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Abstract 

Background. Mucosal–associated invariant T (MAIT) cells are unconventional innate-

like T cells abundant in mucosal tissue of humans, and associated with protective 

responses to microbial infections. MAIT cells have capacity for rapid effector function, 

including the secretion of cytokines and cytotoxic molecules. However, limited 

information is available regarding the activity of MAIT cells in mucosal vaccine-mediated 

immune responses in humans.  

Methods. We enrolled healthy adults who received a course of oral live-attenuated S. 

Typhi strain Ty21a vaccine and collected peripheral blood samples pre-vaccination, and 

at 7 days and one month post-vaccination. We used flow cytometry, cell migration 

assays, and tetramer decay assay to assess MAIT cell responses. 

Results. We show that following vaccination, circulating MAIT cells are decreased in 

frequency but have increased activation markers. Post-vaccine timepoints had higher 

levels of MAIT cells expressing gut-homing marker integrin α4β7 and chemokine 

receptor CCR9, suggesting the potential of MAIT cells to migrate to mucosal sites. 

While we found higher frequencies of TNF-α expression on MAIT cells post-vaccination, 

we did not find significant differences in expression of other effector molecules, TCR 

avidity, or cell migration.  

Conclusions. We show how MAIT cell immune responses are modulated post-

vaccination against S.Typhi. This study contributes to our understanding of MAIT cells’ 

potential role in oral vaccination against bacterial mucosal pathogens. 
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Introduction 

Mucosal-associated invariant T (MAIT) cells are innate-like αβ T cells defined by the 

expression of an invariant α chain, generally Vα7.2 linked to Jα33, Jα12, or Jα20 in 

humans and a limited array of T cell receptor β (TCRβ) chains [1, 2]. MAIT cells are 

restricted by the non-classical MHC-related molecule 1 (MR1) and respond to vitamin B 

metabolites derived from bacterial and fungal species [3]. MAIT cells have been 

associated with protection and antibacterial immune defense in various bacterial 

infections, including Legionella longbeachae, Mycobacterium 

tuberculosis (Mtb), Mycobacterium bovis, Francisella tularensis, Escherichia coli, Vibrio 

cholerae, and Klebsiella pneumoniae [4-8]. In human challenge studies, exposure to 

enteric bacteria such as Salmonella enterica serovar Typhi (S. Typhi), S. Paratyphi A, 

and Shigella flexneri resulted in MAIT cells activation, proliferation, and homing to 

mucosal sites [9-11]. MAIT cells functions include their capacity to secrete TNF-α, IFN-

γ, IL-17, as well as Granzyme B [12, 13]. MAIT cells are attractive vaccine targets [14] 

as they bridge the adaptive and innate immune responses against bacterial infections 

and are donor-unrestricted (not restricted by MHC polymorphism) [15].  

Few studies have described MAIT cell activity during oral vaccination. In volunteers 

vaccinated with an attenuated strain of Shigella dysenteriae, MAIT cell activation was 

seen in those who mounted LPS-specific IgA antibody-secreting cell responses [10]. 

Specific to S. Typhi infection outside of vaccination, human challenge studies with S. 

Typhi have shown that MAIT cells are activated, exhausted and depleted during 

infection [11]. However, there exists a lack of knowledge regarding the activity and 

function of MAIT cells in humans following mucosal vaccination, such as with oral 
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attenuated S. Typhi strain Ty21a, a commercially available oral mucosal vaccine 

against typhoid fever [16]. The objective of our study was to examine longitudinal MAIT 

cells responses in a cohort of Ty21a recipients. We show that Ty21a vaccination results 

in changes in MAIT cell frequency, activation, cytokine production and homing markers 

expression.  
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Materials and Methods 

Subjects 

Eleven healthy volunteers, six males (aged 42 + 15 years) and 5 females (aged 40 + 10 

years) participated in this study. All volunteers provided written informed consent. Four 

doses of a single oral capsule of Ty21a (Vivotif, PaxVax) were taken on days 1, 3, 5 and 

7. Blood samples were collected upon study enrollment (Day 1) and again in the same 

subject’s approximately 7 days and 1 month after the last dose of vaccine (Day 7 and 1 

month post-vaccination, p.v.). Venous blood was collected and centrifuged over a 

Lymphoprep (STEMCELL Technologies Inc) density gradient using a standard protocol 

to isolate peripheral blood mononuclear cells (PBMCs). PBMCs in cryogenic vials were 

placed immediately into an isopropanol freezing container (Nalgene Mr. Frosty) and 

were cryopreserved in -80°C until use for immunologic assays. Study procedures were 

reviewed and approved by the Institutional Review Board of the University of Utah (IRB 

#84287). 

Antigenic stimulation and incubation 

Viable S. Typhi Ty21a were obtained by dissolving a vaccine capsule (Vivotif) in 10 ml 

brain heart infusion (BHI) media and incubating overnight at 37°C. The bacteria were 

then subcultured (1:10) in BHI media for four hours (O.D = 0.4), harvested and stored in 

50% glycerol at -80°C. For phenotypic analysis of MAIT cells, PBMCs were thawed from 

−80°C and were seeded (2 X 106 cells/well) in complete medium in 96-well U bottom 

plates. Cells in each well were stimulated at 100 multiplicity of infection (MOI) with heat-

killed S. Typhi Ty21a (killed by incubation at 95°C for 30 min). Unstimulated control 
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wells were treated with complete medium. Cells were then incubated at 37° in 5% CO2. 

After an overnight incubation, 1X brefeldin A (BD GolgiPlug; BD Biosciences) was 

added to each well, and the plate was incubated for a further 4 hours at 37° in 5% CO2.  

Flow cytometry 

PBMCs were washed before being stained for viability and surface phenotype. For 

intracellular cytokine analysis, surface staining was followed by fixation and 

permeabilization and staining using foxp3/transcription factor staining buffer set 

(eBioscience). Details of the antibodies that were used are presented in 

Supplementary table 1. Compensation beads (BD Biosciences) were used to create 

compensation matrices, and Fluorescence minus One (FMO) controls were used to 

identify populations of interest. All samples were acquired using Cytek Aurora (Cytek 

Biosciences) and analyzed using FlowJo software v10 (Tree Star Inc, Ashland, OR). 

Cell migration assay 

To assess migratory properties of MAIT cells, PBMCs were stimulated with heat-killed 

S. Typhi Ty21a overnight, washed, and resuspended in RPMI 1640 medium 

supplemented with 0.1% bovine serum albumin (Thermo Fisher Scientific). Cells were 

seeded in the upper chamber of a 6-well transwell plate inserts with a pore size of 3 μm 

(Thermo Fisher Scientific) at a density of 1 X 106 cells/well. Cells were allowed to 

migrate against a gradient of 150 ng/ml recombinant chemokines CCL20/MIP-3α and 

CCL25/TECK-3 (Peprotech) in RPMI 1640 medium supplemented with 0.1% bovine 

serum albumin for 4 hours at 37°C [17]. Cells migrated into the bottom chamber were 

collected, washed in FACS buffer (phosphate-buffered saline with 2% fetal bovine 
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serum), stained with fluorochrome-conjugated anti-CD8a, anti-TCRVα7.2, anti-CD161 

antibodies and anti-human MR1 5-OP-RU Tetramer (NIH Tetramer Core Facility), and 

counted using CountbrightTM absolute counting beads (Thermo Fisher Scientific) and 

flow cytometry. 

Tetramer staining and decay assay 

Tetramer staining and decay assay were performed as previously mentioned [9]. Briefly, 

for PBMCs, cells were stained with live/dead fixable viability dye efluor 780 

(eBiosciences) for 15 minutes at room temperature (RT), followed by incubation with 5-

OP-RU MR1 tetramer for 40 min at RT. Excess tetramer was washed off and cells re-

suspended in FACS buffer with or without 20 μg/ml anti-MR1 antibody (clone 26.5, 

Biolegend). Samples were left at 37°C and periodic samples were taken, washed and 

fixed immediately. CD3 staining was performed after collecting all samples and 

analyzed using flow-cytometry.    

ELISAs 

For enzyme-linked immunosorbent assays (ELISA), we used S. Typhi LPS antigen and 

assessed plasma antibody responses (immunoglobulin [Ig] M, IgA, and IgG). ELISAs 

were performed as previously described [18]. Briefly, microplates (nunc-maxisorp flat-

bottom 96-well plates, Invitrogen) were coated with 1 μg/ml LPS, and plasma was 

added at a dilution of 1:200 for IgG and 1:100 for IgA and IgM. Bound antibodies were 

detected with anti-human IgG, IgA, and IgM conjugated with horseradish peroxidase 

(Jackson ImmunoResearch), and plates were developed by adding 100 μl/well TRB 

substrate for 10 min in the dark. Development was stopped by the addition of 100 
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μl/well of 0.2N H2SO4 and OD read at 450 nm in an ELISA microplate reader (Multiskan 

Ascent; Thermo Labsystems). 

Statistical analysis 

Paired comparisons were made using Wilcoxon matched-pairs signed-rank test using 

Prism v9 (GraphPad). P values are two-tailed and considered significant at P < 0.05. 

Given the lack of prior studies on MAIT cells in oral vaccination, we were unable to 

perform a power calculation to inform sample size.  
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Results 

Vaccination resulted in decrease in frequency of circulating MAIT cells but an 

increase in markers of MAIT activation.  

Analysis of plasma antibody responses to S. Typhi LPS in Ty21a vaccine recipients 

revealed that vaccine elicited significantly higher IgA and IgG antibody responses at 7 

days and 1 month post-vaccination compared to day 1 (pre-vaccination) (Figure 1A and 

B). No significant differences were found in IgM antibody responses (Figure 1C). These 

results are consistent with prior studies of Ty21a vaccination [19-21].  

Because of the potential importance of MAIT cells against S. Typhi infections and their 

potential as targets for vaccine development, we determined whether immunization with 

the Ty21a typhoid vaccine elicits MAIT cell immune responses. PBMCs from Ty21a 

vaccinees were isolated and stimulated with heat-killed S. Typhi Ty21a, and MAIT cells 

were analyzed using flow cytometry. Defining MAIT cells as live CD45+ CD19- TCRγδ- 

CD4- CD3+ CD8+ CD161+ Vα7.2+ MR1 5OP-RU tetramer+, we found that the 

frequencies of circulating MAIT cells as a proportion of total CD8+ cells significantly 

decreased in unstimulated and stimulated conditions both at day 7 and at one month 

post-vaccination compared to pre-vaccination (Figure 1D and E). We next measured the 

expression of activation markers CD38 and CD69 in MAIT cells. We found that the 

frequencies of CD38+ MAIT cells (Figure 1F) and CD69+ activated MAIT cells (Figure 

1G) were increased at 1 month post-vaccination. Conventional CD4+ and CD8+ T cells 

frequencies increased post-vaccination, consistent with a previous publication, [22] and 

the frequencies of CD14+ monocytes decreased in circulation post-vaccination 

(supplementary figure 1). No significant differences were found in B cells, CD4+ CD8+ 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.22280651doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.04.22280651


MAIT cells, CD4+ MAIT cells and TCRγδ cells post-vaccination compared to pre 

vaccination (supplementary figure 1). Taken together, we found that human vaccination 

with Ty21a impacted the frequency and activation of circulating CD8+ MAIT cells. 
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Figure 1. S. Typhi-specific antibody response, MAIT cell frequency, and MAIT cell activation after 

Ty21a vaccination. Plasma antibodies against S. Typhi LPS IgA (A), IgG (B) and IgM (C) antibody 

responses pre-vaccination (day 1) and post-vaccination (day 7 and 1 month). (D) MAIT cells frequency as 

percentage of CD8+ T cells in invitro heat-killed S. Typhi Ty21a vaccine antigen-stimulated samples and 

unstimulated controls. (E) MAIT cell gating strategy and representative flow cytometry plots. (F and G) 

Frequency of activated MAIT cells expressing CD38 and CD69 pre and post-vaccination. Data were 

expressed as mean ± SEM of two independent experiments. *P < .05, **P < .01, ***P < .001 in Wilcoxon 

signed-rank test (paired samples). 

 

Vaccination resulted in higher frequencies of TNFα expressing circulating MAIT 

cells, but not of other effector molecules. 

We next examined whether vaccination with Ty21a induces MAIT cells to express 

effector molecules such as IFN-γ, TNF-α, IL-17a and cytotoxic molecules. Using flow 

cytometry, we found a significant increase in the frequencies of MAIT cells expressing 

TNF-α post-vaccination (Fig 2A), and IFN-γ expressing MAIT cells also were non-

significantly higher (p = 0.08) post-vaccination in unstimulated conditions (Fig 2B). No 

significant differences were found in IL-17a, granzyme B, or perforin among the groups 

(Figure 2 C-E). IFN-γ, TNF-α and perforin expressing MAIT cells significantly increased 

in response to ex-vivo S.Typhi stimulation compared to unstimulated condition at the 

pre-vaccination timepoint. However, except for TNF-α at 1 month post-vaccination, we 

did not observe any significant differences between unstimulated and stimulated 

conditions at any of the post-vaccination timepoints (Figure 2A).   
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Figure 2. MAIT cell effector function and tetramer dissociation post vaccination. PBMCs obtained 

from vaccine recipients (n = 11 per group) were stimulated with S. Typhi at moi of 100 and intracellular 

expression of (A) TNF-α (B) IFN-γ, (C) IL-17, (D) granzyme B and (E) perforin by MAIT cells were 

analyzed using flow cytometry (open circle shows unstimulated and closed circle shows stimulated data). 

(F) MAIT cell tetramer decay with (solid lines) and without (dashed lines) the presence of 20 µg/mL MR1 

blocking antibody (aMR1) is plotted as percentages of live CD3+ T cells pre and post vaccination. Data 

were expressed as mean ± SEM of two independent experiments. Paired comparisons were made using 

Wilcoxon matched-pairs signed-rank test using Prism v9 (GraphPad).  
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Vaccination did not result in changes in circulating MAIT TCR avidity. 

To determine whether the MAIT cell population’s pre- and post-vaccination display 

different TCR avidities for their 5OP-RU–MR1 complexes, we stained PBMCs with 5OP-

RU tetramers, and assayed the rate of tetramer dissociation by incubating cells over a 

time course with an anti–MR1 blocking antibody [9]. In the presence of anti-MR1 

antibody, tetramer dissociated rapidly over an hour interval in both pre- and post-

vaccination groups. The percentage of MAIT cells bound to tetramer were similar in pre-

vaccinated and post-vaccinated samples, indicating no difference in MAIT TCR avidity 

following vaccination (Figure 2F).  
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Figure 3. Increased homing markers and chemokine receptor expression in MAIT cells post 

vaccination. PBMCs obtained from vaccine recipients (n = 11 per group) were stimulated with S. Typhi at 

moi of 100 and surface expression of (A) Integrin α4β7, (B) CCR9, (C) CD103, (D) CCR4, (E) CCR5, (F) 

CCR6, (G) CXCR5 in MAIT cells was measured using flow cytometry. Data were expressed as 

mean ± SEM of two independent experiments. Paired comparisons were made using Wilcoxon matched-

pairs signed-rank test. 

 

Increased tissue-homing chemokine receptors and integrin expression on MAIT 

cells post Ty21a vaccination.  

Given that we found lower frequencies of circulating MAIT cells post-vaccination, it is 

possible that MAIT cells home to other compartments, such as the gut or other mucosal 

tissues. To address this possibility, we measured the expression of integrin α4β7 and 

CCR9 molecules, gut-homing markers known to be found on MAIT cells [23-26]. We 

found that the proportion of MAIT cells expressing integrin α4β7 increases at day 7 

post-vaccination upon stimulation (Fig 3A), and the proportion of MAIT cells expressing 

CCR9 were higher one month post-vaccination in unstimulated and stimulated 

conditions (Figure 3B). Next, we used a trans-well chemotaxis assay to assess the 

potential migration of MAIT cells in the presence of CCR9 ligand CCL25/TECK-3, and 

found higher MAIT cell migration CCL2 at one month post-vaccination, though this 

analysis was limited by sample size due to inadequacy of sufficient PBMCs at this later 

time point (p = 0.25, supplementary figure 2). We also found higher percentages of 

MAIT cells expressing CCR4, CCR5 and CCR6 chemokine receptors (involved in tissue 

homing [12, 27-29]) one month post-vaccination (Figure 3 C-E). No significant 

differences were observed in MAIT cells expressing CD103/αE β7 integrin (skin/liver 
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homing [23]) expression (Figure 3F) and MAIT cell chemotaxis for CCR6 ligand MIP-3α 

(supplementary figure 2). Furthermore, given recent identification of CXCR5+ follicular 

helper-like MAIT cells [30], we found a higher proportion of stimulated MAIT cells at 

post-vaccination time points to be positive for CXCR5+ (Figure 3G). Taken together, we 

found evidence that the decreased proportion of MAIT cells in blood may be associated 

with increased homing and migration into tissues following Ty21a vaccination.  
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Discussion 

MAIT cells have been implicated in protective responses to microbial infections and as a 

result could be an attractive vaccine target because they are not restricted by donor 

genotype, are relatively abundant in humans, and have capacity for rapid effector 

function [14, 15]. While studies have described MAIT cell responses to systemic 

vaccination in humans [10, 31, 32], mice [8] and macaques [33], there are very limited 

data on how MAIT cells respond to mucosal vaccines. In this longitudinal study, we 

evaluated MAIT cell response 7 days and one month after S. Typhi strain Ty21a 

vaccination, and found changes in circulating MAIT cell frequency, activation and 

homing markers.  

We found that circulating MAIT cells are reduced in frequency and activated following 

Ty21a vaccination. Previous studies have shown that in humans, MAIT cells are lower 

in frequencies in the blood of children following Vibrio cholerae infection [7], patients 

with active Mycobacterium tuberculosis (TB) [34], and people living with human 

immunodeficiency virus (HIV) infection [35]. Our results are in line with a prior study 

demonstrating that oral challenge of volunteers with wild-type S. Typhi results in a sharp 

decline of circulating MAIT cells 48 and 96 h after typhoid diagnosis, with MAIT cells 

highly activated and co-expressing CCR6 and CCR9 homing markers [11]. Our results 

are also consistent with a prior study of subjects receiving an attenuated Shigella 

vaccine [10]. One possible explanation for lower frequencies of MAIT cells in circulation 

is that they migrate to mucosal tissues, where they may be recruited to contribute to 

innate effector responses [36]. In support of this, we found that MAIT cells post-
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vaccination had increased expression of several mucosal-homing chemokine receptors, 

including CCR6, CCR9 and integrin α4β7. Further work is needed to determine the 

contribution and activity of MAIT cells localized to the gut post-Ty21a vaccination.  

MAIT cells produce effector molecules such as IFN-γ, TNF-α and cytotoxic molecules 

required for killing and eliminating bacteria-infected cells. In our study, we found 

increased frequencies of TNF-α expressing circulating MAIT cells post-vaccination but 

no significant differences in cytotoxic molecules. However, tissue-resident MAIT cells 

can have different phenotype and cytokine production than those in the circulation [37, 

38]. We also found that while pre-vaccination samples showed significant increases in 

IFN-γ and perforin, upon ex-vivo stimulation with heat-killed S. Typhi, this was not seen 

in post-vaccination samples. This could be because MAIT cells in vaccinees might have 

been activated with Ty21a vaccine in-vivo (“primed”) and this baseline may not get 

enhanced after stimulation because of less availability of unbound MAIT-TCR. This 

observed “priming” of MAIT cells to mount increased expression of cytokines and 

cytotoxic molecules in the unstimulated samples has also been detected in pregnancy 

[39].  

Our study has a number of limitations. First, due to the preliminary nature of this study, 

we had a small sample size, though this did not preclude us in observing significant 

changes in MAIT cell response post-Ty21a vaccination. Studies with larger cohorts are 

required to confirm and expand our findings. Secondly, our study was limited to 

description of MAIT cells in blood; given our findings of increased homing markers and 

migration, future studies examining tissue-resident MAIT cells are needed. Despite 

these shortcomings, data from this study has added to the limited body of evidence on 
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the MAIT cell response to oral vaccination. Given the burden of disease of enteric 

infections, there is an urgent need of developing more effective mucosal vaccines, 

including orally administered ones [40]. Our findings are the first step towards 

harnessing MAIT cells function, which may offer an important therapeutic strategy to 

improve mucosal immunity.  
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Supplemental Figures 

Supplementary Figure 1. Effect of Ty21a vaccination on CD4+CD8+ MAIT cells, CD4+ MAITs and 

other non-MAIT populations. Frequencies of (A) CD45+ cells (B) CD3+ T cells, (C) CD4+ CD8+ T cells, 

(D) CD4+ T cells, (E) CD8+ T cells, (F) CD19+ B cells, (G) CD4+CD8+ MAIT cells, (H) CD4+ MAIT cells, 

(I) CD8+ TCRγδ+ cells, (J) CD8- TCRγδ+ cells and (K) CD14+ monocytes at day 1 (pre-vaccination) and 

day 7 and one month post vaccination. Data were expressed as mean ± SEM of two independent 

experiments. Paired comparisons were made using Wilcoxon matched-pairs signed-rank test. 
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Supplementary Figure 2. MAIT cell migration towards chemokines MIP-3α and TECK-3. PBMCs 

from vaccine recipients were seeded on upper chamber of 3-μm pore transwell with indicated chemokines 

at 150 ng/mL in the bottom well and were allowed to migrate for 4 hours at 37°C. Absolute numbers of 

MAIT cells migrated towards (A) MIP-3α and (B) TECK-3 chemokines were quantified using flow 

cytometry. Mean and SEM of two experiments are shown. *P < .05, **P < .01, ***P < .001 in Wilcoxon 

signed-rank test (paired samples). 
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