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 58 

Abstract:  59 

Background: To precisely predict drug response and avoid unnecessary treatment have been 60 

urgent needs to be resolved in the age of melanoma immunotherapy. Deep learning model is a 61 

powerful instrument to predict drug response. Simultaneously extracting the function and 62 

expression data characteristics of mRNA may help to improve the prediction performance of the 63 

model. Methods: We designed a deep learning model named AMU with self-attention structure 64 

which were fed with the mRNA expression values for predicting melanoma immune checkpoint 65 

inhibitor clinical responses. Results: Comparing with SVM, Random Forest, AdaBoost, 66 

XGBoost and the classic convolutional network, AMU showed the preferred performance with 67 

the AUC of 0.941 and mAP of 0.960 in validation dataset and AUC of 0.672, mAP of 0.800 in 68 

testing dataset, respectively. In model interpretation work, TNF-TNFRSF1A pathway were 69 

indicated as a key pathway to influence melanoma immunotherapy responses. Further, gene 70 

features extracted from embedding layer and calculated by t-SNE algorithm, showed a local 71 

similarity with Functional Protein Association Network (STRING, https://cn.string-db.org/), AMU 72 
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could predict gene functions and interactions simultaneously. Conclusions: Deep learning model 73 

built with self-attention structure has strong power to process mRNA expression data and gene 74 

vector representation is a promising work in biomedical field. 75 

 76 

What is already known on this topic  77 

The types of biomarkers for immunotherapy are very complex and transcriptomics biomarker 78 

research is one part of it, but currently it is lack of generally acknowledged results with practical 79 

value. Combining deep learning models with transcriptomics biomarker markers can help us to 80 

predict drug sensitivity. However, the powerful capabilities of deep learning models have not 81 

been fully exploited and utilized. 82 

What this study adds  83 

The expression of 160 genes could well predict the efficacy of immunotherapy, even if the tissue 84 

samples were after drug administration, and through model training, we could also extract the 85 

interactions and connections between genes. The deep learning model could not only do 86 

prediction, but were also promising in performing gene vector representation learning. 87 

How this study might affect research, practice or policy 88 

Our research is not only to provide a model with high predictive value, but also to extract gene 89 

interaction relations during model training, which is very enlightening for gene vector 90 

representation learning. The research of gene vector representation learning can promote the 91 

prediction accuracy of deep learning models in various biomedical fields because it can become 92 

the common upstream of many biomedical tasks. 93 

 94 
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BACKGROUND 95 

The publication of Alexnet  in 2012 brought neural network back to researchers’ 96 

attention,[1]. After ten years of development, Deep learning (DL), a computer science and 97 

technology with the neural network as the core, has become one of the most active scientific 98 

research fields and the primary technology of artificial intelligence. It takes a big step forward in 99 

the development of artificial intelligence (AI), and promotes great changes and progress in the 100 

fields of industry, agriculture, commerce, economic finance, and medical area etc. Deep 101 

learning-centered artificial intelligence has become a key technology in the new industrial 102 

revolution. 103 

DL has developed rapidly in image recognition and image segmentation, and has already 104 

been mature and widely used in industry. In the field of Natural Language Processing (NLP), the 105 

self-attention mechanism was proposed by Google in its famous paper " Attention is All Your 106 

Need" in 2017, which is conducive to integrate the internal association between the input long 107 

sequence data and improve the predictive accuracy of the downstream tasks such as automatic 108 

speech recognition, machine translation etc. Subsequently, the transformer network with self-109 

attention mechanism as the core architecture was widely proved to be superior and quickly 110 

became one of the acknowledged optimal basic networks. Then the transformer was transplanted 111 

to computer vision (CV) field and models such as ViT and Swin Transformer were proposed,[2, 112 

3], which greatly improved the prediction accuracy of CV tasks. In the medical field, CV model 113 

or NLP model with transformer is also widely used,[4], AI assisted pathological/ imaging 114 

diagnosis and medical data extraction are under accelerated development,[5]. Meanwhile, in the 115 

field of scientific research, Graph neural network (GNN) models is often applied to drug 116 

sensitivity prediction and molecule affinity prediction,[3, 6]. However, AlphaFold2 with self-117 
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attention mechanism successfully predicted protein tertiary structure based on protein primary 118 

structure information last year,[7], which is believed that it can greatly improve the efficiency of 119 

protein function studies. For gene multi-omics data, most of current studies feed the data into the 120 

Convolutional Neural Network (CNN) in the form of one hot coding or one-dimensional 121 

vector,[3, 8, 9], which seems lags behind other areas in DL domain. In this study, considering the 122 

interaction and connection among genes, we tried to use transformer encoder structure with self-123 

attention mechanism to manage gene expression data, which achieved good prediction results 124 

and suggested the feasibility of self-attention mechanism for gene vector representation. 125 

We named our DL model AMU, which meant Attention mechanism Model for predicting 126 

melanoma iMMUnotherapy checkpoint inhibitor (ICI) response. In recent years, malignancy 127 

immunotherapy had made great progress and significantly improved patients’ overall survival, 128 

especially for melanoma, immunotherapy had already acquitted as the standard treatment in the 129 

advanced disease,[10, 11]. However, the clinical tumor response to immunotherapy is not 130 

satisfied, and the objective response rate (ORR), which is the standard assessment criteria for 131 

evaluating anti-tumor drug activation, is around 30%,[12], in some other tumors, the ORR is 132 

even lower, around 10%-20%,[13, 14]. So how to precisely identify which group of patients can 133 

beneficial from immunotherapy has caused much attention,[15-17]. Currently approved 134 

immunotherapy treatment includes PD-1/PD-L1 inhibitor and CTLA-4 inhibitor, the biomarkers 135 

for these drugs are usually PD-L1 expression level, tumor mutation burden (TMB) and MSI-136 

H/dMMR status, but these biomarkers have low prediction accuracies and often contradict with 137 

each other,[18-20]. The search for more precise methods has not stopped, we considered drug 138 

response is related to complex biological pathways and conducted this study using muti-gene 139 

mRNA expression values to predict ICI response.  140 
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We summarized our contributions follows：  141 

1) In model building and developing level: 142 

• We provided reliable evidence to reveal the superiority of our model AMU achieving 143 

excellent performance in both validation dataset and independent testing dataset for 144 

melanoma ICI response prediction, highlighting the strong predictive power and 145 

generalization ability of our model.  146 

• We proved that the self-attention mechanism could work in 1-D vector data, even if the 147 

input data is not spatial positional type image or sequence sensitive type natural language. 148 

• We discovered the embedding architecture could be used for representation learning of gene 149 

feature and combining mRNA expression quantitative  information, the interactions of 150 

learned representation vector had local consistence with the widely accepted Functional 151 

Protein Association Network (STRING, https://cn.string-db.org/),[21] which proved the 152 

embedding architecture is suitable and promising for gene vector representation. Self-153 

attention mechanism was superior and benefit for digitating data inner correlation. The 154 

interpretation of embedding layer made the DL network becoming more convincing, which 155 

was especially important in biomedical area.  156 

2) In biological level: 157 

• According to model interpretation work, we put forward an assumption that the TNF- 158 

TNFRSF1A pathway might be a key pathway to decide melanoma ICI response.   159 

• CD80 and CCR3 expression may related to both survival and ICI response for melanoma. 160 

METHODS 161 
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We collected the open data to build our datasets, AMU performance was evaluated in 162 

validation and testing datasets comparing with other five machine learning models, after the 163 

model was trained, we conducted the interpretation work to explore the importance and 164 

interactions of gene functions. We used DL framework PaddlePaddle 2.3.0 to build AMU and 165 

Paddle AI Studio (https://aistudio.baidu.com/aistudio/index) to train model online, figures were 166 

drawn by matplotlib package.  167 

Overview of AMU framework 168 

AMU is constructed by a transformer encoder followed with a convolutional network for an 169 

ICI clinical response binary classification task. The input data are 160 normalized mRNA 170 

expression values. As the same as other classification models, the output of AMU is a pair of 171 

probability values, which denotes non-response and response probability. The transformer 172 

encoder structure is classic as that in NLP, which will be described in detail in the following part. 173 

In convolutional network, we used ‘Convolution- Dropout - Batch Normalization - ReLU 174 

activation function - Adaptive Maximum Pool’ strategies. We used Adam algorithm as the 175 

optimizer for back-propagation process and two-step decay of learning rate for training. AMU 176 

takes the SoftMax activation function for the end of the net and cross-entropy as loss function. A 177 

total of 83,462 parameters are trainable in AMU. Details see Supplement (Table S1). 178 

mRNA embedding and transformer encoder layer 179 

We set a 20-D gene embedding for gene feature learning, and the initialized embedding 180 

input is integer “1” to ”160”, then we multiply embedded values with mRNA expression values 181 

in order to add expression information to every embedding, this method was inspired by NLP 182 

process in which word position information is added to the embedding layer. We consider that 183 

gene features can be learned in the end-to-end training process just like words can be 184 
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representation learned in large text corpus. However, gene is not a sequence data so that the 185 

position information is not necessary and expression information should be instead. Genes have 186 

interaction and association with each other, so self-attention mechanism will be work. 187 

In the process of transplanting transformer encoder layer, no structure needs to be changed, 188 

which includes Layer normalization, Dropout, Muti-head attention, and Multilayer Perceptron 189 

(MLP). In model training experiment, we used eight Muti-head attentions and repeated 190 

transformer encoder layer eight times to avoid underfitting.  191 

Building Dataset  192 

As show in Table 5, all the cases fed into models are collected from published data, 193 

including three independent datasets GSE78220, GSE91061, GSE165278 from GEO Datasets 194 

and one dataset from the paper of Liu (PMID:31792460),[22-26]. We collected total 206 patients 195 

diagnosed with advanced melanoma treated with immunotherapy checkpoint inhibitor, including 196 

Nivolumab, Pembrolizumab and Ipilimumab. The whole-transcriptome sequencing (RNA-seq) 197 

conducted on pretreatment tumor tissues. 198 

The testing dataset was built by 58 post-treatment tissue samples from GSE91061. Clinical 199 

information is not available in the most datasets and the patients’ characteristics cannot be 200 

described. Datasets detail are shown in Table 1. 201 

 202 

Table 1. Summary of datasets  203 

Dataset ID 
Patient 

count 
Drug applied Biopsies type 

Sample 

acquisition 

mRNA-seq 

platform 

Training/Validation dataset (n = 206)    
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GSE78220 27 Pembrolizumab Melanoma tissue 
pre-anti-PD-1 

therapy 

Illumina HiSeq 

2000 

GSE91061 51 Nivolumab Melanoma tissue 
pre-anti-PD-1 

therapy 

Illumina 

Genome 

Analyzer 

GSE165278 7 Ipilimumab Melanoma tissue 

pre-anti- 

CTLA-4 

therapy 

Illumina HiSeq 

2500 

Liu 121 
Nivolumab/ 

Pembrolizumab 
Melanoma tissue 

pre-anti-PD-1 

therapy 

Illumina HiSeq 

2000/ 2500  

Testing dataset (n = 58)     

GSE91061 58 Nivolumab Melanoma tissue 
post-anti-PD-

1 therapy 

Illumina 

Genome 

Analyzer 

According to previous studies, 169 genes have been described potential associated with 204 

melanoma, inflammation, immunity, the PD-L1/CTLA4 pathways and ICI response,[27, 28, 29]. 205 

Finally, 160 genes were overlapped in four datasets and selected. For response digital 206 

representation, we took records with “complete response (CR)” and “partial response (PR)” as 207 

response (classed as numeric 1), “stable disease (SD)” and “progression disease (PD)” as non-208 

response (classed as numeric 0). Supplement (Data file S1) lists the full 160 gene names. 209 

We calculated the TPM-normalized expression values by the raw data provided by authors. 210 

And continued to normalize the TPM values to constituent ratios, then we selected the 160 211 

values from their original datasets and convert to constituent ratios again. After this step, all the 212 
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values from different datasets are represent mRNA relative expression quantity and are 213 

comparable. At last, we logarithm them.  214 

The last, we applied up sample strategy for data enhancement, positive samples were 1:1 215 

duplicated. A total of 280 samples were in our training/validation dataset including 148 positive 216 

samples and 132 negative samples. We randomly divided the training/ validation dataset into the 217 

training (224) and validation (56) sets, which corresponded to 80% and 20% of the total 218 

instances, respectively. In order to get reliable model performances, we randomly split training 219 

and validation data five times, which will be mentioned as “5-fold cross validation” in the 220 

following part. 221 

Competing methods 222 

We chose four machine learning models and designed one simple CNN as competing 223 

methods. All the competing models input data are 160-D vector of mRNA expression values we 224 

have been described. 225 

• SVM (Support Vector Machine) is a first-class classification machine learning model. We 226 

employed the grid search strategy to find the optimal model hyperparameter. 'kernel' included 227 

‘linear', 'poly' and 'rbf', 'C' was in the list [1, 10, 100], 'gamma' was in the list [1, 0.1, 0.001]. 228 

• Random forest is a tree-based regressor model. We set the number of trees in the forest 229 

from range (2,10) and ‘n_estimators’ from arrange (10,300,10). The best hyperparameters were 230 

chosen in the comparing experiments. 231 

•AdaBoostClassifier is a tree-based ensemble model and the best hyperparameters were 232 

chose as the same as Random Forest. 233 
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• XGBoost (eXtreme Gradient Boosting) is a scalable tree boosting system. It implements 234 

machine learning algorithms under the gradient boosting framework. One of the advantages of 235 

XGBoostClassifier is convenience for model interpretation,[30]. 236 

• CNN, we built a simple CNN to represent traditional DL model without self-attention 237 

mechanism. The model included three Conv1D layers and total 737 trainable parameters. Details 238 

see Supplement (Table S2). 239 

Model evaluation 240 

In classification experiments, AUC and PR curves the two commonly used measurements 241 

were chosen as our classification metrics. To further evaluate the performance of our model, we 242 

demonstrated results under validation dataset and testing dataset respectively. We also used 243 

several common metrics in five-fold cross validations, including accuracy, precision, recall and 244 

f1 score. 245 

Model interpretation 246 

We selected SVM, XGBoost and AMU model to explore model interpretation works. 247 

For SVM and XGBoost models, we applied SHAP (SHapley Additive Explanations) which 248 

is a game theoretic approach to estimate the gene feature importance, then we used GO pathway 249 

enrichment analysis and overall survival COX analysis to describe the important gene features.  250 

For AMU model, Shap also can identify the gene importance, but more information can 251 

analysis through mRNA embedding layer. Just be inspired by NLP word embedding, we toke 252 

mRNA embedding layer 20-D trainable parameters as gene features. We tried the cluster analysis 253 

and calculated the Euclidean distance, cosine similarity and t-distributed Stochastic Neighbor 254 

Embedding (t-SNE) among gene feature vectors to describe the gene association and interaction. 255 
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The we compare the gene correlations with Functional Protein Interaction Network (STRING, 256 

https://cn.string-db.org/) to evaluate the gene feature learned from AMU. 257 

RESULTS  258 

AMU accurately predicted melanoma immunotherapy response 259 

We identified the performance of our model on validation and testing datasets comparing 260 

with currently advanced machine learning models in five-fold cross validations. Table 2 showed 261 

the binary classification reports of validation dataset predicted by original training data. DL 262 

models were not preferred, and SVM had the best performance according to the accuracy score 263 

(0.633) and recall score (0.633). All the models had unsatisfactory performance. XGBoost model 264 

get the highest f1-score (0.567) followed by AMU (0.55), the CNN model had the lowest f1-265 

score of 0.45. 266 

 267 

Table 2. Classification reports of Amu and five comparing methods for original validation 268 

dataset 269 

The mean of five-fold cross validations SVM RandomForest AdaBoost XGBoost CNN AMU 

Accuracy 0.633 0.608 0.531 0.618 0.620 0.590 

Precision 0.512 0.471 0.435 0.553 0.500 0.560 

Recall 0.633 0. 608 0.531 0.618 0.390 0.550 

F1-score 0.526 0.517 0.473 0.567 0.450 0.550 

 270 

However, after data enhancement, all the model performances were significantly improved 271 

except CNN (Table 3), which was hard to converge. AMU model showed the best performance 272 

with f1-score 0.93, the area under the curve (AUC) 0.941 and mean average precision (mAP) 273 
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0.960, respectively. In the testing dataset, AMU also demonstrated superior predictive perform as 274 

show in Table 4 and achieved the highest AUC (0.672) and mAP (0.800) respectively. The 275 

receiver operating characteristic curve (ROC) and Precision-Recall (PR) curve were show in  276 

Table 3. Classification reports of Amu and five comparing methods for enhanced validation 277 

dataset 278 

The mean of five-fold cross 

validations 
SVM RandomForest AdaBoost XGBoost 

 
CNN AMU 

Accuracy 0.884 0.653 0.821 0.792  0.544 0.930 

Precision 0.906 0.707 0.872 0.854  0.524 0.930 

Recall 0.892 0.654 0.821 0.792  0.534 0.930 

F1-score 0.884 0.611 0.809 0.777  0.482 0.928 

 279 

Table 4. Classification reports of Amu and five comparing methods for testing dataset 280 

 
SVM RandomForest AdaBoost XGBoost CNN AMU 

Accuracy 0.76 0.55 0.64 0.67 0.71 0.72 

Precision 0.38 0.45 0.46 0.44 0.59 0.61 

Recall 0.50 0.44 0.47 0.47 0.59 0.60 

F1-score 0.43 0.44 0.46 0.45 0.59 0.60 

 281 

Model interpretation  282 

We listed the top-10 Shap value genes of SVM, XGBoost and AMU (Table 5)[31]. The top 283 

genes were quite different among models. The intersection of these top-10 genes was including 284 
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TNF and its receptor TNFRSF1A. TNF encodes a multifunctional proinflammatory cytokine. 285 

TNFRSF1A is a member of the TNF receptor superfamily of proteins. The details of Shap values 286 

were in Supplementary (Fig S1-3, Data files S2-4). 287 

 288 

Table 5. Top-10 Shap value genes prioritized by SVM, XGBoost and AMU 289 

Module Top-10 Shap value genes 

SVM TNFRSF1A, SERPINA1, F5, NEDD4L, TLR4, SERPINE1, GYPB, NBEA, BPGM, UBE2C 

XGBoost FASLG, CDKN1A, TP53, CD4, CASP3, HMGB1, SLC4A1, TNF, FOS, IL5 

AMU THBS1, CD86, MIF, BPGM, NRAS, TNF, IL23A, CXCL8, CD40, TNFRSF1A 

 290 

Gene Ontology (GO) analysis was performed in top-50 genes of these models[32-34], total 291 

112 genes were gathered, the enrichment analysis of pathways was show in Figure 3. The most 292 

important genes are clustered in lymphocyte proliferation pathway. Then overall survival cox 293 

analysis of these 112 genes was conducted (Figure 4), 17 genes showed statistical significance, 294 

most genes showed protect effects, only 2 genes (CD 80 and CCR3) had noteworthy hazard 295 

ratios (HRs) (0.761 and 0.134 respectively). CD 80 protein was activated by the binding of CD28 296 

or CTLA-4 and then induces T-cell proliferation and cytokine production. CCR3 protein is a 297 

receptor for C-C type chemokines. 298 

Finally, but most important, gene features learned by AMU showed biological significance. 299 

We found that mRNA embedding matrix was hard to perform a desirable cluster analysis, also, 300 

the Euclidean distance and cosine similarity algorithm both revealed the gene features distributed 301 

uniformly and no aggregation. See details in Supplementary (Fig S4-7, Data file S 5-6). 302 

However, gene association and interaction calculated with t-SNE algorithm showed locally 303 

similar with STRING. Four cases were visualization in Figure 5. For CD4-MAPK14-PTPRC-304 
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SOCS1 subgroup, both mRNA embedding and STRING indicated inner close association, and 305 

NEDD9 relatively isolated with them. For PDE3B-ELANE-CXCL8, mRNA embedding 306 

successfully mapped the close distance. In NRAS-LAGLS3-IL10-FCGR2B-CDKN1A-HMGB1 307 

subgroup, most links were accurately figure out with a local difference that STRING showed 308 

CDKN1A -NRAS, but mRNA embedding showed CDKN1A- FCGR2B association. Another 309 

case was in CASP1-TLR9-CXCR3-ITGAL-TXNRD1 subgroup, most links were consistent 310 

except STRING described an interaction with CXCR3-ITGAL, but mRNA embedding didn’t 311 

figure it out. 312 

DISCUSSION  313 

In industrial 4.0 age, DL has been the most advanced model algorithm. Since the Alexnet 314 

proposed in 2012, convolutional network renewed and a new wave of artificial intelligence 315 

research and applications have begun. Then transformer has been the most advanced deep 316 

learning technique and exhibited powerful performers in CV and NLP areas for its strong 317 

features extraction ability of sequential and spatial interactions of data. AMU is a model 318 

connected the transformer encoder with a convolutional network, it’s a successful trial of proving 319 

that the transformer structure is also feasible and superior for 1-D gene expression data (just like 320 

NLP) prediction task and splendid for gene feature learning. AMU also showed superior 321 

performance in testing dataset which tissue biopsies were post ICI and some of the features and 322 

data distribution had to be different from that of pre-ICI, further proved AMU learned some 323 

essential features. Previously, several works have been done in using mRNA expression and 324 

clinical data to predict melanoma ICI response. Noam Auslander etc. reported an AUC of 0.83 325 

with their IMPRES predictor,[35]. Another algorithm proposed by Philip Friedlander etc. was 326 
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validated in the validation set with AUCs of 0.62,[27]. By this cross-experiment comparison, 327 

AMU exhibited its advantage.  328 

Further, features abstracted from embedding layer showed local similarity with laboratory 329 

results or curated databases, indicating strong gene presentation abilities of transformer encoder 330 

should be fully researched and utilized for more gene related downstream tasks. DL studies 331 

should sufficiently take advantage of the power of transformer. Moreover, model interpretation is 332 

quite important for medical studies and obviously gene embedding can facilitate this work.  333 

Additionally, in the model interpretation part, SVM, XGBoost and AMU consistently 334 

indicated that TNF- TNFRSF1A axis possess the most important genes related to melanoma ICI 335 

response process. Previous mouse experiments published in Nature showed that anti-PD-1 and 336 

anti-CTLA-4 (NIVO+IPI) combined with TNF-α inhibitors could improve the course of colitis in 337 

a mouse model and enhance the anti-tumor effect,[36]. Phase Ib clinical trial showed the 338 

promising effect of combining Nivolumab and Ipilimumab with TNF-α inhibitor in advanced 339 

melanoma,[37]. These facts indicated machine learning models not only can applied in predictive 340 

scenarios but also can provide suggestive information for further investigation.  341 

Our work has several limits:  342 

1) sample size was not large enough and the representativeness of samples was inevitably 343 

impaired, meanwhile, the patients’ characteristics were not described, which will limit the 344 

extrapolation of the results. It is a common problem in medical deep learning researches because 345 

the data is limited for one specific task and unsupervised learning often works to resolve this 346 

dilemma. For DL, models have strong fitting ability, but sample diversity and distribution decide 347 
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the model generalization. A larger and closer to real situation training dataset is desired for 348 

robust performance in most cases.  349 

2)Although 160 genes were much less than previous studies imported 500-800 genes and 350 

more favorable for model interpretation, we consider that input features can be slimed more 351 

accurately because the ratio of input features and sample numbers should be controlled within a 352 

certain range for a better result according to Ben Sorscher’s paper,[38].   353 

3)A particular point we had to indicate is that, different from other fields, input features are 354 

almost impossible to be enumerated in medical studies. Taking melanoma ICI response as 355 

example, input data can include multi-omics, clinical, pathological and imaging data etc. Our 356 

study only imported mRNA expression data, which is not complete for feature abstraction.  357 

Looking for immunotherapy biomarkers requires multidisciplinary collaboration; our self- 358 

attention model is powerful in extraction and integration of the transcriptome information and 359 

make the drug sensitivity prediction more credible. The nature of gene is information, all kinds 360 

of advanced techniques used to process information can be tried to process gene data. In our 361 

opinion, gene representation learning work should be promising, because it can be used as a 362 

common upstream path for biological information mining and make our target tasks performed 363 

better. 364 

 365 

Figure 1. The overview of AMU  366 

Figure. 2. ROC and PR in validation dataset. (A) and (B) respectively shows ROC curve and PR 367 

curve with 6 models for validatio dataset. The PR curve shows mean average precision (mAP) of 368 

2 classes. (C) and (D) respectively shows ROC curve and PR curve for testing dataset. 369 

Figure 3. GO pathways enrichment analysis. 370 
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(A): GO results of three ontologies. (B): Biological process of pathways enrichment. 371 

Figure 4. Cox analysis of Top-50 Shap value genes of (SVM、XGB、AMU) models (genes of 372 

p values <0.05)               373 

Figure 5. Gene interaction learned by AMU and compared with STRING  374 

         (A): NRAS-LAGLS3-IL10-FCGR2B-CDKN1A-HMGB  375 

         (B): CASP1-TLR9-CXCR3-ITGAL-TXNRD1 376 

         (C): PDE3B-ELANE-CXCL8 377 

(D) CD4-MAPK14-PTPRC-SOCS1 378 

 379 
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