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Abstract

Background Pre-operative risk assessment can help clinicians prepare patients for surgery, reducing
the risk of perioperative complications, length of hospital stay, readmission and mortality. Further, it
can facilitate collaborative decision-making and operational planning.

Objective To develop effective pre-operative risk assessment algorithms (referred to as Patient Op-
timizer or POP) using Machine Learning (ML) that predicts the development of post-operative com-
plications and provides pilot data to inform the design of a larger prospective study.

Methods After institutional ethics approval, we developed a baseline model that encapsulates the
standard manual approach of combining patient-risk and procedure-risk. In an automated process,
additional variables were included and tested with 10-fold cross-validation, and the best performing
features were selected. The models were evaluated and confidence intervals calculated using boot-
strapping. Clinical expertise was used to restrict the cardinality of categorical variables (e.g. pathol-
ogy results) by including the most clinically relevant values. The models were created with extreme
gradient-boosted trees using XGBoost [1]. We evaluated performance using the area under the receiver
operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Data
was obtained from a metropolitan university teaching hospital from January 2015 to July 2020. Data
collection was restricted to adult patients undergoing elective surgery.

Results A total of 11,475 adult admissions were included. For predicting the risk of any post-
operative complication, kidney failure and length-of-stay (LOS), POP achieved an AUROC (95%CI)
of 0.755 (0.744, 0.767), 0.869 (0.846, 0.891) and 0.841 (0.833, 0.847) respectively and AUPRC of 0.651
(0.632, 0.669), 0.326 (0.293, 0.359) and 0.741 (0.729, 0.753) respectively. For 30-day readmission and
in-patient mortality, POP achieved an AUROC (95%CI) of 0.61 (0.587, 0.635) and 0.866 (0.777, 0.943)
respectively and AUPRC of 0.116 (0.104, 0.132) and 0.031 (0.015, 0.072) respectively.

Conclusion The POP algorithms effectively predicted any post-operative complications, kidney fail-
ure and LOS in the sample population. A larger study is justified to improve the algorithm to better
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predict complications and length of hospital stay. A larger dataset may also improve the prediction of
additional specific complications, readmissions and mortality.

Keywords— post-operative complications, pre-operative care, risk prediction, risk assessment, machine
learning

1 Introduction

The adoption and deployment of electronic health records (EHRs) has facilitated the accessibility of large
patient datasets. Machine learning (ML) has succeeded in diverse arenas, demonstrating an ability to operate
on large and complex datasets. At the intersection of EHR data and the progress of ML, is an opportunity
to develop tools for personalised medicine. Currently, the most common ML applications in medicine are in
imaging [2, 3]. An upcoming frontier is surgical risk prediction [4].

Surgery is often the only option to alleviate disability and reduce the risk of death from common conditions.
Millions of people annually undergo surgical treatment, and surgical interventions account for an estimated
13% of the world’s total disability-adjusted life years (DALYs). Even in the most advanced hospital systems,
there is a high mortality and complication rate [5, 6], risks of direct harm to patients and high financial costs.
The WHO recognises these issues as major worldwide health burdens [7]. Fortunately, up to 50% of these
complications are preventable [8].

Pre-operative risk assessment allows clinicians to mitigate adverse outcomes, better inform patients and
their families about surgical outcomes and risks and plan post-operative care [9, 10]. The first generation
of risk calculators exists, such as the American College of Surgeons National Surgical Quality Improvement
Program (NSQIP) [11] and the Surgical Outcome Risk Tool (SORT) [12]. They are based on linear statistical
techniques and are designed to use a low number of input parameters to be convenient for manual data entry.
These approaches do not exploit the data available in modern EHR systems. Additionally, most provide
mortality risk only. There are also manual risk assessments such as American Society of Anesthesiologists
(ASA) Physical Status Classification [13] that are effective but subjective. It is often difficult for clinicians to
find the data and calculate the score manually; therefore, they are rarely used [14].

In recent years, more sophisticated algorithms have been developed using ML. They typically predict a
wider range of outcomes than traditional risk calculators and incorporate a larger set of input features made
available by EHR data. The most common prediction outcomes are mortality and complications. ML can be
more effective than traditional methods [14] such as ASA, CCI, POSSUM [15] and NSQIP [16] and can be more
effective than human experts [17]. Various techniques have been used such as deep learning [18, 19], logistic
regression [20, 21], generalised additive models (GAMs) [6] and decision trees [22, 23, 24, 16]. Further, some
studies focus on harmonising EHR data [18], testing existing approaches on suitability for local populations
[4, 20] or predicting the use of the readmission prevention clinic [22].

Most of the studies in the literature cited above, focus on the prediction of mortality and complications;
however, additional endpoints are clinically meaningful. Some studies such as [18], utilise sequences of vital
sign measurements, unstructured notes and radiological images, but in many hospitals, those data are not
practically obtainable.

1.1 Study aims

This study aims to use readily available EHR data to develop interpretable ML risk prediction algorithms to
standardise and improve clinical decision-making. The target endpoints are length-of-stay (LOS), complica-
tions, 30-day readmission and in-patient mortality. Our definition of readily available EHR data is patient
history excluding unstructured notes and radiological imaging. The algorithms should be interpretable as the
ultimate objective is to provide information that is understandable, actionable and trusted in a clinical setting.

2 Method

2.1 Study design

This was a single-centre cohort study with retrospective data collection in adult patients (aged ≥ 18 years)
who underwent any elective surgical procedure at Austin Health between 1st January 2015 and 31st July 2020.
Austin Health is a university teaching hospital in Australia, with a high volume of surgeries across multiple
sub-specialities that are performed annually. We restricted cases to elective surgery where there is the greatest
opportunity to mitigate risk.

We developed risk assessment models for the target endpoints following the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines for risk prediction
[25].
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Figure 1: Data processing pipeline.

Our approach was to begin with a baseline model that emulates a standard approach internationally for
surgical risk assessment, exploiting two key dimensions: patient-risk and procedure-risk. Each was derived
from clinical expertise provided by perioperative clinicians with at least 10-years of postgraduate experience
and familiarity with risk stratification for surgical morbidity. The next step was to iteratively add features to
the baseline model, resulting in a unique set of features for each model.

2.2 Model development

Accounting for evidence indicating that ML can outperform standard risk predictors such as ASA, CCI and
NSQIP and that simpler linear models are not as effective [14, 15, 16] we selected one ML architecture. The
ML architecture that we selected was extreme gradient-boosted decision trees, using the XGBoost package [1],
which are interpretable and among the best performing for tabular health data.

There are four main stages to the method. The Data source provides data for Pre-processing that
reduces dimensionality and transforms relational data into a tabular form suitable for algorithm consump-
tion. Feature selection selects a subset of features to optimise prediction scores for each endpoint. Finally,
an Evaluation of the model is performed with bootstrapping. The pipeline is illustrated in Figure 1 and
elaborated below.

2.2.1 Data source

The Data Analytics and Research Evaluation (DARE) Centre provided a data extract from the Austin Health
Cerner EHR system. A total of 11,475 unique admissions were included, covering all elective adult surgical
procedures.

The raw data includes:

• patient demographic details (age, weight, height, gender)

• procedures performed (primary/scheduled and other)

• other procedural information (including details of the admission and episode)

• pathology results

• medications prescribed during admission

• comorbidities: diagnoses using the International Classification of Diseases (ICD-10-AM, 9th Edition)

• Charlson comorbidity index (CCI) derived from the ICD codes

• complications, indicated by ICD codes

2.2.2 Pre-processing

After cleansing the data, we derived features from raw values: body mass index (BMI) and the two features
used for the baseline model, namely estimates of patient-risk and procedure-risk (Section 2.1). The process is
illustrated in Figure 2.

Patient-risk is a proxy for ASA [13]. It is an ordinal numerical value calculated through the number of
patient diagnoses (using ICD codes), with an additional increment for ‘cancerous’ and ‘cardiopulmonary and
vascular’ conditions. Procedure-risk is an ordinal categorical value calculated using a clinically determined
risk rating (low, medium or high) of the scheduled surgical procedure, which was estimated as the earliest
non-preparatory procedure.
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Figure 2: Dimensionality reduction and calculated features.

We reduced dimensionality where possible to reduce overfitting and improve interpretability. We grouped
procedure names by anatomical region. Although all patient episodes are elective, the individual procedures
can be varying levels of elective or emergency, referred to as procedure type. The procedure type was re-
duced to a binary category. For laboratory results, we selected a priori eight clinically relevant variables,
namely haemoglobin, albumin, creatinine, urea, international normalised ration, platelet count, activated par-
tial thromboplastin time, and estimated glomerular filtration rate. We grouped patient medications by thera-
peutic class. Finally, very infrequent categories were grouped into an ‘other’ bucket. Dimensionality reduction
is summarised in Figure 2.

Categorical data was one-hot encoded. Where there were one-to-many relationships (such as admission to
medications) the reduction methods were chosen to provide the most clinically relevant summary. As XGBoost
is a decision tree-based model, standardisation of numerical features was not necessary.

Missing data were treated as legitimate input, either by creating a ‘missing’ category or utilising XGBoost’s
in-built mechanism.

See Appendix 5.1 for more details on pre-processing.

2.2.3 Feature selection

Highly correlated (or collinear) features were removed due to their redundancy. We used the variance inflation
factor method for multi-collinearity analysis with a threshold of 10 [26, 27]. Variables with very low variance
were removed by detecting features where the ratio between the highest occurring value and the second highest
was greater than 19, a large threshold to avoid losing valuable information [28].

After training and scoring the baseline model consisting of patient-risk and procedure-risk (Section 2.1),
an automated iterative process added and tested new features. Each available feature was individually added
to the model and evaluated using area under the receiver operating characteristic curve (AUROC) with 10-
fold cross-validation. The feature that achieved the highest gain in score was added to the selected feature
set and the search restarted. The remaining features were re-tested in subsequent iterations, after which the
composition of the selected feature set had changed. The process continued until all features were used and
then the model with the highest score was selected.

Hyperparameter tuning then took place to optimise results (see Appendix 5.2).

2.3 Predicted outcomes

Length-of-stay (LOS) was framed as a multiclass classification. We identified three dominant groupings through
visual inspection of the distribution (see Figure 3) and defined them by ordering and then segmenting the data
into three equally sized buckets. The resulting groups were low (≤31 hours), medium (31 – 117 hours), and
high (≥117 hours), equating to one night, two to four nights and five nights or more. The ranges were validated
through clinical review. There was a classifier for each bucket and the prediction was the classifier with the
highest confidence.

Unplanned 30-day readmission, in-patient mortality and the presence of complications (as indicated by the
ICD code) were explicitly labelled in the dataset.

2.4 Evaluation

The final score and confidence intervals were calculated with non-parametric bootstrapping using 1,000 itera-
tions. For each iteration the training set size was the same as the whole dataset. As bootstrapping involves
sampling with replacement, this resulted in approximately 70% unique samples for training, leaving the left-out
30% for testing.
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Figure 3: Length-of-stay: Training data are segmented into 3 classes, to cast predicting length-of-stay
as multiclass classification. There is a clear periodicity around whole days. The x-axis is truncated at
200 hours to provide detail in the most interesting range. The trend continues past 200 hours with a
steady monotonic decrease in magnitude.

2.4.1 Performance metrics

Several metrics were used to assess and measure performance: area under the receiver operating characteristic
curve (AUROC), area under the precision-recall curve (AUPRC) and F1 (FBeta, where beta = 1). AUROC
is most common in related literature. A drawback of AUROC is that it can be misleading on extremely rare
classes such as mortality and readmission. In such cases, it can achieve an artificially high score because the
true negatives dwarf the false positives1. AUPRC is more informative with extremely rare labels [29, 15].
It indicates the trade-off between precision (the proportion of true positives of all predicted positives), also
referred to as positive predictive value (PPV), and recall (the proportion of true positives of all positives).
F1, the harmonic mean of precision and recall, is also suitable for rare classes. We used micro-averaging to
calculate the area under the curve for multiclass predictions.

In addition to the single metric derived from the ‘area’ under the respective curves AUROC and AUPRC,
we also inspected the profiles of the curves, showing how they perform at different operating points.

2.4.2 Interpretability

To visualise the relative importance of features for each model, we utilised two methods. The first was
XGBoost feature importance, based on the average gain of splits per feature. The other was SHapley Additive
exPlanations (SHAP) [30] which uses cooperative game theory to assign partial credit to the input variables for
the model’s output. Both methods indicate feature importance from different perspectives. XGBoost feature
importance gives direct insight into the internal structure of the learned trees and provides a single absolute
value for importance. SHAP treats the model as a black box and bases the importance on the observed
behaviour of the model. The plots are more informative, showing the distribution of observed values and the
corresponding directionality of the impact on the model.

To visualise the features’ influence on specific predictions for individual patients, we used SHAP. We plotted
typical true positives for each of the effective models to demonstrate how SHAP can be used to help make
specific predictions actionable.

3 Results

3.1 Data characteristics

A total of 11,475 adults were included. There were 41 (0.36%) occurrences of in-patient mortality and 941
(8.2%) occurrences of 30-day readmissions. There were 4,351 (37.92%) complications. The number of occur-
rences of low, medium and high LOS were 3,868 (33.7%), 3,790 (33.0%) and 3,817 (33.3%), respectively. the
data characteristics are presented in Table 1.

1False Positive Rate is FP/(FP+TN). If FP is high, but TN is very large, the denominator remains high and the rate
low.
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Table 1: Data characteristics: The first column shows the number of affirmative cases for binary
fields and the number of unique values for multivalue categorical fields. The second column shows the
number of admissions with a valid value (e.g., if height is missing, it is deemed invalid). Empty cells
denote N/A.

# Affirmative /
# Categories

# Valid values Median Mean (SD)

Demographics
M 6,234 (54.33%) 11,475 (100.00%)
F 5,241 (45.67%) 11,475 (100.00%)
Age 11,475 (100.00%) 62.00 59.24 (17.81)
Height 4,958 (43.21%) 167.00 166.01 (14.63)
Weight 6,920 (60.31%) 81.00 84.13 (21.46)
Derived features
BMI 4,931 (42.97%) 29.38 32.10 (14.09)
Procedure-risk 11,475 (100.00%) 1.00 1.63 (0.71)
Patient-risk 11,475 (100.00%) 3.00 4.06 (3.13)
Other
Emergency procedure 1,416 (12.34%) 11,475 (100.00%)
Categorical fields
Procedures 911
Medication 923
Pathology 75

Table 2: Performance of risk models
Prediction # Cases

(preva-
lence)

AUROC (95%
CI)

AUPRC (95%
CI)

F1 Value (95%
CI)

In-patient mortality 41 (0.36%) 0.866 (0.777, 0.943) 0.031 (0.015, 0.072) 0.057 (0.000, 0.167)
30-day re-admission 941 (8.20%) 0.610 (0.587, 0.635) 0.116 (0.104, 0.132) 0.122 (0.078, 0.156)
Length-of-stay N/A 0.841 (0.833, 0.847) 0.741 (0.729, 0.753) 0.666 (0.654, 0.678)

3.2 Accuracy

The results are summarised in Tables 2 and 3, and the ROC and PR curves are shown in Figures 4 and 5.
We selected only those specific complications with an adequate number of positive examples to make training
feasible (above a threshold of 100 (0.8%)).

For predicting the risk of any post-operative complication, kidney failure and LOS, POP achieved an
AUROC (95%CI) of 0.755 (0.744, 0.767), 0.869 (0.846, 0.891) and 0.841 (0.833, 0.847) respectively and AUPRC
of 0.651 (0.632, 0.669), 0.336 (0.282, 0.390) and 0.741 (0.729, 0.753), respectively. Refer to table for full results
of other specific complications. For 30-day readmission and in-patient mortality, POP achieved an AUROC
(95%CI) of 0.61 (0.587, 0.635) and 0.866 (0.777, 0.943), respectively and AUPRC of 0.116 (0.104, 0.132) and
0.031 (0.015, 0.072), respectively.

On visual inspection, the ROC curves provide reasonable operating points for all models. Inspection of
the precision-recall (PR) curves also shows some models have effective operating points. Still, the endpoints
with extremely rare positive examples do not account for readmission, mortality, and the specific complications
other than kidney failure. For LOS, accuracy was consistently higher for the two ends of the spectrum (low
and high) compared to medium which experienced more class overlap than low or high.

3.3 Interpretability

The selected features and their importance are shown for the effective models: complications in Figure 6,
kidney failure in Figure 7 and LOS in Figure 8. For terminology used in the figures, please refer to Table 4.

For all the models and visualisation methods, procedure-risk and features representing the patient’s health
(CCI summaries and patient-risk) are amongst the top factors. Patient-risk and CCI represent the patient’s
overall health. Although patient-risk is derived from more specific and diverse comorbidities than CCI, the
feature importance plots showed that across the cohort, CCI was an important factor particularly in the age-
adjusted CCI [31], and comparable to patient-risk. However, patient-risk and CCI are both valuable as they
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Table 3: Performance of risk models for complications
Prediction # Cases

(preva-
lence)

AUROC (95%
CI)

AUPRC (95%
CI)

F1 Value (95%
CI)

Any complication 4,351
(37.92%)

0.755 (0.744, 0.767) 0.651 (0.632, 0.669) 0.621 (0.602, 0.639)

Heart failure 116 (1.01%) 0.835 (0.773, 0.887) 0.101 (0.055, 0.181) 0.141 (0.097, 0.19)
Delirium 303 (2.64%) 0.827 (0.793, 0.857) 0.139 (0.099, 0.187) 0.189 (0.153, 0.225)
Arrhythmia 341 (2.97%) 0.794 (0.764, 0.822) 0.122 (0.092, 0.165) 0.148 (0.129, 0.169)
Kidney failure 505 (4.40%) 0.869 (0.846, 0.891) 0.336 (0.282, 0.390) 0.326 (0.293, 0.359)

Figure 4: Receiver operating characteristic and precision-recall curves – readmission, mortality and
length-of-stay.
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Figure 5: Receiver operating characteristic and precision-recall curves – complications.
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Figure 6: Feature importance for any complication: XGBoost gain (left) and SHAP (right), where
each dot represents one sample, the colour indicates the value and the position on the x-axis indicates
the impact (positive or negative) on model output. Refer to Table 4 for terminology.

Table 4: Feature-name terminology
Term Meaning
DCCI Diagnosis via Charlson Comorbidity Index
DCCI Score A Age adjusted DCCI score [31] at admission
DCCI Total A Raw total DCCI score at admission)
PGRP Procedure Group
RESULT Pathology test result
THCL Medication (therapeutic class)

contain different information, as illustrated in the example of a specific patient high LOS, Figure 10, where
patient-risk and CCI have an opposing influence.

In addition to procedure-risk and patient health, there are other important features. For any complication
(Figure 6), XGBoost shows significant tree splits for some specific procedure groups: diabetes, total medication
dosages and use of analgesics. The SHAP features are largely aligned, with differences in the relative values.
For kidney failure (Figure 7), related morbidities (diabetes, cancer) and pathology results (albumin, creatinine,
urea, activated partial thromboplastin time and haemoglobin) are also important. For length-of-stay (Figure 8),
the features differing importance to the individual models (low, medium and high), although many features are
unimportant for all models. Compared to the other models, specific procedure groups are relatively important.

Feature importance in specific predictions using SHAP plots is shown for typical true positive cases of
kidney failure in Figure 9 and a high LOS for a procedure with a medium-term LOS in Figure 10. The purpose
is to show how SHAP can provide a convenient interpretation of the important factors for a given prediction.

4 Discussion

4.1 Key findings

In this single-centre cohort study in adult surgical patients, we developed effective pre-operative risk assessment
algorithms (POP) using machine learning, providing pilot data to inform the design of a larger prospective
study. We found that POP algorithms were effective for predicting post-operative complications and LOS.
However, a larger study is justified to further improve the algorithm for predicting specific complications,
readmission and mortality.

4.2 Comparison to other methods

Comparing accuracy to other models in the literature is very difficult for several reasons. The quality and
structure of different datasets vary greatly, as cohort differences can influence results [32] and endpoints are
often defined differently (e.g., 24 hours after admission compared to immediately before surgery). Moreover,
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Figure 7: Feature importance for kidney failure: XGBoost gain (left) and SHAP (right), where each
dot represents one sample, the colour indicates the value and the position on the x-axis indicates the
impact (positive or negative) on model output. Refer to Table 4 for terminology.

the choice of performance metrics also varies. However, considering the difficulties, it can be useful to compare
results to provide some context.

One of the studies that we compared to is [18]. Beyond tabular EHR data, they utilized additional data
sources including radiological imaging, unstructured notes, vital sign measurements, time-series embedding to
handle these data streams, as well as ensembling of complementary models. While we consider it to be the
‘gold-standard’, and therefore present it as context, we do not aim to equal their scores. Our study investigates
the feasibility of risk predictions with more limited and commonly available data sets.

4.3 Evaluation metrics

The standard practice for evaluating risk prediction algorithms is the ROC curve. Using ROC, all of our models
appear to be effective. They have a good profile with viable operating points, and relatively good AUROC.
However the results using the PR curves reveal a different story. AUPRC for readmission and mortality is
very low, and there are no satisfactory operating points on the profile. The results confirm that ROC can
be misleading for rare classes as suggested by [15] (and discussed in Section 2.4). They demonstrate the
importance of metrics that are insensitive to rare classes, such as AUPRC or FBeta for clinical algorithms. We
used a relatively small dataset (see Section 4.7). With more data and therefore more positive examples, the
performance is likely to improve, as measured by both AUROC and AUPRC.

4.4 LOS prediction

LOS classification was very effective. There is LOS data for every admission, providing ample training signal,
which is reflected in the ROC and PR curves. LOS predictions have both clinical and operational benefits.
From a clinical perspective, a ‘longer than expected’ stay prediction could prompt closer attention. From an
operational perspective, these predictions could be used for scheduling to optimise for ward utilisation and
selection of appropriate sites.

To the best of our knowledge, other ML risk predictors did not consider LOS, except [18]. They predicted
‘prolonged length of stay’, defined as ‘at least 7 days’, whereas POP predicts multivalue LOS: low, medium or
high. Predicting multivalue LOS makes it possible to have a dynamic definition of ‘prolonged’ that depends
on factors such as procedure and patient. For example, a medium stay (two to four nights) prediction could
trigger ‘prolonged’ for short-stay surgery (1 night) and healthy patients. Secondly, a more granular prediction
allows better operational planning. Our accuracy, measured using AUROC, was comparable to [18], 0.841
compared to 0.85 and 0.86 (for two hospital sites respectively), despite fewer data types and a much smaller
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Figure 8: Feature importance for length-of-stay using XGBoost gain. Refer to Table 4 for terminology.
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Figure 9: SHAP visualisation for a specific patient’s risk of a kidney failure. This is a True Positive
(TP) prediction with a probability of 0.87. The length of the bar indicates the influence of that feature
on the prediction. The colour indicates whether the influence is positive (red) or negative (blue). The
grey value to the left of the feature name is the value of that feature for this patient.

Figure 10: SHAP visualisation for a specific patient’s short length-of-stay. This is a True Positive
(TP) prediction of a high length of stay, with a probability of 0.72. The length of the bar indicates
the influence of that feature on the prediction. The colour indicates whether the influence is positive
(red) or negative (blue). The grey value to the left of the feature name is the value of that feature for
this patient.

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.22280539doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.03.22280539
http://creativecommons.org/licenses/by/4.0/


dataset. Unfortunately AUPRC is unavailable for comparison to gain a fuller picture.

4.5 Complication prediction

Results for predicting any complication were promising, with both AUROC and AUPRC having viable oper-
ating points. The four specific complications with adequate positive examples to train a model had reasonable
ROC curves, but precision and recall showed that only kidney failure, which is less rare than the others, was
a viable model.

In a clinical setting, positive predictions could be used as a general indicator that a morbidity is possible,
and investigations are warranted. An example of an operating point for kidney failure is approximately recall
= 12%, precision = 62%. Out of 100 patients with kidney failure, the model will identify approximately 12.
Of those, approximately 62% (7.4) of these patients will actually develop kidney failure (true positives). If the
information is presented so that it doesn’t give a false sense of security if not shown, then it can pick up when
there is a case, aiding clinical care.

The results compare favourably to similar studies, despite a much smaller dataset (Section 4.7). Across
specific complications, and using AUROC, POP scored 0.798 – 0.869 compared to 0.820 – 0.940 [6], 0.772 –
0.909 [16] and 0.88 – 0.89 [18]. For any complication, POP scored 0.755 compared to 0.829 – 0.836 in [16].
Again, PR results are unavailable for a more complete comparison. Precision (referred to as PPV or positive
predictive value) was reported in [6], which showed the same pattern as POP with rare classes (i.e., the rarer
classes generally have lower precision).

4.6 Interpretability

The introduction of ML often leads to improved performance, but it can come at the cost of interpretability.
We used XGBoost and SHAP feature importance plots. They are intuitive and build trust in the model,
helping to make it understandable and actionable.

The relative importance of features learned by the algorithm aligns with clinical practice. For example, the
high importance of procedure information combined with patient health is commonly used to assess the risk
of surgery. Alignment with clinical practice provides confidence that learning is effective and generalisable.
Additionally, the relative weighting of feature importances can provide new insights into the relationship
between features and outcomes. Although not causative, it indicates a relationship, and warrants further
investigation. A better understanding of the factors, especially modifiable ones, could impact clinical practice.

The first type of visualisation is the feature importance of the model in general, indicating systematic
relationships across samples in the dataset. The other type of visualisation was feature importance for specific
predictions, which highlights factors for individual patients. This information can provide an opportunity for
more personalised risk mitigation.

We now explore kidney failure as a case study. The model highlighted comorbidities (Figure 7) that align
with current knowledge. It is also the likely explanation for a similarly protective effect in the model for any
complication (Figure 6). Several pathology results are also considered important; for example, some known
to be related to renal function such as creatinine and urea, and others that are generally indicative of post-
operative outcomes such as albumin [5], pathology related to coagulation (INR, APTT, PLT) [33, 34] and
heamaglobin (Hb) [35, 36]. Some procedure groups were protective: ‘trans-urethral resection of the prostate’
(TURP), likely because it improves renal function; and nose and ‘facial sinus surgery’, likely because it is very
low risk. The importance of ‘total knee replacement’ is unexpected, and warrants further investigation; for
example, the underlying cause may be tourniquet time, length of surgery or even anaesthetic type.

Surprisingly, diabetes is protective. We hypothesise that patients with this conditions are more actively
managed, so it is not picked up by the model, which learns from raw correlations. A more thorough investigation
that includes causal analysis is an important topic for future work.

Understanding the expected and unexpected features may allow for patient-specific pre-operative inter-
vention to minimise post-operative complications. For example, by optimising HbA1c in diabetics, being
aggressive in comorbid management such as blood pressure optimisation, and shortening tourniquet time in
knee replacements.

It is possible that the patient with kidney failure (Figure 9) could have been missed, because they do not
have diabetes and it was a low-risk procedure. However, the patient suffered post-operative kidney failure
and POP predicted it with 84% confidence. High creatinine and comorbidity burden are the most significant
contributions. The high creatinine confirm that this patient likely has impaired renal function, and the pre-
diction could lead to pre-surgical intervention including more intensive management of medications, ensuring
the patient is well hydrated, selecting more appropriate anaesthesia type, and optimisation and monitoring of
renal perfusion.

Another case study is LOS. The patient underwent a knee-replacement procedure, which is usually a
medium LOS. However, POP identified this patient as having a high LOS (above five nights) and the SHAP
plot (Figure 10) provides visibility into the reasons. The most significant indicators are comorbidities, a high
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number of prescribed medications and the procedure itself. As a result of the prediction, and seeing the concrete
reasons, the patient could be booked in for a longer stay. Additionally, identification of knee replacement is
more impetus to investigate the process of knee replacements, as discussed for kidney failure above.

Most of the studies reviewed, consider interpretability of models to be important for clinical practice, chose
algorithms that support it [16] and additionally investigated and reported interpretability results [14, 22, 6,
37, 15, 38]. Lee et al. [38] used a GAM-NN for the benefit of neural networks and the interpretability of
GAMs–there is a neural network for each input feature (or group of features), and they are linearly combined
for classification.

However, most studies did not consider which features contributed to specific predictions. Although Bihorac
et al. [6] used an approach, where the feature importance was “based on how different she or he is from the
patient with an ‘average’ risk”. The reason for the prediction must be inferred indirectly, but the method could
be applied to any model. Rajkomar et al. [18] used deep learning neural networks, where interpretability is
more of a challenge. They showed a proof-of-concept of how it can be done. Active research is taking place to
improve interpretability of deep learning models [39]. SHAP plots that were demonstrated here, can be used
with any model.

4.7 Limitations

The dataset is relatively small for this type of algorithm. For context, other studies cited in this paper range
between 51,457 patients [17] to 99,755 [16] admissions and [18] 216,221 admission. We expect the performance
to improve with more data, particularly for specific complications, readmission and mortality, as there were
very few positive examples from which to learn in our study.

The booked procedure is an important factor for predicting risk, according to both clinical practice and
the models’ feature importance. However, the booked procedure was not explicitly labelled and was therefore
estimated (see Section 2.2.2), resulting in errors that were difficult to quantify.

Data for patient height and weight were sparse, but these fields are considered to be important patient
health factors. Likewise, there were many cases of missing medication therapeutic class, leading to information
loss when grouping medications by this variable. Obtaining additional data in these respects is likely to improve
performance.

The dataset did not extend beyond discharge, restricting mortality to in-patient mortality. In comparison,
most risk calculators predict mortality at various stages after discharge such as 30-day and 60-day mortality.
This is clinically important and there would be more examples which would improve the model.

4.8 Future work

In future, well-known applied ML techniques for medical risk prediction could be used to improve the initial
results; for example, class balancing and model ensembling [40] and data augmentation [19]. There is also
scope to explore alternative feature engineering, such as using additional derived features regarding previous
admissions, other encoding methods for categorical variables, learning a lower dimensional space for categorical
features using decision trees [6], and including additional categories for tests and medications that were ignored
in this study.

Another major area of interest is continual risk assessment throughout the admission, including in the
post-operative period up until discharge. Only a few related studies considered risk assessment after surgery
[38, 18, 22]. It is important because decisions are made throughout the admission and post-surgical care also
has the potential to help avoid complications, readmission and mortality.

5 Conclusions

In this study, we developed novel algorithms (POP) that exploit tabular EHR data to predict surgical patient
outcomes. The algorithms were effective for post-operative complications and LOS in this patient population,
but ineffective for predicting readmission and mortality due to extremely rare cases. The results reinforce
the importance of using metrics that are suitable for rare cases, which is uncommon in other surgical risk
prediction studies. A larger study is justified to improve the algorithms in better predicting complications and
length of hospital stay. A larger dataset may also improve the prediction of readmissions and mortality, which
were extremely rare. Together with interpretable feature importance plots, surgical risk predictions provide
clinically relevant information, that may help to mitigate risks and improve patient outcomes.
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[13] Wolters, U., Wolf, T., Stützer, H., Schröder, T.: ASA classification and perioperative variables
as predictors of postoperative outcome. BJA: British Journal of Anaesthesia 77(2), 217–222 (1996).
doi:10.1093/BJA/77.2.217

[14] Hill, B.L., Brown, R., Gabel, E., Rakocz, N., Lee, C., Cannesson, M., Baldi, P., Olde Loohuis, L., Johnson,
R., Jew, B., Maoz, U., Mahajan, A., Sankararaman, S., Hofer, I., Halperin, E.: An automated machine
learning-based model predicts postoperative mortality using readily-extractable preoperative electronic
health record data. British Journal of Anaesthesia 123(6), 877–886 (2019). doi:10.1016/j.bja.2019.07.030

[15] Chiew, C.J., Liu, N., Wong, T.H., Sim, Y.E., Abdullah, H.R.: Utilizing Machine Learning Methods for
Preoperative Prediction of Postsurgical Mortality and Intensive Care Unit Admission. Annals of surgery
272(6), 1133–1139 (2020). doi:10.1097/SLA.0000000000003297

[16] Corey, K.M., Kashyap, S., Lorenzi, E., Lagoo-Deenadayalan, S.A., Heller, K., Whalen, K., Balu,
S., Heflin, M.T., McDonald, S.R., Swaminathan, M., Sendak, M.: Development and validation of
machine learning models to identify high-risk surgical patients using automatically curated electronic
health record data (Pythia): A retrospective, single-site study. PLOS Medicine 15(11), 1002701 (2018).
doi:10.1371/JOURNAL.PMED.1002701

[17] Brennan, M., Puri, S., Ozrazgat-Baslanti, T., Feng, Z., Ruppert, M., Hashemighouchani, H., Mom-
cilovic, P., Li, X., Wang, D.Z., Bihorac, A.: Comparing clinical judgment with the MySurgeryRisk al-
gorithm for preoperative risk assessment: A pilot usability study. Surgery 165(5), 1035–1045 (2019).
doi:10.1016/J.SURG.2019.01.002

[18] Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J., Sun,
M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G.E., Irvine, J., Le, Q., Litsch, K.,
Mossin, A., Tansuwan, J., Wang, D., Wexler, J., Wilson, J., Ludwig, D., Volchenboum, S.L., Chou, K.,
Pearson, M., Madabushi, S., Shah, N.H., Butte, A.J., Howell, M.D., Cui, C., Corrado, G.S., Dean, J.:
Scalable and accurate deep learning with electronic health records. npj Digital Medicine 2018 1:1 1(1),
1–10 (2018). doi:10.1038/s41746-018-0029-1. 1801.07860

[19] Wang, L., Tong, L., Davis, D., Arnold, T., Esposito, T.: The application of unsupervised deep learning in
predictive models using electronic health records. BMC Medical Research Methodology 20(1), 1–9 (2020).
doi:10.1186/s12874-020-00923-1

[20] Campbell, D., Boyle, L., Soakell-Ho, M., Hider, P., Wilson, L., Koea, J., Merry, A.F., Frampton, C.,
Short, T.G.: National risk prediction model for perioperative mortality in non-cardiac surgery. British
Journal of Surgery 106(11), 1549–1557 (2019). doi:10.1002/BJS.11232

[21] Le Manach, Y., Collins, G., Rodseth, R., Le Bihan-Benjamin, C., Biccard, B., Riou, B., Devereaux, P.J.,
Landais, P.: Preoperative Score to Predict Postoperative Mortality (POSPOM)Derivation and Validation.
Anesthesiology 124(3), 570–579 (2016). doi:10.1097/ALN.0000000000000972

[22] Flaks-Manov, N., Topaz, M., Hoshen, M., Balicer, R.D., Shadmi, E.: Identifying patients at highest-risk:
The best timing to apply a readmission predictive model. BMC Medical Informatics and Decision Making
19(1), 1–9 (2019). doi:10.1186/s12911-019-0836-6

[23] Flaks-Manov, N., Srulovici, E., Yahalom, R., Perry-Mezre, H., Balicer, R., Shadmi, E.: Preventing Hospi-
tal Readmissions: Healthcare Providers’ Perspectives on “Impactibility” Beyond EHR 30-Day Readmis-
sion Risk Prediction. Journal of General Internal Medicine 35(5), 1484–1489 (2020). doi:10.1007/s11606-
020-05739-9

[24] Flaks-Manov, N., Shadmi, E., Yahalom, R., Perry-Mezre, H., Balicer, R.D., Srulovici, E.: Identification
of elderly patients at risk for 30-day readmission: Clinical insight beyond big data prediction. Journal of
Nursing Management, 1–11 (2021). doi:10.1111/jonm.13495

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.22280539doi: medRxiv preprint 

http://www.grattan.edu.au/.
https://doi.org/10.1101/2022.10.03.22280539
http://creativecommons.org/licenses/by/4.0/


[25] Collins, G.S., Reitsma, J.B., Altman, D.G., Moons, K.G.M.: Transparent reporting of a multivariable pre-
diction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. BMC Medicine
13(1), 1–10 (2015). doi:10.1186/S12916-014-0241-Z/TABLES/1

[26] Alin, A.: Multicollinearity. Wiley Interdisciplinary Reviews: Computational Statistics 2(3), 370–374
(2010). doi:10.1002/wics.84

[27] Midi, H., Sarkar, S.K., Rana, S.: Collinearity diagnostics of binary logistic re-
gression model. https://doi.org/10.1080/09720502.2010.10700699 13(3), 253–267 (2013).
doi:10.1080/09720502.2010.10700699

[28] Kuhn, M., Johnson, K.: Feature Engineering and Selection: A Practical Approach for Predictive Models
(2019). http://www.feat.engineering/index.html Accessed 2022-03-13

[29] Saito, T., Rehmsmeier, M.: The Precision-Recall Plot Is More Informative than the ROC Plot
When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE 10(3), 0118432 (2015).
doi:10.1371/JOURNAL.PONE.0118432
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Appendix

5.1 Pre-processing: dimensionality reduction

‘Other’ category Very infrequent categories are grouped into an ‘other’ bucket. A ‘very low’ threshold of
10 was chosen based on visual inspection of the frequency histograms, to represent the long tail of numerous
categories into one category bucket.
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Table 5: Reduction methods used when joining one-to-many relationships
Field Function
Age Mean
BMI Max
Height Mean
Weight Mean
Gender First
Pathology tests (except EGFR) First
Pathology EGFR Sum
Medication Sum
Length-of-stay (hours) Mean
Unplanned 30-day readmission (Boolean) Or
Discharge deceased (boolean) Or
Discharge destination First

Reductions Pathology results are reduced using Max and Min operators, as the extreme values are con-
sidered to be the most clinically significant. Demographic and procedure-related numerical fields are reduced
with Mean, and if they are not expected to change, the first instance. One exception is BMI, where Max is
considered more meaningful to the outcome. All the reductions are shown in Table 5.

5.2 Hyperparameter tuning

We used Optuna for hyperparameter tuning, which utilises the TPESample algorithm and Hyperband pruner.
We used a subset of the hyperparameters that made a difference empirically in preliminary runs with the
baseline model–alpha, number of estimators, class balance and maximum depths.
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