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Abbreviations: 4 

AD – Airway and Vascular Distortion 5 
BMI - body mass index 6 
BVB - bronchovascular bundle 7 
HRCT – High resolution chest computed tomography 8 
CXR – chest X-ray 9 
DLCO - diffusing capacity for carbon monoxide 10 
FEV1 - forced expiratory volume in one second 11 
FEV1/FVC - ratio of FEV1 to FVC 12 
FVC - forced vital capacity 13 
GIC – Genetics and Informatics Core 14 
GLCM – Gray level co-occurrence matrix 15 
GRADS - Genomic Research in Alpha-1 Anti-trypsin Deficiency and Sarcoidosis 16 
IRB - institutional review board 17 
LN – lymphadenopathy 18 
PA - parenchymal abnormalities 19 
PFT – Pulmonary Function Test 20 
QOL – Quality of life 21 
VAS – visual assessment score 22 

 23 

Abstract 24 

Background: High resolution computed tomography (HRCT) of the chest is 25 

increasingly used in clinical practice for sarcoidosis. Visual assessment of chest HRCTs 26 

in patients with sarcoidosis has high inter- and intra-rater variation. Radiomics offers a 27 

reproducible quantitative assessment of HRCT lung parenchyma and could be useful as 28 

an additional summary measure of disease. We develop radiomic profiles on HRCT and 29 

map them to radiologic, clinical, and patient reported outcomes. 30 
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 2 

Research Question: Can radiomic analysis of chest HRCT cluster patients into groups 31 

that are related to radiologic, clinical, and patient reported outcomes? 32 

Study Design and Methods: Three-dimensional radiomic features were calculated on 33 

chest HRCT for both lungs from sarcoidosis cases enrolled in the Genomic Research in 34 

Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study (N=320). Robust and 35 

sparse K-means was used to cluster sarcoidosis cases using their radiomic profiles. 36 

Differences in patterns on visual assessment (VAS) by cluster were identified using chi-37 

squared tests. Linear regression investigated how pulmonary function tests and patient 38 

reported outcomes differed between clusters with and without adjustment for other 39 

radiologic quantification. 40 

Results: Radiomic-based clustering identified four clusters associated with both 41 

Scadding stage and Oberstein score (P<0.001). One of the clusters had markedly few 42 

abnormalities. Another cluster had consistently more abnormalities along with more 43 

Scadding stage IV. Average pulmonary function testing (PFT) differed between clusters, 44 

even after accounting for Scadding stage and Oberstein score (P <0.001), with one 45 

cluster having more obstructive disease. The most discriminative radiomic measures 46 

explained 10-15% of the variation in PFT beyond demographic variables. Shortness of 47 

breath, fatigue, and physical health differed by cluster (P <0.014).  48 

Interpretation: Radiomic quantification of sarcoidosis identifies new subtypes 49 

representative of existing radiologic assessment and more predictive of pulmonary 50 

function. These findings provide evidence that radiomics may be useful for identifying 51 

new imaging-based disease phenotypes. 52 
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Sarcoidosis is a granulomatous interstitial lung disease which affects ~ 110 thousand 56 

individuals in the United States1. Typical diagnosis is between 30-50 years of life, 57 

resulting in decreases in quality of life (QOL) and productivity2. Pulmonary disease 58 

occurs in over 90% of those with sarcoidosis3 with significant morbidity and mortality. 59 

Currently, visual assessment of chest radiography (CXR) is used to quantify lung 60 

abnormalities standardized via the Scadding staging4. Substantial variation exists in CT-61 

based radiographic patterns within each Scadding stage limiting its utility in predicting 62 

prognosis even in the extreme stages5. 63 

 64 

Chest high resolution computed tomography (HRCT) is increasingly used in clinical 65 

practice to monitor disease as it offers more detailed visualization of parenchymal 66 

abnormalities (PA) compared to CXR4,6–8. As with CXR, visual assessment of chest 67 

HRCT is used to evaluate abnormalities although there are limited standardized scoring 68 

metrics4,9,10. This is due in part to the diverse and heterogeneous patterns present on 69 

chest HRCT in sarcoidosis, often with multiple patterns noted. These complexities result 70 

in high inter- and intra-rater variation11. Recently, a Delphi study was undertaken to 71 

define phenotypes based on visual assessment, yet without assessment of clinical 72 

utility12. As not all patients have access to expert visual interpretation, more automated 73 

systems that quantify sarcoidosis chest HRCT could decrease variation and make 74 

HRCT more usable in routine clinical care. 75 

 76 

Radiomics is when large numbers of quantitative features are extracted from medical 77 

images13. A radiomics panel computes summary measures of the distribution of the 78 
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 5 

Hounsfield units (HU) along with summary measures of the spatial relationships of 79 

neighboring voxels14. The result is a characterization of image texture. 80 

 81 

Radiomics have proved useful for quantifying HRCT in emphysema7, idiopathic 82 

pulmonary fibrosis15,16, interstitial lung disease17,18, diffuse lung disease19 and cancer20. 83 

Ryan et al.21 showed the potential utility of radiomics in sarcoidosis, comparing radiomic 84 

measures between sarcoidosis patients and controls. It remains unclear whether 85 

radiomics also has the potential to differentiate varied phenotypes within sarcoidosis 86 

patients and how radiomics relates to visual assessment (VAS). Radiomic profiles within 87 

patients with sarcoidosis that correlate with VAS, pulmonary function testing (PFT), and 88 

patient reported outcomes (PRO) would indicate that radiomics may serve as a useful 89 

refined measure to track change in the lung parenchyma over time than is possible with 90 

visual assessment. 91 

 92 

The goal of this study was to develop a radiomic profile of chest HRCT in sarcoidosis 93 

using a phenotypically-diverse population of sarcoidosis participants from the Genomic 94 

Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study22. We 95 

employ statistical clustering techniques and investigate the clinical utility of the clusters 96 

by quantifying their association with VAS, PFT and PRO23,24.  97 

 98 

Study Design and Methods 99 

 100 

Study design and participants  101 
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 102 

The sarcoidosis population was recruited in the multicenter NHLBI-funded GRADS 103 

study22 as cross-sectional observational cohort (N=368). This ancillary study has 104 

GRADS approval and all participants provided informed consent (IRB approval HS-2779 105 

and HS-2780). More details of this cohort can be found in e-Appendix 1. 106 

 107 

To comply with image biomarker standardization initiative (IBSI) recommendations25 108 

details of the HRCT acquisition, processing and segmentation can be found in e-109 

Appendix 1 and e-Tables 1 and 2. GRADS’ visual assessment score (VAS; Table 3, e-110 

Appendix 1, e-Tables 3 and 4) was used to quantify overall Oberstein score5,22 along 111 

with additional information regarding presence of lymphadenopathy (LN), airway and 112 

vasculature distortion (AD), and PA (Table 3). Scadding stage was evaluated at the site 113 

using CXR (e-Appendix1). 114 

 115 

PFT included pre-bronchodilator (pre-BD) forced expiratory volume at one second 116 

(FEV1), forced vital capacity (FVC), the ratio of FEV1 to FVC, and post-BD diffusing 117 

capacity of the lungs for carbon monoxide (DLCO). The PROs included the 118 

gastroesophageal reflux disease questionnaire (GERDQ)26, the University of California 119 

San Diego Shortness of Breath Questionnaire (SOBQ)27, two measures of fatigue (the 120 

Fatigue Assessment Scale [FAS]28 and Patient-Reported Outcomes Measurement 121 

Information System fatigue profile [PROMIS]29), the Cognitive Failure Questionnaire 122 

(CFQ)30, and the SF-1231,32 physical and mental subscales.  The final analysis dataset 123 

included N=320 patients who had an analyzable HRCT and clinical data (e-Figure 1). 124 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 5, 2024. ; https://doi.org/10.1101/2022.10.01.22280365doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.01.22280365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 125 

Radiomic Analysis  126 

We computed 44 first-order and 239 gray-level co-occurrence matrix (GLCM) radiomic 127 

features on each lung (566 features) using the lungct and RIA packages in R33–36. 128 

These are open-source packages with published documentation and permit perfect 129 

reproducibility with transparent implementation, aligning with IBSI goals. Furthermore, 130 

this allowed a fully R based analysis pipeline and provided a more comprehensive 131 

radiomic panel. Radiomic features beyond those typically used in neuroscience and 132 

cancer and previously standardized by IBSI may be important in diffuse pulmonary 133 

disease. For consistency with package documentation, we use the nomenclature of the 134 

RIA package. 135 

 136 

To calculate the gray level co-occurrence matrix (GLCM) features, the Hounsfield units 137 

from each HRCT were discretized into 16 bins with equal relative frequencies; then, the 138 

features were calculated in 13 directions, assuming a voxel distance of one; these 139 

features were summarized using the mean statistic 34,35. 140 

 141 

The R ez.combat function harmonized radiomic measures across scanners37–39, while 142 

preserving the biological variability in age, height, BMI, sex, race-ethnicity and GRADS 143 

phenotype (e-Table 2).  144 

 145 

Radiomic features were high-dimensional and repetitive (Figure 1). We used a 146 

decorrelation filter40 (e-Appendix 1) that prioritized first-order over second-order features 147 
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 8 

to identify a representative feature subset for analysis. This reduced the features to 99. 148 

We used robust and sparse k-means41 to cluster participants (R package, RSKC). For 149 

outlier robustness, trimming was set at 0.1. The optimal bound on feature weights (9.5) 150 

and number of clusters (4) were simultaneously selected using a permutation approach 151 

and BCS-based Gap statistic41 after standardization42. Standardization was performed 152 

with respect to the permutation reference to permit comparability across bounds and 153 

cluster numbers. The top five discriminative features were selected for further 154 

investigation. 155 

Statistical Analysis and Validation 156 

Descriptive statistics on VAS were computed by cluster and simulated Fisher’s exact 157 

tests used to assess cluster differences. Linear regression quantified associations 158 

between cluster, Scadding stage, and Oberstein Score, and each of the outcomes. We 159 

fitted univariable models with cluster, Scadding stage, or Oberstein score and then 160 

modeled them together to determine if cluster association remained significant 161 

accounting for other radiologic findings. Each outcome was modelled separately using a 162 

complete case analysis. Linear regression quantified associations between 163 

discriminative features and outcomes. All models were adjusted for age, sex, 164 

race/ethnicity (e-Appendix 1), height, and BMI. Analyses were conducted in R36. 165 

 166 

This work was an unsupervised problem, which made traditional training and test 167 

validation approaches difficult given unknown true groupings. Instead, we conducted 168 

internal validation by applying our analysis pipeline under various conditions and with 169 

bootstrapped samples (e-Appendix 1). 170 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 5, 2024. ; https://doi.org/10.1101/2022.10.01.22280365doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.01.22280365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 171 

Results  172 

Tables 1-2 shows the characteristics of the study population (N=320), 146 (46%) self-173 

identified as male, 220 (68.8%) self-identified as non-Hispanic white, 76 (24%) as black, 174 

15 (4.7%) as Hispanic, and 9 (2.8%) as one of Asian, American Indian, Alaska Native, 175 

not identifying a single primary race or missing (N=2). The average age was 53 (SD=10) 176 

years, average height 67.0 in (SD=4.0) and average BMI 30.6 kg/m2 (SD=6.5). By 177 

design participants spread across Scadding stages, with 43 (14%) stage 0, 63 (20%) 178 

stage 1, 92 (29%) stage 2, 44 (14%) stage 3 and 75 (24%) stage 4. The average FEV1 179 

was 2.62 L (SD=0.89), FVC 3.57 L (SD=1.07), and DLCO 80.31 (SD=23.97). The 180 

population predominantly demonstrated non-obstructive FEV1/FVC ratio (N=235; 73%).  181 

 182 

Radiomic Based Clustering 183 

We identified four clusters (Table 1). Ordered from highest FVC to lowest, 56 (17.5%) 184 

patients were cluster 1, 110 (34.3%) cluster 2, 54 (16.9%) cluster 3, and 100 (31.3%) 185 

cluster 4. Cluster was associated with Scadding stage (P<0.001), but not a direct 186 

reflection of Scadding stage (Table 1). Descriptively, cluster 3 had the highest 187 

percentage of Scadding stage IV (48%). Clusters 1 and 2 each had approximately 60% 188 

of the patients with a Scadding stage of I or II, a higher proportion of stage 0, and 189 

limited Scadding stage IV present. Cluster 3 had the second highest observed Scadding 190 

stage IV (40%) with a similar percentage of Scadding stage II compared to clusters 1 191 

and 2 (~30%).    192 

 193 

Radiomic clustering and VAS  194 
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When descriptively investigating VAS patterns, the clusters reflected increased 195 

presence of VAS abnormalities with cluster 1 having low presence of nearly all airway 196 

and vascular distortions (AD) and PA and much lower average Oberstein scores than 197 

clusters 2-4 (Table 3; P <0.001). Cluster 2 reflected some increase in AD and PA with 198 

clusters 3 and 4 having a higher presence of AD and PA. For example, cluster 4 had at 199 

least double the presence of AD and PA compared to cluster 2. After adjustment for 200 

demographics, average Oberstein score for cluster 3 was 1.98 (SE=0.48) units and 201 

cluster 4 was 3.15 (SE=0.39) units higher than cluster 2 (p<0.001).  202 

 203 

Associations with PFT and PRO 204 

After adjustment for demographics, average PFT differed between clusters (Figure 2; 205 

P<0.001). Clusters 2 and 3 had ~0.3 L lower average FVC compared to clusters 1 and 4 206 

had ~0.9 L lower average FVC compared to cluster 1. Cluster 2 had ~0.2 L lower 207 

average FVC compared to cluster 1 and cluster 3 had a larger decline with an average 208 

FEV1 ~0.5 L lower than cluster 1. Cluster 4 had the lowest average FEV1 and ~0.8 L 209 

lower than cluster 1. DLCO had a similar pattern to FVC. Cluster 3 had the most 210 

FEV1/FVC based obstruction (54%) with clusters 1 and 2 having the same amount of 211 

obstruction (16%) and cluster 4 falling in the middle (32%). 212 

 213 

After adjustment for demographics, PROs also differed between clusters but not 214 

consistently (Figure 3). Fatigue and Average shortness of breath (SOBQ) differed 215 

between clusters (P<0.014). Clusters 2 and 4 had a fatigue score that was more than 3 216 
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units lower on average compared to cluster 1 (p<0.016). Cluster 4 also had an average 217 

SOBQ ~12 units higher than cluster 1 (p=0.003).  218 

 219 

The clusters remained significantly associated with PFT after adjusting for Scadding 220 

stage (Figure 2; P<0.001) or Oberstein score (Figure 2; P<0.001) and after adjusting for 221 

both simultaneously (Figure 2; P<0.001). Oberstein score was not significantly 222 

associated with FVC after adjustment for cluster (P=0.59) and became even less 223 

significant after further adjustment for Scadding stage (P=0.88). However, Scadding 224 

stage was significantly associated with FVC after adjustment for cluster and Oberstein 225 

score (P=0.019). The findings for Oberstein score with DLCO were like those of FVC. 226 

For FEV1, Oberstein score was still significantly associated after adjustment for cluster 227 

(P=0.011) but became insignificant after additional adjustment for Scadding stage 228 

(P=0.21). Scadding stage remained significant in all models (P<0.001). For FEV1/FVC, 229 

all three assessments (radiomics, Scadding, and Oberstein score) were significant 230 

(P<0.016).  231 

 232 

Cluster also remained associated with fatigue and SOBQ score after adjustment for 233 

Scadding and Oberstein (P<0.038; Figure 3). 234 

 235 

The five most discriminatory radiomic features included kurtosis, which is a measure of 236 

shape of the distribution of the HU from an image, as well as four summary measures 237 

from the gray level co-occurrence matrix (GLCM). The GLCM measure spatial 238 

correlation and similarity of the HU in image voxels near each other. Image visualization 239 
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of cases with different values of kurtosis and two GLCM measures are shown in Figure 240 

4 with distribution of HU in e-Figure 2 for maximum, median and minimum kurtosis 241 

levels in our population. The images visibly show the increase in observable PA (Figure 242 

4) with lower kurtosis. In addition, Figure 5 shows how Oberstein Score separates 243 

based on kurtosis and GLCM Min. GLCM Min appears to be most related to severity 244 

with higher Oberstein score mapping with higher GLCM Min and Scadding stage is, in 245 

general, not associated with either measure. 246 

 247 

The discriminatory radiomic measures were jointly associated with FVC, FEV1, 248 

FEV1/FVC and DLCO (P<0.001; Table 4 and e-Table 5 for PRO). The radiomic 249 

measures explained between 10 to 15% more variation in PFT than adjustment for 250 

demographics (age, race, sex, height and BMI) only. For comparison, Scadding stage 251 

explained between 4% and 12% more variation in PFT and Oberstein score explained 252 

between 2% and 8% more variation in PFT. 253 

 254 

Validation of Clustering 255 

Detailed results can be found in e-Appendix 2, e-Figure 3. The validation analysis 256 

suggested only mild sensitivity of clustering to the analysis pipeline. There is more 257 

sensitivity to bootstrapped samples in how the sample is divided into clusters; however, 258 

cluster consistently remained a significant predictor of FVC across all sources of 259 

random perturbations in the pipeline. In all validation cases the proportions of P-values 260 

less than 0.01 were 100%. 261 

 262 
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Discussion 263 

Radiographic manifestations in sarcoidosis are protean.  As a result, traditionally VAS is 264 

used for image characterization and not standardized. The utility of VAS in sarcoidosis 265 

is limited by the intra-observer and inter-observer variability. Radiomics is a more 266 

reproducible and computationally efficient approach to characterize HRCT. We used 267 

radiomics to characterize images from a large, phenotypically diverse cohort of 268 

sarcoidosis subjects and demonstrated that radiomics are associated with VAS, clinical 269 

and patient reported outcomes of disease. Using a common unsupervised learning 270 

approach41, we identified four radiomic based clusters. These clusters differed 271 

significantly by PFT, fatigue, and shortness of breath, two PROs. Notably, each cluster 272 

included a range of Scadding stages and cluster remained significantly associated with 273 

PFT after accounting for Scadding stage and Oberstein score. These data suggest that 274 

radiomics represents radiographic abnormalities that differ from Scadding stage and 275 

may be a better representation of image characterization to explain PFT and PRO. 276 

 277 

A holistic assessment of the clusters showed two lower severity and two higher severity 278 

clusters (Table 5). One high severity cluster (4) had significant fibrosis, substantial 279 

presence of AD and PA on VAS, and decreased PFT, which resulted in more shortness 280 

of breath and fatigue. Cluster 3 represented those with obstructive spirometry and more 281 

presence of AD and PA than clusters 1 and 2, moderate fibrosis, and the lowest 282 

FEV1/FVC ratio. These interpretations have similarities to another recent attempt to 283 

subtype using clinical characteristics43. Unlike our work, that work had no radiomics or 284 

VAS. We both several low severity clusters with minimal PA. We both found an 285 
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obstructive cluster and a severe fibrotic cluster. More recently, HRCT VAS phenotypes 286 

were proposed via a Delphi consensus study12. That work defined two major groups, 287 

those with fibrotic versus non-fibrotic findings, similar to our clusters with fibrotic (3 and 288 

4) versus more non-fibrotic (1 and 2) findings.  However, the VAS of their various 289 

subtypes of non-fibrotic and fibrotic CT findings were included in a number of our 290 

clusters.  This may reflect the power in our sample size to define subtypes or possibly 291 

that these phenotypes or VAS overlap as noted in our study. 292 

 293 

Demographic characteristics of the individual explained a sizable amount of the 294 

variation observed in PFT (R2=50-60%). Radiomics also explained a significant amount 295 

of additional variation in PFT (10-50%). This additional amount of variation explained is 296 

consistent with other quantitative imaging approaches such as CALIPER17 and those 297 

used for investigations of other lung conditions such as systemic sclerosis 44 and diffuse 298 

interstitial lung diseases 45. 299 

 300 

Except in lung cancer research, much of the quantitative CT image analysis has 301 

focused on HU density18,44. We included summarization of both density and spatial 302 

characterization. More measures of GLCM appeared discriminative in the cluster 303 

analysis than densitometry measures. This implies that texture is perhaps more useful 304 

for differentiating PA in sarcoidosis.  305 

 306 

Although it remains speculative as to why decreased kurtosis is associated with 307 

decreased FVC and DLCO, it is plausible that as kurtosis decreases, more severe PA 308 
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are present that impact lung function. As kurtosis decreases, more severe PA are visual 309 

present that may impact the function of the lung (Figure 4). Severe PA in sarcoidosis 310 

are observed as higher HU values. In e-Figure we observed the presence of a higher 311 

frequency of higher HU values dampening the peak in the HU distribution and leading to 312 

a lower kurtosis. In addition, GLCM Min appears likely to measure disease severity 313 

based on the visual patterns with Oberstein in Figure 5. 314 

 315 

The associations with cluster and PROs were less consistent, although important 316 

patterns emerged. Cluster 4 demonstrated decreased QOL (SF-12 physical) and worse 317 

shortness of breath (SOBQ), findings that are consistent with worse lung function and 318 

VAS scores in this cluster. Cluster explained substantially less variation in PROs (0 to 319 

8%) compared to PFTs. While the tools we used to measure PROs are validated and 320 

used widely in sarcoidosis, they are not generally correlated with objective measures of 321 

lung function46. As an example, fatigue is a known multi-factorial PRO in sarcoidosis 322 

and may impact a number of other PRO46,47. Our finding that cluster is associated with 323 

decreased physical function and increased shortness of breath provides 324 

encouragement that more detailed characterization of lung abnormalities, like we 325 

developed here, could contribute to a better understanding of the current disconnect 326 

between measures of lung function and patient experiences.  327 

 328 

This study had several strengths. To our knowledge, this was the largest cluster of 329 

sarcoidosis patients with research grade HRCT available allowing for a full 3-D based 330 

quantitative analysis. Radiomic and other quantitative imaging approaches have a major 331 
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strength in that they can be computed in a time efficient and reliable, reproducible 332 

automated procedure. The radiomics package in R took only 3 minutes to compute all 333 

the 3-D radiomics measures. This means large quantities of scans can have radiomic 334 

profiles computed for aiding in decisions on what scans the radiologist might prioritize 335 

for further consideration for visual or clinician evaluation.  336 

 337 

In addition to the high-quality and robust clinical data, the GRADS study also provides a 338 

comprehensive and consistently collected set of patient reported outcomes, which 339 

reflect important aspects of treatment decision-making processes48. The results 340 

internally validated suggest our approach is not over fitting these data. 341 

 342 

This study is not without limitations. The GRADS study relied on enrollment from 343 

academic centers and could be skewed to a population that was referred for worse 344 

disease or was near one of the centers, which were primarily localized to the Eastern 345 

US. The demographic is predominantly white and of higher SES as a result and thus 346 

may not provide full representation of the spectrum of disease. In addition, many 347 

subjects had disease for a decade or longer and were treated. While the same protocol 348 

was used across study sites for obtaining the CT images we studied, the scanners 349 

themselves differed. Harmonization was performed to mitigate systematic differences 350 

due to scanner type. In addition, the distribution of PFT measures is not dependent on 351 

scanner type. As such, we expect any differences in the radiomic measures due to 352 

scanner type to be non-differential as they relate to PFTs.  Finally, the number of 353 

clusters we identified may not directly translate to other populations of sarcoidosis or be 354 
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the unique optimal solution. There are multiple ways to choose the optimal number of 355 

clusters. We used an alternative radiomics package with a broader set of measures. 356 

However, not all these measures were part of IBSI work. We used open-source 357 

software accessible to any reader for verification of our findings and to conduct 358 

comparisons with other software. 359 

 360 

Interpretation 361 

In summary, this work provides evidence that in sarcoidosis radiomic quantification is 362 

useful for classifying abnormality of the lung along with pulmonary function and to a 363 

lesser degree patient reported outcomes. Future work should evaluate the potential of 364 

radiomics to capture small changes over time not easily detected by other assessment 365 

to further evaluate the potential of radiomics serving as a clinically useful quantitative 366 

measure of sarcoidosis presentation and progression.  367 

  368 
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Take-Home Points 506 

Study Question: Is radiomics a useful quantitative approach for defining radiographic 507 

subtypes in sarcoidosis? 508 

Results: Radiomics find four radiographic subtypes in sarcoidosis that are related to 509 

visual assessment and more predictive of clinical measures such as pulmonary function 510 

that visual assessment. 511 

Interpretation: Radiomics analysis suggests four subtypes of sarcoidosis ranging from 512 

low severity with limited radiographic abnormality and normal pulmonary function to 513 

severe with significant abnormality on chest CT and either obstruction based on 514 

pulmonary function or reduced pulmonary function with fibrotic presentation on image. 515 

  516 
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 517 

Table 1: Patient demographics by radiomic cluster, ordered from least severe (1) to 518 

most severe (4) based on average FVC. Unless otherwise noted values are mean (SD). 519 

Characteristic N 

miss 

Overall 1 2 3 4 P-

value 

Sample Size  320 56 110 54 100  

FVC (L) 6 3.57 (1.14) 3.91 (1.16) 3.88 (1.08) 3.61 (1.27) 3.02 (0.92) <0.001 

Age (yr) 0 52.9 (9.9) 49.8 (10.6) 53.1 (9.9) 52.5 (9.8) 54.8 (9.3) 0.026 

Female; N (%) 
 

174 (54%) 37 (66%) 52 (47%) 36 (67%) 49 (49%) 0.021 

Race/Ethnicity; 

N (%) 

0  
    

0.033 

Asian, American 

Indian, Alaska Native, 

or not identifying a 

single primary race 

 
9 (2.8%) 0 (0%) 4 (3.6%) 1 (1.9%) 4 (4.0%) 

 

Black 
 

76 (24%) 12 (21%) 16 (15%) 13 (24%) 35 (35%) 
 

Hispanic 
 

15 (4.7%) 2 (3.6%) 6 (5.5%) 1 (1.9%) 6 (6.0%) 
 

White 0 220 (69%) 42 (75%) 84 (76%) 39 (72%) 55 (55%)  

        

Height (in) 0 67.0 (4.0) 66.3 (4.2) 67.7 (4.2) 66.5 (3.7) 66.9 (3.7) 0.13 

BMI (kg/m^2) 0 30.6 (6.5) 30.2 (7.4) 32.6 (5.7) 27.0 (5.8) 30.7 (6.4) <0.001 

Scadding; N (%) 3  
    

<0.001 

0 
 

43 (14%) 9 (16%) 25 (23%) 4 (7.5%) 5 (5.0%) 
 

I 
 

63 (20%) 16 (29%) 31 (29%) 7 (13%) 9 (9.0%) 
 

II 
 

92 (29%) 17 (30%) 32 (30%) 15 (28%) 28 (28%) 
 

III 
 

44 (14%) 12 (21%) 16 (15%) 6 (11%) 10 (10%) 
 

IV 
 

75 (24%) 2 (3.6%) 4 (3.7%) 21 (40%) 48 (48%) 
 

 520 
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Table 2: Summary measures of pulmonary function testing and self-reported outcomes 521 

by radiomic cluster ordered from least severe (1) to most severe (4) based on average 522 

FVC. Unless otherwise noted values are mean (SD). 523 

 524 
 

N 
Miss 

Overall 1 2 3 4 P-
value 

Sample Size  320 56 110 54 100  

FEV1 (L) 6 2.62 (0.05) 2.98 (0.13) 2.96 (0.08) 2.44 (0.15) 2.14 (0.07) <0.001 

FVC (L) 6 3.57 (0.06) 3.91 (0.16) 3.88 (0.10) 3.61 (0.18) 3.02 (0.09) <0.001 

FEV1/FVC (%) 6 0.73 (0.01) 0.76 (0.01) 0.77 (0.01) 0.67 (0.02) 0.71 (0.01) <0.001 

Obstructive 
Typea; N (%) 

6 85 (27%) 9 (16%) 17 (16%) 27 (54%) 32 (32%) <0.001 

DLCO 
(mL/min/mmHg) 

18 22.07 (0.45) 24.13 (1.03) 25.33 (0.66) 21.30 (1.01) 17.56 (0.76) <0.001 

FASa 140 29.77 (0.41) 32.46 (1.29) 28.95 (0.66) 30.06 (0.91) 29.24 (0.65) 0.038 

GERDQb 1 7.07 (0.12) 7.04 (0.30) 7.09 (0.17) 6.72 (0.27) 7.25 (0.23) 0.5 

CFQc 3 32.79 (0.95) 34.57 (1.87) 34.14 (1.58) 32.50 (2.22) 30.44 (1.93) 0.4 

SOBQd 17 26.28 (1.31) 22.08 (3.13) 19.94 (1.80) 26.98 (3.12) 35.04 (2.56) <0.001 

PROMIS 
Fatiguee 

38 25.51 (0.52) 25.82 (1.28) 23.96 (0.82) 26.80 (1.35) 26.18 (0.93) 0.2 

SF12-Physicalf 6 41.70 (0.63) 44.78 (1.55) 42.23 (1.10) 42.80 (1.49) 38.77 (1.07) 0.009 

SF12-Mentalh 6 48.12 (0.56) 47.13 (1.21) 48.60 (0.90) 47.33 (1.49) 48.56 (1.09) 0.7 

 525 
aFAS range 5 – 50, higher values indicate more fatigue; bGERDQ range 0 – 18, higher values 526 

indicate a higher likelihood of GERD; cCFQ range 0 -100, higher indicates more cognitive 527 

failure; d SOBQ range 0 – 120, higher values indicate more shortness of breath; e PROMIS 528 

Fatigue range 10-50, higher values indicate more fatigue; f SF12-Physical-For general U.S. 529 
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population, mean = 50, SD = 10 and higher values indicate better physical QOL; gSF12-Mental-530 

For general U.S. population, mean = 50, SD = 10 and higher values indicate better  mental 531 

QOL. 532 

  533 
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Table 3: Distribution of VAS measures by radiomic cluster. Three participants were missing 534 

VAS and Scadding stage. All measures represent the abnormality was present (vs. absent) and 535 

are presented as N (%) unless otherwise noted. LN = lymphadenopathy; BVB = 536 

Bronchovascular Bundle 537 

 538 

Characteristic Overall 1 2 3 4 P-
value 

Sample Size 317 56 108 53 100  

Mediastinal LN 172 (54%) 19 (34%) 60 (56%) 29 (55%) 64 (64%) 0.003 

Hilar LN 135 (43%) 14 (25%) 46 (43%) 26 (49%) 49 (49%) 0.017 

Micronodule 147 (46%) 23 (41%) 46 (43%) 29 (55%) 49 (49%) 0.4 

Airway and Vascular Distortion 
(AD) 

      

   BVB Distortion 202 (64%) 19 (34%) 53 (49%) 43 (81%) 87 (87%) <0.001 

   Traction Bronchiectasis 129 (41%) 6 (11%) 25 (23%) 32 (60%) 66 (66%) <0.001 

Parenchymal Opacity and 
Distortion (PD) 

      

   Ground Glass 110 (35%) 5 (8.9%) 22 (20%) 21 (40%) 62 (62%) <0.001 

   Honeycombing 25 (7.9%) 0 (0%) 2 (1.9%) 4 (7.5%) 19 (19%) <0.001 

   Reticular Abnormality 88 (28%) 3 (5.4%) 17 (16%) 21 (40%) 47 (47%) <0.001 

   Mosaic Attenuation 86 (27%) 10 (18%) 18 (17%) 14 (26%) 44 (44%) <0.001 

   Interlobular Septal Thickening 54 (17%) 5 (8.9%) 14 (13%) 7 (13%) 28 (28%) 0.007 

Oberstein Overall; Mean (SE) 4.23 
(0.18) 

2.11 
(0.32) 

2.95 
(0.26) 

5.32 
(0.44) 

6.23 
(0.28) 

<0.001 

 539 
  540 
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Table 4: Results of the multivariable regression analysis (coefficients and SE’s) of 541 

the five discriminatory radiomic measures for PFT.d  542 

 GLCM 

Gaussian 

GLCM Inv 

Gaussian-E 

Kurtosis GLCM 

Sum 

Energy 

GLCM Min P-value Rsq Rsq - 

base 

FVC -0.02 (0.11) -0.06 (0.08) 0.44 (0.08)a 0.04 (0.09) -0.06 (0.08) <0.0001 0.726 0.622 

FEV1 -0.16 (0.10) -0.17 (0.08)c 0.08 (0.07) 0.01 (0.08) 0.23 (0.08)a <0.0001 0.619 0.514 

FEV1/FVC -0.04 (0.02)b -0.03 (0.01)b -0.07 (0.01)b -0.02 (0.01) 0.09 (0.01)b <0.0001 0.199 0.049 

DLCO -2.23 (0.85)a -1.65 (0.65)b 1.40 (0.62)c 0.50 (0.70) -0.04 (0.68)  <0.0001 0.636 0.541 

a P-value <0.001; b P-value<0.025; c P-value<0.035. dEach linear regression model 543 

included all five radiomic features and was additionally adjusted for age, gender, 544 

race/ethnicity, BMI and height. Bolded cells are statistically significant (p-values in the 545 

footnote). GLCM Gaussian is the sum of the GLCM with a Gaussian weight applied. 546 

GLCM-Inv Gaussian-E is the sum of the GLCM for the inverse Gaussian weighting 547 

scheme. GLCM Sum Energy is the sum of the squared values in the GLCM and a 548 

measure of uniformity. GLCM Min is the minimum of the GLCM. P-value is for the partial 549 

F-test of significance of any of the five radiomic measures. 550 

 551 

  552 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 5, 2024. ; https://doi.org/10.1101/2022.10.01.22280365doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.01.22280365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Table 5: Holistic interpretation of radiomic clusters in terms of VAS, PFT, and 553 

PRO measures. 554 

Cluster # Cluster Description Directional changes in 
characteristics 

Severe Disease Featuresa 

1 Low severity with less 
LN, less PA and AD and 
limited shortness of 
breath (PRO) 

Oberstein Score¯¯  
Scadding stage 1,2 
FEV1, FVC, DLCO  
LN¯ vs. Cluster 3,4 
SOBQ¯ vs. Cluster 4 
Age¯ & Female 

 
2 Low severity with more 

LN, smaller increases in 
PA and AD and limited 
PFT and shortness of 
breath 

Oberstein Score¯  
Scadding stage 1,2  
FEV1, FVC, DLCO  
LN vs. Cluster 1 
SOBQ¯ vs. Cluster 4 
Age ®, Balanced Sex 

 
3 Severe obstructive, 

fibrotic presentation with 
significant PA, AD, and 
decreased PFT 

Oberstein Score vs. 1,2¯ 4 
Scadding stage 2,4 
FEV1/FVC¯¯ (Obstruction), 
PFT¯ 
LN ® vs. 2 & 4 
Age ®, Female 

 
4 Severe PA and AD with 

significant fibrosis; low 
PFT and increased 
shortness of breath and 
fatigue. 

Oberstein Score 
Scadding stage 4 
FEV1, FVC, DLCO¯¯ 
LN ® vs. 2 & 3 
SOBQ, Fatigue 
Age ®, Balanced Sex 

 
a No fill represents similar to least impairment observed. Lined shading represents moderate 555 
impairment or ~25-50% prevalence for Scadding stage. Dark shading represents similar to 556 
worst impairment observed or ~50% prevalence for Scadding stage. 557 
 558 

 PFT 

Scad 
1, 2

¯¯ VAS

SOBQ 
¯

 PFT

Scad 
1, 2

 VAS

¯
SOBQ

¯ PFT 
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Scad 
2,4

 VAS

SOBQ

¯¯ PFT


Scad 

4

¯¯VAS

¯¯
SOBQ, 
Fatigue 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 5, 2024. ; https://doi.org/10.1101/2022.10.01.22280365doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.01.22280365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 

 
Figure Legends 
 
Figure 1: Heat map of the correlation between different radiomic measures for the 
entire population. 
 
Figure 2: Radiomic cluster differences in average PFT values (columns) from 
regression models with adjustment for demographics (top row), then additionally 
adjusted for either Scadding stage or Oberstein score (middle two rows), then adjusted 
for both Scadding stage and Oberstein score (bottom row). The significance of the 
cluster differences from cluster 1 are in green (p>0.05) and blue (p<0.05). The bottom 
text in each panel is the overall p-value for the association between clustering and PFT 
outcome along with the R2. 
 
Figure 3: Radiomic cluster differences in average PRO values (columns) from 
regression models with adjustment for demographics (top row), then additionally 
adjusted for either Scadding stage of Oberstein score (middle two rows), then adjusted 
for both Scadding stage and Oberstein score (bottom row). The significance of the 
cluster differences from cluster 1 are in green (p>0.05) and blue (p<0.05). The bottom 
text in each panel is the overall p-value for the association between clustering and PFT 
outcome along with the R2. 
 
 
Figure 4: CT images in axial orientation for three patients with minimum, median, and 
maximum values for GLCM Gaussian (left column), the GLCM Inverse Gaussian, and 
the kurtosis. 
 
Figure 5: Separation of Oberstein score and Scadding based kurtosis (y-axis) and 
GLCM-Min (x-axis) two of the five most important radiomic variables in defining clusters. 
Colors represent the Oberstein score and Scadding stage. 
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