted intra-regional E-I balance in MCI and AD. Comparison of local E-I difference (recurrent 229 
excitation – recurrent inhibition) between NC and MCI (A), NC and AD (B), and MCI and AD (C) for all 46 230 
ROIs. One star indicates uncorrected significance and double stars indicate corrected significance by FDR (p < 231 
0.05).     232 

 233 

The alteration in recurrent excitation and inhibition strengths resulted in intra-regional E-I imbalance in 234 

MCI and AD as shown in Fig. 4. The intra-regional (local) E-I balance was quantified as the E-I difference (i.e., 235 

recurrent excitation strength – recurrent inhibition strength; similar results were obtained for E/I ratio), which 236 
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measures the level of net excitation. In MCI, three regions showed a significant decrease in intra-regional E-I 237 

difference without passing multiple comparison correction, including L.rACC, R.cACC and L.HPC (Fig. 4A). 238 

Three other regions in the limbic network displayed significant increase in intra-regional E-I difference, 239 

including R.ITC, L.PAL and R.ACB, among which the elevation within L.PAL and R.ACB passed multiple 240 

comparison correction. In AD, five regions showed consistent E-I impairments as MCI, including R.cACC, 241 

R.ITC. L.PAL, L.HPC and R.ACB (Fig. 4B). Notably, the E-I alteration in R.cACC and L.HPC became more 242 

robustly significant in AD than MCI, surviving multiple comparison correction (the corrected significance in 243 

L.PAL and R.ACB maintained as MCI). In addition to the five common ROIs, intra-regional E-I balance in 244 

L.PCU, L.PCC, L.PUT and L.AMY were also impaired in AD, with a significant increase in L.PCU and 245 

L.PCC, and a significant decrease in L.PUT and L.AMY (p < 0.05). The increase in L.PCC was able to pass 246 

correction for multiple comparisons (p < 0.05, FDR corrected). In contrast to the marked E-I balance changes 247 

from NC to MCI/AD, the changes from MCI to AD were much less pronounced with only three ROIs showing 248 

uncorrected significance (R.ICC, R.SFC, and L.PUT; Fig. 4C). Specifically, the E-I difference of R.SFC and 249 

L.PUT was significantly decreased (p < 0.05, uncorrected), while that of R.ICC was significantly increased (p < 250 

0.05, uncorrected). Overall, intra-regional E-I imbalance in MCI and AD was highly consistent and 251 

concentrated on the limbic network (Fig. 4A, B). Also, in MCI/AD, about half of the brain regions showed 252 

increased intra-regional E-I difference while the other half exhibited reduced E-I difference when compared 253 

with NC. To visualize the progressive changes in E-I balance from NC to MCI and to AD, we fit a linear model 254 

to the local E-I difference of all NC, MCI and AD subjects and found the model significance of six brain 255 

regions passed correction for multiple comparison (p < 0.05, FDR corrected) including L.PCC, R.cACC, R.ITC, 256 

L.PAL, L.HPC, and R.ACB. Specifically, the E-I difference of L.PCC, R.ITC, L.PAL and R.ACB was 257 

progressively increased from NC to MCI and to AD, while the E-I difference of R.cACC and L.HPC was 258 

progressively decreased from NC to MCI and to AD. Notably, the brain regions that survived multiple 259 

comparison correction for the linear model were consistent with those regions showing common significant 260 

changes across MCI and AD (Fig. 4A, B), except for L.PCC which displayed significant change in AD only.                 261 
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 262 
Figure 5. Progressive changes in intra-regional E-I balance from NC to MCI and to AD. Local E-I 263 
difference of NC, MCI and AD subjects is fit by a linear model for (A) L.PCC, (B), R.cACC, (C) R.ITC, (D) 264 
L.PAL, (E) L.HPC, and (F) R.ACB. The significance of the linear fit for all six ROIs passes multiple comparison 265 
correction by FDR (p < 0.05).   266 
 267 

 268 

We next examined network-averaged recurrent excitation and inhibition changes in MCI and AD. There 269 

was no significant difference between NC and MCI for recurrent excitation (Fig. 6A) while the executive 270 

control network showed decreased recurrent inhibition in MCI compared with NC (p < 0.05, uncorrected; Fig. 271 

6B). By comparison, significant reduction in both recurrent excitation and inhibition was observed in the 272 

executive control network in AD and the change in recurrent inhibition survived multiple comparison correction 273 

(Fig. 6A, B). Moreover, the DMN exhibited a reduction in recurrent inhibition while the salience network 274 

showed an increase in recurrent inhibition (p < 0.05, uncorrected; Fig. 6B). Thus, on the network level, 275 

impairments in recurrent excitation and inhibition became more notable in AD than in MCI and the executive 276 

control network showed the most significant and consistent alterations. The decrease in both recurrent 277 

excitation and inhibition may compensate for the loss of each other, thus maintaining a relatively stable E-I 278 

balance in the executive control network. Lastly, no significant difference was observed between MCI and AD, 279 

indicating a similar impairment level at the network level.       280 
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 281 
Figure 6. Network-averaged recurrent excitation and inhibition weight. (A) Comparison of average 282 
recurrent excitation weight within four functional networks among NC, MCI and AD. (B) Comparison of average 283 
recurrent inhibition weight within four functional networks among NC, MCI and AD. One star indicates 284 
uncorrected significance and double stars indicate corrected significance by FDR (p < 0.05).     285 
 286 

 287 
Figure 7. Altered inter-regional EC in MCI and AD. Average inter-regional EC matrix for NC (A), MCI (B), 288 
and AD (C). (D) Significant EC connections in MCI when compared with NC. (E) Significant EC connections in 289 
AD when compared with NC. (F) Significant EC connections in AD when compared with MCI. For (D-F), green 290 
edges indicate insignificant connections, blue edges indicate uncorrected significant connections (p < 0.05), 291 
and red edges indicate significant connections corrected by the Network-based Statistics (NBS; p < 0.05).    292 
 293 

Disrupted inter-regional E-I balance in MCI and AD 294 

In addition to intra-regional recurrent connections, inter-regional excitatory and inhibitory connections were 295 

also disrupted in MCI and AD. The color-coded average inter-regional EC matrices for NC, MCI and AD are 296 

shown in Fig. 7A, B, and C, respectively (the white area indicates removed weak connections). We observed 297 

that the EC patterns were similar for NC, MCI and AD where there were more excitatory (positive) connections 298 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2023. ; https://doi.org/10.1101/2022.10.04.22280681doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.04.22280681
http://creativecommons.org/licenses/by-nc/4.0/


17 

than inhibitory (negative) connections. The significant EC connections in MCI (compared to NC) are indicated 299 

by the blue edges in Fig. 7D (p < 0.05, uncorrected), where they were broadly distributed among the four 300 

networks. The significant EC connections in AD (compared to NC) are shown in Fig. 7E where the blue edges 301 

indicate uncorrected significant connections and the red edges denote significant connections corrected by 302 

Network-based Statistics (NBS; Zalesky et al., 2010). Compared with MCI, the significant connections in AD 303 

concentrated more within and between the DMN and limbic networks. Of note, the corrected significant 304 

connections (red edges) involved mostly the executive control and limbic networks. Multiple significant 305 

connections also existed between MCI and AD comparison (p < 0.05, uncorrected; Fig. 7F), which mostly 306 

involved the DMN and executive control network. It should be noted that the overlap of significant connections 307 

among the three-way comparison (NC-MCI, NC-AD and MCI-AD) is low. To visualize the EC changes better, 308 

we compared the significant inter-regional EC between NC and MCI in Fig. 8A, between NC and AD in Fig. 309 

8B, and between MCI and AD in Fig. 8C. As indicated by the EC difference in the bottom panels, most of the 310 

connections had less excitatory influence (or more inhibitory influence) in MCI and AD than NC (Fig. 8A, B), 311 

indicating less excitatory communication between regions in MCI and AD. The corrected significant 312 

connections in AD included R.SPCR.PUT, R.CAR.THAL, R.SFCR.PAL, R.PALR.PUT, 313 

R.rMFCR.PUT, R.CAR.rMFC, and R.PUTR.PAL. Interestingly, most of the significant connections had 314 

increased EC in AD compared with MCI (Fig. 8C). This suggests that progression of AD may involve different 315 

sets of inter-regional connections that are differentially disrupted.    316 

            To evaluate the inter-regional E-I balance change in MCI and AD, we computed the inter-regional E-I 317 

difference (i.e., difference between the sum of all positive incoming EC and the absolute sum of all negative 318 

incoming EC) to a particular ROI (Fig. 9). The E-I change from NC to MCI is shown in Fig. 9A where six 319 

regions showed impaired inter-regional E-I balance (p < 0.05, uncorrected). A majority of the six ROIs showed 320 

decreased excitation, including L.PCU, R.IN, R.ITC, R.PUT and R.PAL, and only one ROI (R.cMFC) 321 

exhibited increased excitation. In AD, three common regions showed reduced net excitation as MCI, including 322 

R.ITC, R.PUT and R.PAL, all belonging to the limbic network (Fig. 9B). In particular, the significant changes 323 

in R.PUT and R.PAL were able to survive correction for multiple comparison by FDR, again indicating more 324 
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severe E-I disruption in AD than MCI. Moreover, the E-I difference of L.HPC was significantly reduced (p < 325 

0.05), while that of R.PCC was significantly elevated in AD (p < 0.05), both without passing multiple 326 

comparison correction. Comparison of the E-I difference between MCI and AD indicated that four brain regions 327 

had significant E-I balance changes (p < 0.05, uncorrected, Fig. 9C). Specifically, the E-I difference of L.IN, 328 

L.rMFC, and L.THAL was significantly reduced while that of R.PCC was significantly increased. Of note, the 329 

E-I difference of R.PCC was also significantly elevated in AD when compared with NC (Fig. 9B). We then fit a 330 

linear model to the E-I difference and found that the net excitation of R.PUT and R.PAL, the two regions with 331 

corrected significance in AD (Fig. 9B), reduced significantly from NC to MCI and to AD (p < 0.05, FDR 332 

corrected; Fig. 10). Overall, inter-regional E-I difference shows a decreasing trend over the course of AD 333 

progression, consistent with the majority of reduced inter-regional EC (Fig. 8).      334 

 335 
Figure 8. Significant inter-regional connections for group pairwise comparison. Significant inter-regional 336 
EC for NC and MCI comparison (A), NC and AD comparison (B) and MCI and AD comparison (C). The top 337 
panel plots the average inter-regional EC while the bottom panel plots the EC difference between the two 338 
compared groups. Double stars indicate corrected significance by NBS (p < 0.05).      339 
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 340 
Figure 9. Disrupted inter-regional E-I balance in MCI and AD. Comparison of inter-regional E-I difference 341 
between NC and MCI (A), NC and AD (B), and MCI and AD (C). One star indicates uncorrected significance 342 
and double stars indicate corrected significance by FDR (p < 0.05).      343 

 344 

 345 
Figure 10. Progressive changes in inter-regional E-I balance from NC to MCI and to AD. Inter-regional E-I 346 
difference of NC, MCI and AD subjects is fit by a linear model for (A) R.PUT, and (B), R.PAL. The significance 347 
of the linear fit for both ROIs passes multiple comparison correction by FDR (p < 0.05).   348 
 349 
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The average inter-network EC (summation of all excitatory and inhibitory inter-regional EC between 350 

networks) is shown in Fig. 11.  We observed that the EC from the executive control network to the salience 351 

network was significantly decreased in MCI when compared to NC (p < 0.05, uncorrected; Fig. 11A, B). In AD, 352 

the EC from the executive control network to the limbic network and the EC from the DMN to the limbic 353 

network were significantly reduced compared to NC with the latter passing multiple comparison correction (p < 354 

0.05, FDR corrected) (Fig. 11A, C), suggesting cortical-limbic decoupling. Moreover, the EC from the limbic 355 

network to the executive network was significantly decreased from MCI to AD (p < 0.05, uncorrected; Fig. 356 

11B, C). Overall, the excitatory interactions between networks are substantially decreased in MCI and AD when 357 

compared with NC, consistent with the predominant reduced inter-regional EC during AD progression (Fig. 8).         358 

 359 
Figure 11. Altered inter-network connection strength in MCI and AD. (A) Average inter-network EC in NC. 360 
(B) Average inter-network EC in MCI. (C) Average inter-network EC in AD. Pink boxes (with one star) indicate 361 
uncorrected significance (p < 0.05) and red boxes (with double stars) indicate corrected significance (p < 0.05, 362 
corrected by FDR) for the corresponding connections.  363 

 364 

Disrupted overall E-I balance in MCI and AD 365 

The above analysis indicates that both intra-regional and inter-regional E-I balance are impaired in MCI and 366 

AD. As the overall neural excitability depends on both intra-regional and inter-regional input drive, we 367 

computed the overall E-I balance as the difference between net excitation (recurrent excitation + all incoming 368 

excitatory inter-regional EC) and net inhibition (recurrent inhibition + all incoming inhibitory inter-regional 369 

EC) for all ROIs. We found that the overall E-I balance was altered in a number of regions in MCI and AD and 370 

most of the regions were located in the limbic network (Fig. 12). Specifically, the E-I difference of R.IN, 371 

R.PUT, R.PAL and L.HPC was significantly decreased (p < 0.05), while that of R.cMFC and R.ACB was 372 

significantly increased in MCI (p < 0.05); the change in R.PAL and R.ACB survived multiple comparison 373 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2023. ; https://doi.org/10.1101/2022.10.04.22280681doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.04.22280681
http://creativecommons.org/licenses/by-nc/4.0/


21 

correction (Fig. 12A). In AD, the changes in overall E-I balance remained consistent for R.PUT, R.PAL, L.HPC 374 

and R.ACB, all four regions from the limbic network (compare Fig. 12B with 12A). In addition to R.PAL and 375 

R.ACB, the E-I balance changes in R.PUT and L.HPC were able to pass multiple comparison correction in AD. 376 

Besides, the overall E-I difference of L.PUT was significantly reduced, while that of L.PCC and R.PCC was 377 

significantly increased in AD (p < 0.05, Fig. 12B), all without surviving multiple comparison correction. 378 

Comparison of the overall E-I balance between MCI and AD revealed that four regions exhibited significant 379 

difference (p < 0.05, uncorrected), including L.ICC, L.PCC, R.PCC and L.IN (Fig. 12C). Specifically, the E-I 380 

difference of L.ICC, L.PCC and R.PCC were significantly increased, while that of L.IN was significantly 381 

reduced from MCI to AD. Of note, the E-I differences in L.PCC and R.PCC were also significantly increased 382 

from NC to AD (p < 0.05, uncorrected, Fig. 12B), but not from NC to MCI. This suggests that E-I disruption in 383 

PCC may be specific to the disease progression from MCI to AD and an elevation in excitability in the 384 

cingulate regions may signal the transition from MCI to AD. In contrast, significant E-I alterations in the limbic 385 

network (R.PUT, R.PAL, L.HPC and R.ACB) were observed in both NC-MCI and NC-AD comparison (Fig. 386 

12A, B), but not in MCI-AD comparison (Fig. 12C). This indicates that E-I impairment in the limbic network 387 

was specific to NC to MCI progression and could be served as early biomarker for AD. Consistent with the 388 

common E-I alterations across MCI and AD, linear model analysis revealed the same four brain regions (out of 389 

46 ROIs) in the limbic network (i.e., R.PUT, R.PAL, L.HPC and R.ACB) that exhibited significant progressive 390 

E-I changes from NC to MCI/AD (p < 0.05, FDR corrected; Fig. 13). Specially, the overall E-I difference in 391 

R.PUT, R.PAL and L.HPC was progressively reduced (Fig. 13A-C), while that of R.ACB was progressively 392 

increased from NC to MCI and to AD (Fig. 13D). Lastly, we examined the change of spontaneous input during 393 

AD progression. There was no difference in spontaneous input between NC and MCI, while the spontaneous 394 

input was significantly decreased in AD, when compared with NC or MCI (p < 0.05, FDR corrected; Fig. 14). 395 

This suggests that the overall excitatory drive to the network is reduced in the AD phase, consistent with overall 396 

reduction in E-I difference.          397 

 398 
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 399 
Figure 12. Disrupted overall E-I balance in MCI and AD. Comparison of total E-I difference between NC and 400 
MCI (A), NC and AD (B), and MCI and AD (C). One star indicates uncorrected significance and double stars 401 
indicate corrected significance by FDR (p < 0.05).        402 

 403 
Figure 13. Progressive changes in overall E-I balance from NC to MCI and to AD. Total E-I difference of 404 
NC, MCI and AD subjects is fit by a linear model for (A) R.PUT, (B), R.PAL, (C) L.HPC and (D) R.ACB. The 405 
significance of the linear fit for all four ROIs passes multiple comparison correction by FDR (p < 0.05).   406 
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 407 
Figure 14. Comparison of estimated spontaneous inputs among NC, MCI and AD. Double stars indicate 408 
corrected significance by FDR (p < 0.05).        409 
 410 

 411 
Figure 15. Correlation between regional E-I balance and MMSE score. (A) Scatter plot between intra-412 
regional E-I difference and MMSE score. (B-F) Scatter plots between intra-regional E/I ratio and MMSE score 413 
for L.PCU, L.PCC, L.PAL, R.cACC, and L.HPC. (G-I) Scatter plots between total E-I difference and MMSE 414 
score for L.PUT, R.PUT, and L.HPC. The significance of all correlations passes FDR correction for multiple 415 
comparison (p < 0.05).    416 
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Association between regional E-I balance and cognitive performance  417 

To evaluate the behavioral relevance of E-I imbalance in AD progression, we examined the association between 418 

regional E-I balance and MMSE score. We performed the correlation analysis for intra-regional, inter-regional 419 

and total E-I balance respectively. The intra-regional and total E-I balance were evaluated as both the E-I 420 

difference (difference between E and I) and E/I ratio, while inter-regional E-I balance is assessed as the E-I 421 

difference only (see Methods). We computed the Pearson’s correlation between regional E-I balance and 422 

MMSE score for all 46 ROIs and the correlation that passed FDR correction (p < 0.05) is reported in Fig. 15.  423 

For intra-regional E-I balance, we observed that the E-I difference in L.HPC was positively correlated with the 424 

MMSE score (Fig. 15A), indicating that lower excitation in L.HPC was associated with lower MMSE score in 425 

MCI/AD. When intra-regional E-I balance was evaluated as E/I ratio, five regions showed significant 426 

correlation with MMSE score, including L.PCU, L.PCC, L.PAL, R.cACC, and L.HPC (Fig. 15B-F). 427 

Specifically, the E/I ratio in L.PCU, L.PCC and L.PAL was negatively correlated with MMSE score, while that 428 

in R.cACC and L.HPC was positively correlated with MMSE score. Thus, the higher intra-regional E/I ratio in 429 

L.PCU, L.PCC and L.PAL was associated with lower MMSE score in MCI/AD, which became oppositive for 430 

R.cACC and L.HPC. For total E-I balance, we found that the E-I difference in L.PUT, R.PUT and L.HPC was 431 

positively correlated with MMSE score, suggesting that lower overall excitation in these three regions was 432 

associated with lower MMSE score in MCI/AD. If the total E-I balance was assessed as E/I ratio, only one 433 

region (L.HPC) exhibited significant (positive) correlation with MMSE score (result not shown). In contrast, no 434 

significant correlation was able to pass multiple comparison correction for the association between inter-435 

regional E-I balance and MMSE score. Taken together, regional E-I imbalance is a meaningful physiological 436 

substrate for cognitive impairment. Notably, intra-regional E-I balance as measured by local recurrent excitation 437 

and inhibition strengths shows the strongest correlation with cognitive performance, suggesting the importance 438 

of measuring and modulating intra-regional E-I imbalance for AD diagnosis and treatment. Moreover, the left 439 

HPC exhibits the most robust association with MMSE score which remains highly significant for both intra-440 

regional and total E-I balance, and for evaluation using both E-I difference and E/I ratio. For the other six brain 441 

regions with significant correlation with MMSE score, L.PCU and L.PCC belong to the DMN, R.cACC belongs 442 
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to the salience network, and L.PAL, L.PUT and R.PUT belong to the limbic network. Of note, these regions 443 

also show significant differences between NC and MCI/AD in terms of intra-regional E-I balance (Fig. 4) and 444 

total E-I balance (Fig. 12).      445 

 446 
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Discussion 470 

Converging evidence suggests that E-I imbalance is a critical regulator of AD pathology (Palop and Mucke, 471 

2010; Busche and Konnerth, 2016; Palop and Mucke, 2016; Frere and Slutsky, 2018; Styr and Slutsky, 2018; 472 

Ambrad et al., 2019) and may represent a core element that underpins a “central feature” of AD by integrating 473 

pathophysiological findings from multi-levels of analysis (cell-circuit-network) (Maestú et al., 2021). 474 

Identifying pathological E-I balance during the progression of AD thus constitutes an important first step to 475 

developing new diagnostic techniques that use E-I imbalance as a biomarker and new treatment paradigms that 476 

aim to restore E-I balance. Our study provides both a novel framework to measure pathological E-I balance and 477 

important insights into the systematic features and circuit mechanisms of E-I alterations during the progression 478 

of AD.    479 

A multiscale neural modeling framework for E-I estimation 480 

Due to the inability of conventional fMRI to resolve excitatory versus inhibitory activities (Devor et al., 2007; 481 

Anenberg et al., 2015; Vazquez et al., 2018), a fMRI-based computational framework that could accurately 482 

estimate E-I imbalance during AD progression is urgently needed. As the two widely used approaches for 483 

generative modeling, DCM (Friston et al., 2003, 2014; Li et al., 2011) and BNM (Honey et al., 2007, 2009; 484 

Deco and Jirsa, 2012; Deco et al., 2013a, b) are limited in either the biophysical realism (DCM) or the ability to 485 

estimate individual connection strengths (BNM) (see review in Li and Yap, 2022). To overcome these 486 

limitations, we applied a recently developed MNMI framework (Li et al., 2019; 2021) to an ADNI dataset to 487 

identify disrupted E-I balance in a large network during AD progression. Results show that MNMI is capable of 488 

identifying impaired excitatory and inhibitory EC in MCI and AD, which can be harnessed to infer E-I 489 

imbalance at a mesoscale circuit level. The accuracy and reliability of MNMI are supported by the following 490 

observations: (1) E-I balance is more significantly impaired in AD than MCI, consistent with the more 491 

advanced disease stage of AD; (2) The brain regions that exhibit the most consistent and robust E-I alterations 492 

in MCI and AD (e.g., HCP and ACC) concur with their critical roles in AD pathophysiology (see below); and 493 

(3) E-I imbalance in multiple brain regions is found to be significantly correlated with cognitive impairments in 494 

MCI/AD, indicating that MNMI-derived E-I alterations are behaviorally meaningful and relevant. Thus, MNMI 495 
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provides a promising new tool to identify E-I imbalance in AD based on rs-fMRI.   496 

Systematic features of E-I alterations 497 

One important hallmark of AD pathology is the progressive disruption of synaptic transmission (Sheng et al., 498 

2012; Marsh and Alifragis, 2018). Consistently, we demonstrated that both excitatory and inhibitory 499 

interactions are substantially altered during the progress of AD and such alterations exhibit systematic features. 500 

First, excitatory and inhibitory connections are progressively disrupted during AD progression. For both intra-501 

regional and inter-regional neural interactions, more connections are impaired in AD than MCI (when compared 502 

with NC) and the degree of impairments also becomes more significant in AD (Figs. 3, 8). As a result, E-I 503 

balance is also progressively impaired (Figs. 4, 9, 12), which is confirmed by linear model analysis (Figs. 5, 10, 504 

13). Second, AD pathology differentially alters excitatory and inhibitory connections. Compared with recurrent 505 

excitatory connections, more recurrent inhibitory connections are impaired and to a greater extent, in agreement 506 

with the emerging viewpoint of GABAergic dysfunction in AD (Li et al., 2016; Palop and Mucke, 2016; Xu et 507 

al., 2020). Importantly, alterations of inhibitory connections exhibit a more stable pattern than excitatory 508 

connections as consistent impairments are observed across MCI and AD (Fig. 3). Lastly, AD progression is 509 

associated with a general decoupling of excitatory and inhibitory interactions. Although the strength of 510 

excitatory and inhibitory connections could either increase of decrease in MCI/AD, a reduction of connection 511 

strength dominates for both intra-regional and inter-regional connections (Table 2, Figs. 3, 8 and 11), consistent 512 

with the “synaptic dismantling” theory of AD (Selkoe et al., 2002). The heterogenous but decrease-dominated 513 

alterations in excitatory and inhibitory coupling strengths (i.e., effective connectivity) also concord with the 514 

observed bidirectional changes yet widespread decrease in functional connectivity in MCI and AD (Filippi and 515 

Agosta, 2011; Brier et al., 2014; Dennis and Thompson, 2014).            516 

Heterogenous alteration of E-I balance 517 

One important finding of this study is that we observed heterogenous, region-specific alteration of E-I balance. 518 

Depending on the specific modulation of excitatory and inhibitory connections, E-I difference can either 519 

increase or decrease for different brain regions. Our findings are consistent with experimental data that 520 

hyperactive neurons coexist with hypoactive neurons in an AD mouse model (Busche et al., 2008) and MCI and 521 
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AD are associated with both regional hyperactivation and hypoactivation in human (Celon et al., 2006; 522 

Corriveau-Lecavalier et al., 2019). We further revealed that increase of E-I difference is mostly due to a 523 

decrease of inhibitory connection strength (Figs. 3, 4), in agreement with experimental findings that neuronal 524 

hyperactivity is a result of decreased synaptic inhibition (Busche et al., 2008). Of note, studies have revealed 525 

that alteration of E-I balance depends on the stage of AD progression, where the HPC shows hyperactivity in 526 

early-stage aMCI, but reduced activity in late aMCI and AD (Dickerson et al., 2004, 2005; Celone et al., 2006). 527 

By comparison, our modeling results indicate that alterations in E-I balance remain consistent across MCI and 528 

AD for the same region and the (left) HCP exhibits reduced E-I difference throughout (Figs. 4, 9, 12). This may 529 

be due to the fact that elevated excitation in HPC is a temporal event in the early aMCI stage, similar to the 530 

transient increase of FC in the DMN and salience networks at the very mild AD phase (Brier et al., 2012).  531 

A core network of E-I imbalance in AD 532 

Despite the heterogeneous and distributed changes in E-I interactions, we observed consistent patterns of E-I 533 

disruptions in a set of brain regions including the HPC, pallidum, putamen, nucleus accumbens, inferior 534 

temporal cortex (ITC) and caudal anterior cingulate cortex (cACC). These brain regions were consistently 535 

impaired across MCI and AD for intra-regional E-I balance (Fig. 4), inter-regional E-I balance (Fig. 9) or 536 

overall E-I balance (Fig. 12) in our study. Such a core network highlights the paramount importance of the 537 

limbic/subcortical regions and cingulate areas in AD pathophysiology. The involvement of HPC, the core 538 

region in the memory network, is consistent with the vast majority of literature about the central role of this 539 

critical structure in AD (Dickerson et al., 2004, 2005; Wang et al., 2006; Palop et al., 2007; Bakker et al., 2012). 540 

The reduction of E-I difference in HPC due to increased inhibition is also consistent with the experimental 541 

findings that high GABA content in reactive astrocytes of the dentate gyrus was discovered in brain samples 542 

from human AD patients as well as AD mouse model resulting in increased tonic inhibition and memory deficit 543 

(Wu et al., 2014). The stable participation of the basal ganglia including pallidum, putamen and nucleus 544 

accumbens in E-I disruption is somewhat unexpected as the primary function of these subcortical structures is 545 

motor control (Groenewegen, 2003). However, recent MRI studies have consistently revealed substantial 546 

volume reduction in the basal ganglia of Alzheimer’s patients, including the putamen and caudate nucleus (Cho 547 
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et al., 2014; de Jong et al., 2008, 2011). The striatum, consisting of the putamen, nucleus accumbens and 548 

caudate nucleus, is particularly susceptible to AD degeneration since both Aβ plaques and neurofibrillary 549 

tangles (NFT) of hyperphosphorylated tau are found in striatal regions (Vitanova et al., 2019) and Aβ deposition 550 

starts in the striatum of presenilin-1 mutation carriers (Klunk et al., 2007). Importantly, Aβ may begin to 551 

develop in the striatum 10 years before expected symptom onset (Bateman et al., 2012), suggesting that the 552 

basal ganglia could be an important pathophysiological target in AD.    553 

The ITC plays a critical role in visual perception, object recognition, and semantic memory processing 554 

(Ishai et al., 1999; Herath et al., 2001; Onitsuka et al., 2004). Functional deficits in these cognitive processes 555 

have been well documented in patients with MCI and AD (Hof and Bouras, 1991; Giffard et al., 2001; Laatu et 556 

al., 2003; Uhlhaas et al., 2008). It was observed that inferior temporal tau is associated with daily functional 557 

impairment in AD (Halawa et al., 2019). Disruption of E-I balance in ITC is consistent with the significant 558 

synaptic loss in this region in individuals with aMCI (Scheff et al., 2011), which may underlie early AD 559 

symptomatology. Lastly, the anterior cingulate cortex (ACC) plays a vital role in multiple cognitive processes 560 

including executive function, memory and emotion (Carter et al., 1999; Bush et al., 2000; Weible et al., 2013). 561 

It is one of the earliest affected areas by Aβ accumulation (Braak et al., 1991; Raj et al., 2012) and exhibits 562 

disrupted FC in MCI and AD (Liang et al., 2015; Liu et al., 2017). It has been demonstrated that Aβ alters E-I 563 

balance in ACC through inhibiting presynaptic GABA-release from fast-spiking interneurons onto pyramidal 564 

cells (Ren et al., 2018).  565 

In addition to the above core AD network regions, the precuneus and PCC, the two central nodes in the 566 

DMN, show increased E-I difference in AD (Figs. 4, 9, 12) and their intra-regional E/I ratio is significantly 567 

correlated with cognitive performance as measured by the MMSE score (Fig. 15). As the main connectivity hub 568 

of DMN, the precuneus/PCC is involved in high-order cognitive functions such as emotion, arousal, self-569 

consciousness, memory, and visuospatial processing (Maddock et al., 2003; Lou et al., 2004; Cavanna and 570 

Trimble, 2006; Wallentin et al., 2006; Leech and Sharp, 2014). It is one of the most salient areas of tau 571 

deposition and neuroinflammation (Veitch et al., 2019). Recent studies have indicated that involvement of the 572 

precuneus/PCC is significant for the development of AD (Yokoi et al., 2018) and magnetic stimulation of the 573 
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precuneus was shown to slow down cognitive and functional decline (Koch et al., 2022). Increased excitation in 574 

precuneus/PCC is consistent with task-induced deactivation deficits in DMN, a robust functional impairment in 575 

MCI and AD (Lustig et al., 2003; Greicius et al., 2004; Rombouts et al., 2005). Hence, the precuneus and PCC 576 

should be considered as extended components of the core AD network whose E-I imbalance underlies key 577 

pathological changes in AD.  578 

Model limitations 579 

One notable limitation of the current study is that we used DTI data from healthy HCP subjects (instead of 580 

NC/MCI/AD participants) to calculate SC, following the practice of a previous MNMI study (Li et al., 2021). 581 

Nevertheless, the impact of this limitation should be minimal since MNMI uses the average SC (from 100 HCP 582 

subjects) as a common base to constrain EC estimation (i.e., the EC is scaled by the SC which is the same for all 583 

subjects; Eqn. (1)). This average SC could mitigate the individual differences between HCP and NC/MCI/AD 584 

subjects. Also, the optimization of each individual EC parameter (Wkj in Eqn. (1)) can compensate for the 585 

potential SC difference between HCP and NC/MCI/AD subjects. Also, to remove false positive SC links and 586 

avoid over-parameterization, we estimated only 10% of the strongest inter-regional connections based on SC. 587 

We did not estimate more than 10% since it will substantially increase the number of free parameters in this 588 

large network which would reduce the estimation accuracy due to potential overfitting. Future improvement of 589 

MNMI may allow for the estimation of more EC parameters in a large-scale network.         590 

Conclusions 591 

Using a multiscale neural model inversion framework, we identified disrupted regional E-I balance as well as 592 

impaired excitatory and inhibitory neural interactions during AD progression. We observed that E-I balance is 593 

progressively disrupted from NC to MCI and to AD and alteration of E-I balance varies from region to region. 594 

Also, we found that inhibitory connections are more significantly impaired than excitatory connections and the 595 

strength of the majority of connections reduces in MCI and AD, leading to gradual decoupling of neural 596 

populations. Moreover, we revealed a core AD network comprised mainly of limbic and cingulate regions 597 

exhibit consistent and stable E-I alterations across MCI and AD, which may represent an early AD biomarker 598 

and an important therapeutic target to restore pathological E-I balance. Furthermore, we found that alterations in 599 
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regional E-I balance of the extended core AD network including the precuneus/PCC is behaviorally relevant by 600 

showing a significant correlation with the MMSE score.     601 
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Methods 620 

Overview of MNMI  621 

The schematic diagram of the MNMI framework is depicted in Fig. 1. The neural activity (x) is generated by a 622 

neural mass network model (Wilson and Cowan, 1972) consisting of multiple brain regions (R1, R2, etc.). Each 623 

region contains one excitatory (E) and one inhibitory (I) neural populations with reciprocal connections and 624 

receives spontaneous input (u). Different brain regions are connected via long-range fibers whose baseline 625 

strengths are determined by SC from diffusion MRI; the weak inter-regional connections are removed to avoid 626 

over-parameterization and superficial links (Li et al., 2021). The neural activity (x) is converted to simulated 627 

BOLD signal (y) via convolution with a hemodynamic response function (HRF, Friston et al., 1998) and 628 

simulated FC is computed. Both intra-regional recurrent excitation (WEE) and inhibition (WIE) weights and inter-629 

regional connection strengths (W12, W21, etc.) as well as the spontaneous input (u) are estimated using genetic 630 

algorithm, a biologically inspired method for solving optimization problems based on natural selection 631 

(Mitchell, 1995), to minimize the difference between simulated and empirical FC.  632 

Subjects 633 

The rs-fMRI data was obtained from the ADNI dataset (http://adni.loni.usc.edu/). A total of 144 subjects with 634 

Mini-Mental State Examination (MMSE) scores were selected from the ADNI-Go and ADNI-2 studies, 635 

including 48 normal control (NC) (26/22 males/females, age 73.4 ± 6.5 years, MMSE 29.2 ± 1.1), 48 MCI 636 

(27/21 males/females, age 73.9 ± 10 years, MMSE 28 ± 1.7) and 48 AD subjects (27/21 males/females,  age 637 

73.6 ± 8.6 years, MMSE 23.1 ± 2.5). All subjects were matched in terms of age (p = 0.95, one-way Analysis of 638 

Variance (ANOVA)) and gender (p = 0.55, one-way ANOVA).  639 

Image preprocessing 640 

Data quality control was implemented in ADNI to ensure consistency across imaging centers in terms of the 641 

scanner, imaging protocol, and signal-to-noise ratio (Jack Jr et al., 2008). The fMRI data (7 min, 140 volumes) 642 

was preprocessed using AFNI (Cox, 1997) according to a well-accepted pipeline (Yan and Zang, 2010), which 643 

includes first ten volumes removal, head motion correction, normalization, nuisance signals regression, detrend 644 

and bandpass filtering (0.01 to 0.08 Hz). Nuisance regressors include head motion parameters (the “Friston-24” 645 
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model), the mean BOLD signal of the white matter, and cerebrospinal fluid. To minimize artifacts due to 646 

excessive motion, the subjects with an average frame displacement (FD) (Power et al., 2014) greater than 0.5 647 

mm will be removed. Finally, fMRI data will be smoothed with 6 mm full width at half maximum (FWHM) 648 

Gaussian kernel and then nonlinearly registered to the Montreal Neurological Institutes (MNI) space.   649 

Functional and structural connectivity 650 

Regional averaged BOLD rs-fMRI time series were extracted using the Desikan-Killiany (DK) atlas (Desikan et 651 

al., 2006) with 84 regions of interest (ROIs). To reduce computational burden and focus on the networks that 652 

are most affected in AD (Zott et al., 2018), we selected 46 ROIs from the DMN, salience, executive control 653 

(frontoparietal control) and limbic networks (Table 1) based on Yeo’s seven network definition (Yeo et al., 654 

2011) and computed the individual FC matrix using Pearson’s correlation. Structural connectivity was 655 

computed using probabilistic tractography based on the diffusion MRI data consisting of 100 unrelated subjects 656 

from the WU-Minn Human Connectome Project (HCP) young healthy adults, 1200 subjects release (Van Essen 657 

et al., 2013). The diffusion MRI data was preprocessed using the HCP protocol (Glasser et al., 2013). To 658 

compute SC, we conducted whole-brain tractography using asymmetry spectrum imaging (ASI) fiber tracking 659 

which fits a mixture of asymmetric fiber orientation distribution functions (AFODFs) to the diffusion signal 660 

(Wu et al., 2019, 2020). White matter streamlines were generated by successively following local directions 661 

determined from the AFODFs. The output streamlines were cropped at the grey/white-matter interface with a 662 

search distance of 2 mm, where the DK atlas was applied to obtain 84×84 SC matrix. The reduced SC matrix 663 

with 46 ROIs was extracted from the full SC matrix and averaged among the 100 subjects followed by 664 

normalization so the SC was bounded between 0 and 1. Finally, we selected the strongest 10% SC connections 665 

for network modeling and the weaker connections were removed (Frässle et al., 2017; Li et al., 2021).  666 

Neural mass model and hemodynamic response 667 

We employed computational neuronal modeling to capture the neural interactions and dynamics in the AD 668 

network. Regional brain dynamics are simulated by a neural mass model using the biologically motivated 669 

nonlinear Wilson-Cowan oscillator (Wilson and Cowan, 1972). The population-level activity of the jth region is 670 

governed by the following equations (Abeysuriya et al., 2018; Li et al., 2011): 671 
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𝜏
ௗாೕሺ௧ሻ

ௗ௧
ൌ െ𝐸ሺ𝑡ሻ  𝑆 ቀ∑ 𝑊𝐶𝐸ሺ𝑡ሻ  𝑊ாா

 𝐸ሺ𝑡ሻ െ 𝑊ூா
 𝐼ሺ𝑡ሻ  𝑢  𝜀ሺ𝑡ሻቁ                 (1)      672 

𝜏
ௗூೕሺ௧ሻ

ௗ௧
ൌ െ𝐼ሺ𝑡ሻ  𝑆൫𝑊ாூ

 𝐸ሺ𝑡ሻ  𝜀ሺ𝑡ሻ൯                                                         (2) 673 

where 𝐸 and 𝐼 are the mean firing rates of excitatory and inhibitory neural populations in brain region j, 𝜏 and 674 

𝜏 are the excitatory and inhibitory time constants (20 ms; Hellyer et al., 2016), and 𝑊ாா
 , 𝑊ூா

  and 𝑊ாூ
  are the 675 

local coupling strengths (i.e., recurrent excitation, recurrent inhibition and excitatory to inhibitory weight). The 676 

variable u is a constant spontaneous input and 𝜀ሺ𝑡ሻ is random additive noise following a normal distribution 677 

(Deco et al., 2013a; Wang et al., 2019). The long-range connectivity strength from region k to region j is 678 

represented by 𝑊 which is scaled by empirical SC (Ckj), and the nonlinear response function S is a sigmoid 679 

function 𝑆 ൌ 1 ሺ1  𝑒ିሺ
ೣషµ


ሻሻ⁄  (µ=1.0; σ =0.25; Abeysuriya et al., 2018).    680 

          To increase computational efficiency, we replaced the hemodynamic state equations in the original MNMI 681 

model (Li et al., 2021) with the canonical HRF and computed the hemodynamic response as the convolution of 682 

regional neural activity and the HRF kernel (Friston et al., 1998):  683 

                ℎሺ𝑡ሻ ൌ ௧ഀభషభఉభ
ഀభషഁభ

ሺఈభሻ
െ 𝑐 ௧ഀమషభఉమ

ഀమషഁమ

ሺఈమሻ
                                              (3) 684 

where t indicates time, 𝛼ଵ ൌ 6, 𝛼ଶ ൌ 16, 𝛽ଵ ൌ 𝛽ଶ ൌ 1, 𝑐 ൌ 1/6, and Γ represents the gamma function. The 685 

regional neural activity is calculated as the weighted sum of excitatory and inhibitory neural activity (i.e., 𝑥 ൌ686 

ଶ

ଷ
𝐸 

ଵ

ଷ
𝐼; Becker et al., 2015; Li et al, 2021).   687 

Estimation of model parameters 688 

Both local (intra-regional) and long-range (inter-regional) connection strengths in the model are estimated. For 689 

the local parameters, we estimated both recurrent excitation (𝑊ாா) and recurrent inhibition (𝑊ூா) weights in each 690 

ROI, resulting in 92 local parameters. The EI coupling weight (𝑊ாூ) was assumed to be constant (3.0; Li et al., 691 

2021) as the effect of 𝑊ாூ could be accommodated by change in 𝑊ூா. To avoid over-parameterization and false 692 

positive connections due to DTI noise (Maier-Hein et al., 2017), we estimated the strongest 10% inter-regional 693 
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connections (N = 212) and removed the remaining weaker connections. In addition, the spontaneous input (u) is 694 

estimated, which results in a total of 305 free parameters for estimation. 695 

      We used the genetic algorithm (GA; implemented by the ga function in MATLAB global optimization 696 

toolbox) to estimate the model parameters. The parameters are bounded within certain ranges to achieve balanced 697 

excitation and inhibition in the network (Li et al., 2021): 𝑊ாா and 𝑊ூா ∈ ሾ2, 4ሿ, 𝑊 ∈ ሾെ2, 2ሿ, and 𝑢 ∈ ሾ0.2, 0.4ሿ. 698 

GA maximizes the Pearson’s correlation between the simulated and empirical FC matrices with the functional 699 

tolerance set to be 1e-3 and the maximal number of generations set to be 128. We observed good convergence 700 

within 128 generations for all the subjects.  701 

Numerical integration 702 

The differential equations of the neural mass model are simulated using the 4th order Runge-Kutta (RK) scheme 703 

with an integration step of 10 ms; a shorter integration step has no significant effect on the results reported. We 704 

simulated the network for a total of 200 sec, and the first 20 sec of the BOLD activity is discarded to remove 705 

transient effects. The remaining 180 sec time series are downsampled to 0.33 Hz to have the same temporal 706 

resolution as the empirical BOLD signal (TR = 3 sec). The model along with the optimization procedure are 707 

coded in MATLAB and run in parallel with 24 cores in a high-performance UNC Linux computing cluster. The 708 

computing time (for each individual subject) ranges from 30 to 60 hours.            709 

Metrics for E-I balance 710 

Regional E-I balance is quantified by either E-I difference (sum of incoming excitatory EC – sum of incoming 711 

inhibitory EC) or E/I ratio (the ratio of the sum of incoming excitatory EC to the sum of incoming inhibitory 712 

EC). We defined three metrics of regional E-I balance: (1) intra-regional E-I balance; (2) inter-regional E-I 713 

balance; and (3) total E-I balance. The intra-regional E-I balance of each region is calculated as the difference 714 

(or ratio) between recurrent excitation and recurrent inhibition strength, while inter-regional E-I balance is 715 

computed as the difference between the sum of the incoming excitatory inter-regional EC and the sum of the 716 

incoming inhibitory inter-regional EC. We did not compute inter-regional E/I ratio because some regions 717 

receive excitatory or inhibitory EC only. The total E-I balance is calculated as the difference (or ratio) between 718 
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total excitation level (recurrent excitation strength + all incoming excitatory inter-regional EC) and total 719 

inhibition level (recurrent inhibition strength + all incoming inhibitory inter-regional EC) to a particular region. 720 

Statistical analysis 721 

Model parameters are estimated for each subject and compared between NC and MCI, NC and AD, and MCI 722 

and AD. We used two-sample t-tests to compare local and inter-regional connection strengths as well as intra-723 

regional, inter-regional and total E-I balance. Multiple comparisons are corrected by the false discovery rate 724 

(FDR; Benjamini and Yekutieli, 2001) method except for the inter-regional EC which is corrected by the 725 

Network-based Statistics (NBS; Zalesky et al., 2010) approach, both at a significance level of p < 0.05.  726 

Data availability  727 
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publicly available. All structural and functional connectivity matrices along with BOLD fMRI time series are 729 
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