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Abstract 

Question Addressed: High resolution computed tomography (HRCT) of the chest is 

increasingly used in clinical practice for sarcoidosis. Visual assessment of chest HRCTs 

in patients with sarcoidosis has high inter- and intra-rater variation. Radiomics offers a 

reproducible quantitative assessment of HRCT lung parenchyma and could be useful as 

an additional summary measure of disease. We develop radiomic profiles on HRCT and 

map them to clinical and patient reported outcomes. 

Patients and Methods: Three-dimensional radiomic features were calculated on chest 

HRCT for the left and right lung from sarcoidosis cases enrolled in the Genomic 

Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis study (N=321). Sparse K-

means was used to group sarcoidosis cases using their radiomic profiles. Linear 

regression investigated how pulmonary function tests and patient reported outcomes 

differed between groups. Resampling approaches were used to validate the robustness 

of the findings.  

Results: Five groups were identified. The new radiomic-based grouping was associated 

with Scadding stage (p<0.001), but each radiomic group had patients from all Scadding 

stages. All pulmonary function testing measures significantly differed between radiomic 

groups (p<0.001). Radiomic group remained significantly associated with pulmonary 

function even after adjusting for Scadding stage (p<0.0001). Individual radiomic 

measures explained 9-18% of the variation in pulmonary function testing. Only two 

patient reported outcomes (shortness of breath and physical health) differed by radiomic 

group (p<0.013).  
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Answer to Question: Radiomic quantification of sarcoidosis identifies subgroups 

associated with pulmonary function and patient reported outcomes. These associations 

provide additional evidence that radiomics may be useful for quantifying new disease 

phenotypes.  

 

Key words: quantitative imaging, texture analysis, pulmonary function, phenotyping, 

patient outcomes 
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Introduction 

Sarcoidosis is a granulomatous interstitial lung disease which affects ~ 110 thousand 

individuals in the United States (1). Typical diagnoses is between 30-50 years of life, 

resulting in a decrease in quality of life and productivity (2). Pulmonary disease occurs 

in over 90% of those with sarcoidosis (3) with significant morbidity and mortality. 

Currently, visual assessment of chest radiography (CXR) is used to quantify lung 

abnormalities standardized via the Scadding staging system (4) which groups CXR 

findings into five groups from 0 to 4. Substantial variation exists in the radiographic 

patterns within each Scadding stage. Scadding stage has limited utility in predicting 

prognosis even in the extremes of the scale (5). 

 

Chest high resolution computed tomography (HRCT) is increasingly used in clinical 

practice of sarcoidosis to monitor disease as it offers more detailed visualization of 

parenchymal abnormalities compared to CXR (4, 6–8). As with CXR, visual assessment 

of chest HRCT is used to evaluate abnormalities although there are limited standardized 

scoring metrics (4, 9, 10). This is due in part to the diverse and heterogeneous patterns 

present on chest HRCT in sarcoidosis, often with multiple patterns noted on one CT. 

These complexities result in high inter- and intra-rater variation (11). More automated 

systems that quantify sarcoidosis chest HRCT could decrease these sources of 

variation. 

 

Radiomics is a field of study in which large numbers of quantitative features are 

extracted from medical images (12). A radiomics panel computes summary measures of 
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the distribution of the Hounsfield units (HU) along with summary measures of the spatial 

relationships of neighbouring voxels (13). The result is a panel of quantitative measures 

characterizing the texture of the image. 

 

Radiomic analysis has proved useful for quantifying HRCT in emphysema (7), idiopathic 

pulmonary fibrosis (14, 15), interstitial lung disease (16, 17), diffuse lung disease (18) 

and cancer (19). Ryan et al. (20) showed the potential utility of radiomics in sarcoidosis, 

comparing radiomic and other textural based measures between sarcoidosis patients 

and controls. It remains unclear whether radiomics also has the potential to differentiate 

varied phenotypes within sarcoidosis patients. Radiomic profiles within sarcoidosis 

patients that also correlate with pulmonary function or patient reported outcomes could 

indicate that radiomics may serve as a useful measure to track change in the lung 

parenchyma over time. 

 

The goal of this research study is to develop a radiomic profile of sarcoidosis chest 

HRCT using a large, phenotypically-diverse population of sarcoidosis cases from the 

Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study 

(21) using statistical clustering techniques and to investigate the clinical utility of the 

clusters by quantifying their association with pulmonary function testing (PFT) and 

patient reported outcomes (PROs). PFTs and PROs were chosen to capture both 

clinician and patient focused measures of disease (26,,27).  

 

Methods 
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The study design and participants  

The sarcoidosis population was recruited in the multicentre NHLBI-funded GRADS 

study (N=368) (21). This investigation has GRADS ancillary study approval and all 

participants provided informed consent (IRB approval HS-2779 and HS-2780;N=365). 

More details of this cohort can be found in the online supplement.  

 

Pulmonary function testing included pre-bronchodilator (BD) forced expiratory volume at 

one second (FEV1), forced vital capacity (FVC), the ratio of FEV1 to FVC, and diffusing 

capacity of the lungs for carbon monoxide (DLCO). The PROs included the 

gastroesophageal reflux disease questionnaire (GERDQ) (24), the University of 

California San Diego Shortness of Breath Questionnaire (SOBQ) (25), two measures of 

fatigue (the Fatigue Assessment Scale [FAS] (26) and Patient-Reported Outcomes 

Measurement Information System fatigue profile [PROMIS] (27)), the Cognitive Failure 

Questionnaire (CFQ) (28), and the physical and mental subscales of the SF-12 (33,,34).  

The final analysis dataset included N=321 patients who each had both an analysable 

CT and clinical data (online supplement Figure 1). 

 

Radiomic Analysis  

Details of the imaging acquisition and lung segmentation can be found in the online 

supplement. Radiomic features were calculated on the left and right lungs using 

RIA_lung from the lungct R package. These features include 44 first-order features and 

239 GLCM features for each lung, for a total of 566 features. To calculate the GLCM 
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features, the Hounsfield units (HU) from each HRCT scan were first discretized into 16 

bins with equal relative frequencies; then, the features were calculated in each of 26 

directions, assuming a voxel distance of one; finally, these features from all directions 

were summarized using the mean statistic. The exact computation for each radiomic 

measure can be found elsewhere (31).  

 

The ComBat function (https://github.com/Jfortin1/ComBatHarmonization) was used to 

harmonize the radiomic measures across scanners (32–34), while preserving the 

biological variability in the following covariates: age, height, BMI, sex, race and clinical 

phenotype.  

 

As radiomic features are high-dimensional and repetitive (Figure 1), we first used a 

decorrelation filter (see online supplement), to identify a subset of features for analysis. 

This reduced the number of variables from 566 to 97. We then used robust k-means 

(35) to cluster patients (R package, RSKC). For outlier robustness, the proportion of 

cases trimmed was set at 0.1; the optimal bound on feature weights was found to be 

7.5, using the permutation approach observed in sparcl R package (36). We used a 

standardized Gap statistic to determine the optimal number of clusters using the cluster 

R package (37). A standardized Gap statistic is the typical gap statistic divided by its 

standard deviation. The variables with the top five weights from the RSKC clustering 

algorithm were then selected for further investigation (discriminative features). 

Statistical Analysis 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.01.22280365doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.01.22280365
http://creativecommons.org/licenses/by-nc-nd/4.0/


Linear regression was used to assess associations between cluster group and 

Scadding stage and each of the outcomes controlling for age, sex, race, height, and 

BMI. We fitted a model with only cluster group and only Scadding stage and then put 

both together in the model to determine if the association with radiomics remained 

significant in the presence of Scadding stage. Each outcome was modelled separately 

using a complete case analysis for that outcome. Linear regression was used quantify 

the associations between the selected discriminative radiomic features and the 

outcomes controlling for age, sex, race, height, and BMI.  

 

Validation 

The statistical analysis is an unsupervised learning problem, which makes traditional 

training and test validation approaches difficult because the true groupings are 

unknown. Instead, we investigated the effect of repeatedly applying our analysis 

pipeline under various conditions and with bootstrapped samples. The details of the 

validation can be found in the online supplement.  

 

Results 

Tables 1 and 2 show the characteristics of the study population, which included N=321 

sarcoidosis cases, including 147 (45.8%) males and 233 (72.6%) whites, with an 

average age of 53 (SD=10) years, average height of 67.0 in (SD=4.2) and average BMI 

of 30.6 kg/m2 (SD=6.5). Participants were spread across Scadding stages, with 43 

(13.5%) in stage 0, 63 (19.8%) in stage 1, 92 (28.9%) in stage 2, 44 (13.8%) in stage 3 

and 76 (23.9%) in stage 4. The average FVC was 2.62 L (SD=0.93), FEV1 was 3.57 L 
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(SD=1.14), and DLCO 80.15 (SD=23.37). The population was predominantly of the non-

obstructive type (72.7%).  

 

Radiomic Based Clustering of Sarcoidosis  

Five groups (clusters) of patients were identified (Table 1). Ordered from highest FVC to 

lowest, 75 (23.4%) patients were in radiomic group 0, 57 (17.8%) in group 1, 51 (15.9%) 

in group 2, 58 (18.1%) in group 3 and 80 (24.9%) in group 4. The new radiomic-based 

grouping was associated with Scadding stage (p<0.001), but not a direct reflection of 

Scadding stage (Table 1). 

 

PFT differed between radiomic groups (Figure2; p<0.0001). For FVC, radiomic groups 3 

and 4 had between 0.5 and 0.7 L lower average FVC compared to radiomic groups 0, 1, 

and 2. For FEV1, radiomic groups 2 and 3 and had an average FEV1 0.5 L lower than 

radiomic groups 0 and 1, which were similar. Radiomic group 4 had the lowest average 

FEV1 and was approximately 0.8 L lower than groups 0 and 1. DLCO has a similar 

pattern to FVC. Groups 2 and 4 demonstrated more obstructive disease compared to 

groups 0, 1, and 3 (57.4% and 38.0% vs. 13.5%-17.2%, respectively; p<0.001).  

 

Some PROs also differed between groups, but not consistently (Figure 3). Average 

shortness of breath (SOBQ) score differed between radiomic groups (p<0.0001). 

Radiomic group 4 had higher average SOBQ compared to radiomic groups 0 and 1 with 

radiomic group 4 being approximately 17.5 units higher than radiomic groups 0 and 1. In 
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addition, average physical health (SF-12) was lowest for radiomic group 4 and linearly 

increased to radiomic group 0. 

 

The new radiomic groups remained significantly associated with PFT after adjusting for 

Scadding stage (Figure 2; p<0.0001). Scadding stage also remains significant for all 

PFT after controlling for radiomic group (p<0.0041; Figure 2). The radiomic group also 

remained associated with SOBQ score (p=0.032; Figure 3), while Scadding stage was 

no longer associated with SOBQ (p=0.072; Figure 3). None of the other PROs 

maintained a significant association with radiomic group after adjustment for Scadding 

stage (p>0.38). 

 

The five most discriminatory radiomic features included kurtosis, which is a measure of 

shape of the distribution of the HU from an image, as well as four summary measures 

from the gray level co-occurrence matrix (GLCM). The GLCM measure spatial 

correlation and similarity of the HU in image voxels near each other. Image visualization 

of cases with different values of kurtosis and two GLCM measures are shown in Figure 

4 with distribution of kurtosis noted in Figure 5 for maximum, median and minimum 

kurtosis levels in our population. The images visibly show the increase in observable 

parenchymal abnormalities (left panel Figure 4) with lower kurtosis.  

 

The discriminatory radiomic measures were jointly associated with FVC, FEV1, 

FEV1/FVC and DLCO (p<0.001; Table 3). The radiomic measures explained between 9 

and 18% more variation in PFT than adjustment for demographics (age, race, sex, 
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height and BMI) only. For comparison, Scadding stage explained between 0 and 11% 

more variation in PFT. Kurtosis was associated with FVC, FEV1/FVC and DLCO 

(p<0.0001). A 1-unit increase in kurtosis was associated with a 0.4 L (SE=0.07; 

p<0.0001) increase in FVC. Kurtosis was also positively associated with increasing 

DLCO (1.59, SE=0.68, p=0.020).  Kurtosis was negatively associated with FEV1/FVC. A 

1-unit increase in kurtosis was associated with a 7% (SE=0.01, p<0.0001) decrease in 

FEV1/FVC ratio.  

 

Validation of Clustering 

Pairwise ARI values ranged from 0.3 to 1 and peaking around 0.5 (online supplement 

Figure 2 left). The maximum ARI of fit clusters with Scadding stage was 0.07. In the 

linear models, the maximum p-values for the significant of cluster in the demographic 

adjusted and demographic plus Scadding models were <0.0001 for both models. The 

corresponding proportions of p-values less than 0.01 were 100% for both models. 

 

Bootstrap samples contained between 184 and 219 unique observations and contained 

203 on average. Pairs of bootstrap samples contained between 100 and 159 unique 

overlapping observations and contained 129 on average or about 63% of the sample is 

used in each ARI calculation. Pairwise ARI values computed from unique overlapping 

observations ranged from 0.2 to 1 and had distribution peaking around 0.5 (online 

supplement Figure 2 right). The maximum ARI of fit clusters with Scadding stage was 

0.17. For significance of cluster label in linear models fit to bootstrap samples, 

maximum p-values for the significant of cluster in the demographic adjusted and 
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demographic plus Scadding models were <0.0001 for both models. The corresponding 

proportions of p-values less than 0.01 were 100%.  

 

Taken together the validation analysis suggest fairly mild sensitivity of clustering to the 

analysis pipeline. There is more sensitivity to bootstrapped samples; however cluster 

groups remain a significant predictor of FVC across all sources of random perturbations 

in the pipeline. 

 

Discussion  

Radiographic manifestations in sarcoidosis are protean.  As a result, image 

characterization is traditionally done visually and not standardized. The utility of visual 

assessment in sarcoidosis is limited by the intra-observer and inter-observer variability. 

Radiomics is a more reproducible and computationally efficient approach to 

characterize HRCT. We used radiomics to quantitatively characterize images from a 

large, phenotypically diverse cohort of sarcoidosis subjects and demonstrated that 

radiomics are associated with clinical and patient reported outcomes of disease. Using 

a common unsupervised learning approach (35), we identified five clusters of cases 

based on radiomic characterization of their chest CT. These five radiomic-based groups 

differed significantly by PFTs and several PROs. Notably, each radiomic group included 

a range of Scadding stages and radiomic group remained significantly associated with 

PFT after adjusting for Scadding stage. These data suggest that radiomics represents 

radiographic abnormalities that differ from Scadding stage. 
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Demographic characteristics of the individual explained a sizable amount of the 

variation observed in PFT (R2=50-60%). Radiomics also explained a significant amount 

of additional variation in PFT (8% to 18%). This additional amount of variation explained 

is consistent with other quantitative imaging approaches such as CALIPER (16) and 

those used for investigations of other lung conditions such as systemic sclerosis (38) 

and diffuse interstitial lung diseases (39). 

 

Except in lung cancer research, much of the work on quantitative CT image analysis 

has focused only on the HU density (17, 38). Our radiomic panel included 

summarization of both the density and the spatial characterization. We note that more 

measures of the GLCM appear as discriminative in the cluster analysis than first-order 

densitometry measures. This implies that the texture (the spatial information) is perhaps 

more useful for differentiating various parenchymal abnormalities seen in sarcoidosis.  

 

Although it remains speculative to the reasons for the association between decreased 

kurtosis and decreased FVC and DLCO, the following explanation is plausible. As 

kurtosis decreases, more severe parenchymal abnormalities are present that impact the 

function of the lung, as is shown in Figure 4. Severe parenchymal abnormalities in 

sarcoidosis are observed as higher HU values. In Figure 5 we observe the presence of 

a higher frequency of moderately high HU values dampening the peak in the HU 

distribution and leading to a lower kurtosis in this case. We also found a negative 

association between lung function and Gaussian weighted GLCM. Figure 4 highlights 
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more abnormalities present with a higher Gaussian weighted GLCM value, as might be 

expected with this association. 

  

The associations with PROs were less consistent, although important patterns 

emerged. Radiomic group 4 demonstrated decreased quality of life based on physical 

function in the SF-12 and worse shortness of breath on the SOBQ, findings that are 

consistent with the worse lung function in this group. Radiomic group explained 

substantially less variation in PROs (1 to 15%) compared to PFTs. While the tools we 

used to measure PROs are validated and used widely, they are not generally correlated 

with objective measures of lung function (40). As an example, fatigue is a known multi-

factorial PRO in sarcoidosis and may impact a number of other PRO (22, 40). For 

example, fatigue can be associated with shortness of breath and the SOBQ but also 

with other organ involvement; these two measurements can be confounded by physical 

function and cardiac or even neurological involvement. Our finding that radiomic group 

is associated with decreased physical function and increased shortness of breath 

provides encouragement that more detailed characterization of lung abnormalities, like 

we developed here, could contribute to a better understanding of the current disconnect 

between objective measures of lung function and patient experiences.  

 

This study had several strengths. To our knowledge, this was the largest group of 

sarcoidosis patients with research grade HRCT available allowing for a full 3-D based 

quantitative analysis. In addition to the high-quality and robust clinical data, the GRADS 

study also provides a comprehensive and consistently collected set of patient reported 
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outcomes, which reflect important aspects of treatment decision-making processes (23). 

The results were also internally validated. The validation results taken together suggest 

our approach is not over fitting to these data. 

 

This study is not without limitations. The GRADS study relied on enrolment from 

academic centres and could be skewed to a population that was referred for worse 

disease, was near one of the centres, which were primarily localized to the Eastern US.  

The demographic is predominantly white and of higher SES as a result and thus did not 

provide full representation of the spectrum of disease.  In addition, many subjects had 

disease for a decade or longer and were treated. While the same protocol was used 

across study sites for obtaining the CT images we studied, the scanners themselves 

differed. We performed harmonization of the scans to mitigate the potential for 

systematic large differences in scans due to scanner type. In addition, the distribution of 

PFT measures is not dependent on scanner type such that we expect any differences in 

the radiomic measures due to scanner type are non-differential as they relate to PFTs.  

Finally, the number of radiomic clusters (groups) we identified may not directly translate 

to other populations of sarcoidosis patients or even be the optimal solution for this group 

of patients.  The optimization algorithm we used is common, however, there is no single 

way to choose the optimal number of clusters.  

  

Radiomic and other quantitative imaging approaches have a major strength in that they 

can be computed in a time efficient and reliable, reproducible automated procedure. 

The radiomics package in R took only 3 minutes to compute all the 3-D radiomics 
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measures. This means large quantities of scans can have radiomic profiles computed 

for aiding in decisions on what scans the radiologist might prioritize for further 

consideration for visual or clinician evaluation.  

 

In summary, this work provides evidence that in sarcoidosis radiomic quantification is 

useful for classifying abnormality of the lung along with pulmonary function and to a 

lesser degree patient reported outcomes. Future work should evaluate the potential of 

radiomics to capture small changes over time not easily detected by radiologic 

assessment to further evaluate the potential of radiomics to serve as a clinically useful 

quantitative measure of sarcoidosis presentation and progression.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.01.22280365doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.01.22280365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Table 1: Patient demographics by radiomic grouping, ordered from least severe (0) to most severe (4) based on average 
FVC. Unless otherwise noted values are mean (SD). 
 

 N 
Miss 

Overall 0 1 2 3 4 P-value 

Sample Size  321 75 57 51 58 80  

Age (yr) 0 53 (10) 52 (10) 49.7 (10.5) 52.6 (9.9) 54.2 (9.4) 55.2 (8.9) 0.017 

Male, N(%) 0 147 (45.8) 39 (52.0) 19 (33.3) 19 (37.3) 31 (53.4) 39 (48.8) 0.096 

White, N(%) 0 233 (72.6) 63 (84.0) 44 (77.2) 40 (78.4) 39 (67.2) 47 (58.8) 0.005 

Height (in) 0 67.0 (4.2) 67.7 (4.5) 66.3 (4.2) 66.5 (4.2) 67.2 (4.2) 66.9 (3.7) 0.333 

BMI (kg/m^2) 0 30.6 (6.5) 32.6 (5.7) 30.0 (7.4) 27.4 (6.1) 32.5 (6.4) 29.9 (5.9) <0.001 

Scadding 3       <0.001 

0  43 (13.5) 17 (23.0) 9 (15.8) 4 ( 8.0) 8 (14.0) 5 ( 6.2)  

1  63 (19.8) 27 (36.5) 17 (29.8) 5 (10.0) 6 (10.5) 8 (10.0)  

2  92 (28.9) 19 (25.7) 17 (29.8) 16 (32.0) 22 (38.6) 18 (22.5)  

3  44 (13.8) 9 (12.2) 12 (21.1) 6 (12.0) 10 (17.5) 7 ( 8.8)  

4  76 (23.9) 2 ( 2.7) 2 ( 3.5) 19 (38.0) 11 (19.3) 42 (52.5)  

FVC (L) 6 3.57 (1.14) 4.04 3.90 (1.16) 3.65 3.33 3.01 <0.001 
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(1.11) (1.22) (0.90) (1.01) 

Scanner 
Modela 

0       0.97 

Discovery  4 ( 1.2) 1 ( 1.3) 1 ( 1.8) 0 ( 0.0) 1 ( 1.7) 1 ( 1.2)  

iCT128  34 (10.6) 11 (14.7) 8 (14.0) 2 ( 3.9) 6 (10.3) 7 ( 8.8)  

LightSpeed  109 (34.0) 25 (33.3) 19 (33.3) 18 (35.3) 22 (37.9) 25 (31.2)  

Optima  3 ( 0.9) 0 ( 0.0) 1 ( 1.8) 1 ( 2.0) 0 ( 0.0) 1 ( 1.2)  

Sensation  8 ( 2.5) 2 ( 2.7) 2 ( 3.5) 1 ( 2.0) 0 ( 0.0) 3 ( 3.8)  

SOM Def  38 (11.8) 10 (13.3) 8 (14.0) 6 (11.8) 5 ( 8.6) 9 (11.2)  

SOM Def AS  91 (28.3) 20 (26.7) 15 (26.3) 17 (33.3) 15 (25.9) 24 (30.0)  

SOM Def 
Flash 

 34 (10.6) 6 ( 8.0) 3 ( 5.3) 6 (11.8) 9 (15.5) 10 (12.5)  

aDiscovery = Discovery CT750 HD; iCT = iCT 128; LightSpeed = LightSpeed VCT; Optima = Optima CT660;  Sensation = Sensation 
64; SOM Def = SOMATOM Definition; SOM Def AS = SOMATOM Definition AS;  SOM Def Flash = SOMATOM Definition Flash 
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Table 2: Summary measures of pulmonary function testing and self-reported outcomes by radiomic grouping 

 N 
Miss 

Overall 0 1 2 3 4 p-
value 

Sample Size  321 75 57 51 58 80  

FEV1 (L) 6 2.62 (0.93) 3.11 (0.85) 2.98 (0.95) 2.45 (1.05) 2.50 (0.69) 2.09 (0.74) <0.001 

FVC (L) 6 3.57 (1.14) 4.04 (1.11) 3.90 (1.16) 3.65 (1.22) 3.33 (0.90) 3.01 (1.01) <0.001 

FEV1/FVC (%) 6 0.73 (0.11) 0.77 (0.06) 0.76 (0.10) 0.66 (0.14) 0.75 (0.07) 0.70 (0.11) <0.001 

Obstructive 
Typea; N (%) 

6 86 (27.3) 10 (13.5) 9 (15.8) 27 (57.4) 10 (17.2) 30 (38.0) <0.001 

DLCO 
(mL/min/mmHg) 

17 80.2 (23.4) 92.3 (17.2) 86.6 (21.4) 80.2 (22.5) 77.0 (23.4) 65.5 (22.5) <0.001 

FASa 141 29.8 (5.5) 29.3 (5.7) 32.5 (6.6) 29.6 (5.4) 29.0 (4.8) 29.3 (4.7) 0.11 

GERDQb 2 7.1 (2.1) 7.0 (1.7) 7.1 (2.2) 6.7 (2.0) 7.2 (2.2) 7.3 (2.3) 0.57 

CFQc 4 32.8 (17.0) 35.4 (17.9) 34.8 (14.0) 31.4 (15.5) 31.8 (16.1) 30.4 (19.2) 0.32 

SOBQd 18 26.3 (22.8) 19.5 (19.2) 22.1 (22.6) 24.9 (20.8) 27.3 (20.3) 35.8 (26.2) <0.001 

PROMIS 
Fatigueee 

39 25.5 (8.7) 23.2 (7.8) 26.2 (9.4) 25.9 (9.4) 26.1 (8.4) 26.3 (8.7) 0.24 

SF12-Physicalf 7 41.7 (11.2) 43.1 (11.9) 44.5 
(11.52) 

43.1 (10.8) 39.9 (10.1) 38.8 (10.7) 0.015 
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SF12-Mentalh 7 48.1 (10.0) 48.0 (9.1) 46.7 (9.51) 48.2 (10.3) 48.3 (10.8) 49.1 (10.5) 0.74 

 
aFAS range 5 – 50, higher values indicate more fatigue; bGERDQ range 0 – 18, higher values indicate a higher likelihood of GERD; 
cCFQ range 0 -100, higher indicates more cognitive failure; d SOBQ range 0 – 120, higher values indicate more shortness of breath; e 
PROMIS Fatigue range 10-50, higher values indicate more fatigue; f SF12-Physical-For general U.S. population, mean = 50, SD = 10 
and higher values indicate better physical QOL; gSF12-Mental-For general U.S. population, mean = 50, SD = 10 and higher values 
indicate better  mental QOL. 
 
 
 
Table 3: Results of the regression analysis of the five discriminatory radiomic measures for PFT.d  

 
GLCM 
Gaussian 

GLCM Inv 
Gaussian 

GLCM Sum 
Entropy Kurtosis GLCM Min P-value Rsq 

Rsq - 
base 

FVC -0.15 (0.06)b -0.21 (0.08)b 0.09 (0.07) 0.40 (0.07)a -0.04 (0.09) <0.0001 0.724 0.611 
FEV1 -0.20 (0.06)a  -0.41 (0.08)a 0.15 (0.06)b 0.04 (0.07 0.34 (0.08) <0.0001 0.639 0.502 
FEV1/FVC -0.02 (0.01)c -0.06 (0.01)a 0.01 (0.01) -0.07 (0.01)a 0.11 (0.01)a <0.0001 0.242 0.048 
DLCO -0.41 (0.58) -1.35 (0.74) 2.00 (0.62)b 1.59 (0.68)b  -0.01 (0.79)  <0.0001 0.599 0.508 
a P-values <0.001; b P-values<0.02; c P-values<0.03. dEach linear regression model included all five radiomic features and 
was additionally adjusted for age, gender, race, BMI and height. Bolded cells are statistically significant (p-values in the 
footnote). GLCM - Gaussian is the sum of the GLCM with a Gaussian weight applied. GLCM-IGE is the sum of the GLCM 
for the inverse Gaussian weighting scheme. GLCM Sum-Entropy is a measure of the disorder of the GLCM. GLCM Min is 
the minimum of the GLCM. P-value is for the partial F-test of significance of any of the five radiomic measures. 
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Figures 
 

 
Figure 1: Heat map of the correlation between different radiomic measures for the 
entire population. 
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Figure 2: Group differences in average PFT values from regression models with 
adjustment for demographics (circles) and then also Scadding stage (triangle). The 
significance of the radiomic group differences from group 0 are in green (p>0.05) and 
blue (p<0.05). The bottom left text in each panel is the overall p-value for the 
association between radiomic grouping and PFT outcome along with the R2. The bottom 
right text if the overall p-value for the association between radiomic grouping and PFT 
after additional adjustment for Scadding stage along with the R2. 
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Figure 3: Group differences in average PRO values from regression models with 
adjustment for demographics (circles) and then also Scadding stage (triangle). The 
significance of the radiomic group differences from group 0 are in green (p>0.05) and 
blue (p<0.05). The bottom left text in each panel is the overall p-value for the 
association between radiomic grouping and PFT outcome along with the R2. The bottom 
right text if the overall p-value for the association between radiomic grouping and PFT 
after additional adjustment for Scadding stage along with the R2. 
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Figure 4: CT images in axial orientation for three patients with minimum, median, and 
maximum values for GLCM Gaussian (left column), the GLCM Inverse Gaussian, and 
the kurtosis. 

 
Figure 5: Distribution of HU from HRCT images with the maximum (32.2) (solid), 
median (9.6) (dashed) and minimum (0.4) (dotted) percentiles of the kurtosis 
distribution, respectively. 
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