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Abstract  24 

The 16p11.2 and 22q11.2 copy number variants (CNVs) are associated with neurobehavioral 25 

traits including autism spectrum disorder (ASD), schizophrenia, bipolar disorder, obesity, and 26 

intellectual disability. Identifying specific genes contributing to each disorder and dissecting the 27 

architecture of CNV-trait association has been difficult, inspiring hypotheses of more complex 28 

models, such as the effects of pairs of genes. We generated pairwise expression imputation 29 

models for CNV genes and then applied these models to GWAS for: ASD, bipolar disorder, 30 

schizophrenia, BMI (obesity), and IQ (intellectual disability). We compared the trait variance 31 

explained by pairs with the variance explained with single genes and with traditional interaction 32 

models. We also modeled polygene region-wide effects using summed ranks across all genes in 33 

the region. In all CNV-trait pairs except for bipolar disorder at 22q11.2, pairwise effects explain 34 

more variance than single genes, which was specific to the CNV region for all 16p11.2 traits and 35 

ASD at 22q11.2. We identified individual genes over-represented in top pairs that did not show 36 

single-gene signal. We also found that BMI and IQ have a significant association with a 37 

regionwide score.  Genetic architecture differs by trait and region, but 9/10 CNV-trait 38 

combinations showed evidence for multigene contribution, and for most of these, the importance 39 

of combinatorial models appeared unique to CNV regions. Our findings suggest that mechanistic 40 

insights for CNV pathology may require combinational models. 41 

 42 

 43 

 44 

 45 

 46 
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Introduction 47 

 48 

Copy number variants (CNVs) at 16p11.2 and 22q11.2 contribute to neurobehavioral disorders 49 

including autism spectrum disorder (ASD), schizophrenia, bipolar disorder, intellectual disability, 50 

and obesity [1,2,11,3–10]. Specific gene-trait contributions at these regions have proven difficult 51 

to find. Single-gene fine-mapping approaches have been difficult due to a lack of highly-penetrant 52 

point mutations in these genes and inconsistent findings in animal models [12–15]. A potential 53 

reason for the lack of clear gene-phenotype relationships is that the architecture may be more 54 

complicated than single-gene contributions to each trait [16]. More complex models are good 55 

candidates for in silico analysis, as multiple hypotheses can be efficiently assessed in parallel. 56 

 57 

Data in humans and mice suggest that the expression of 16p11.2 and 22q11.2 CNV genes is 58 

consistently upregulated/downregulated in duplication/deletion carriers [17–20]. From this 59 

observation, we can propose that gene expression dysregulation (and potential downstream protein 60 

expression) is likely to be a pathophysiological mechanism of CNV-associated traits. This implies 61 

that examination of the consequences of gene expression variation may uncover the genetic 62 

architecture of CNV-phenotype association. However, gene expression data for cases affected with 63 

neurobehavioral traits remains limited in availability and ambiguous with respect to causality. 64 

Instead, we can use expression-imputation methodology to use genetic data, available for a far 65 

greater number of (control) individuals, to determine gene expression under the assumption that 66 

genetic regulation is similar in cases and controls. This method allows us to analyze the 67 

architecture at a gene level (rather than individual SNPs) and because it is based on germline 68 

genetics, is not affected by potential confounding influences on gene expression such as age, 69 
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chronic illness, medication use, and circumstances of death and tissue preservation.  eQTLs (in 70 

our case, SNPs used for expression prediction) are less likely to affect genes in a context-dependent 71 

manner, as eQTL-linked genes are less likely to be affected by enhancer activity compared to 72 

GWAS-linked genes  [21]. Given that our regions of interest have trait associations via CNVs but 73 

very limited GWAS signal for the same traits, using eQTLs and expression prediction is likely to 74 

find additional information missed by GWAS analyses.    75 

 76 

Previously, we used expression imputation to test whether individual genes at the 16p11.2 and 77 

22q11.2 CNV regions were contributing to our five traits of interest (ASD, schizophrenia, bipolar 78 

disorder, intellectual disability, and obesity) [22]. We found contributions of INO80E to 79 

schizophrenia and body mass index (BMI) and of SPN to BMI and IQ, both at 16p11.2. However, 80 

no individual genes were associated with 22q11.2 traits, despite using equally-powered genetic 81 

datasets. No genes at 16p11.2 were significantly associated with ASD or bipolar disorder using 82 

our experiment-wide threshold. These lack of findings in light of the overall success of our 83 

approach were disappointing given the high prevalence of traits such as ASD in 16p11.2 CNV 84 

carriers and schizophrenia in 22q11.2 deletion carriers. One explanation for lack of gene-trait 85 

association is that individual genes may not be independent contributors to these traits, rather the 86 

genetic architecture is combinatorial. Promisingly, it was found that several pairs of 16p11.2 genes 87 

in Drosophila showed evidence of stronger effects on eye phenotypes than individual genes, and 88 

double mutants of 16p11.2 genes in zebrafish led to hyperactivity and body size phenotypes 89 

[15,23]. Thus, we aimed to investigate combinatorial associations in our traits of interest in 90 

humans. 91 

 92 
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In a CNV carrier, all genes within the breakpoints are duplicated or deleted, typically with a similar 93 

increase/decrease of expression across all genes. In our previous study, we considered the level of 94 

expression of any individual gene, and its effect on relevant phenotypes in non-carriers. Here, we 95 

consider two additional models in non-carriers (Figure 1). First, as a feasible way to model 96 

multigene effects at specific pairs of genes, for each gene pair we look for trait association with 97 

expression increases or decreases across two genes. Second, we analyze association patterns when 98 

gene expression trends towards being upregulated or downregulated across the whole region as a 99 

way to capture effects of more than two genes. 100 

 101 

Methods 102 

 103 

Genes studied  104 

 105 

We selected genes at the 16p11.2 and 22q11.2 CNV regions that fell into one of these annotation 106 

categories: protein-coding, lincRNA, pseudogene, antisense, miRNA. These were consistent with 107 

what was used for PrediXcan modeling previously, with miRNA included given the strong 108 

representation of miRNAs at 22q11.2 [24,25]. We included noncoding genes, as they have not 109 

received significant attention in studies of these regions, despite some evidence of miRNA 110 

contribution to 22q11.2 phenotypes. In addition, we considered flanking genes within 200kb of 111 

the region, as there is suggestive evidence of broader transcriptional effects in CNV carriers, and 112 

because we previously found evidence of flanking gene involvement in psychosis  [22,27]. 113 

Supplementary tables 1 and 2 contain single and pairwise CNV genes used in analysis. 114 

 115 
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Phenotypes and datasets 116 

 117 

Imputed genotypes from the Psychiatric Genomics Consortium were used to study schizophrenia 118 

(wave 3 freeze), bipolar disorder (wave 2 freeze), and ASD (2019 freeze, used for analysis of 119 

variance explained only) [28–30]. An additional joint PGC-iPsych ASD summary statistic set 120 

was used to boost power for ASD analyses (www.med.unc.edu/pgc/download-results/) [30]. 121 

Summary statistics from the GIANT consortium (2015 freeze, 122 

www.portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files) 123 

were used to study BMI, and a VU-Amsterdam University cohort (wave 2 freeze, 124 

www.ctg.cncr.nl/software/summary_statistics) was used for IQ [31,32]. Individual-level IQ and 125 

BMI data from the UK Biobank were used for validating discoveries in individual-level data on 126 

phenotypes for which individual-level data were not available [33]. Cohorts and sample sizes are 127 

listed in Supplementary table 3. 128 

 129 

Predicting the expression levels of individual 16p11.2 and 22q11.2 CNV genes 130 

 131 

Analyses of single genes were performed using elastic net models from www.predictdb.org 132 

trained on the GTEx version 8 data [34]. These prediction models were available for up to 42 133 

16p11.2 genes and up to 65 22q11.2 genes in at least one tissue. The elastic net approach was 134 

chosen for consistency with our pairwise model training approach. Gene expression for each 135 

CNV gene in each individual was predicted using the --predict option in PrediXcan, for each 136 

cohort [35]. Analyses on summary statistics did not require expression prediction.  137 

 138 
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Finding control gene sets 139 

 140 

To create control gene sets to use in a permutation-based analysis, the 16p11.2 and 22q11.2 141 

regions were matched on three categories: (1) number of genes (exact), (2) length of the region 142 

(in bases, 80-120% of the region), (3) ratio of coding to non-coding genes (at least 80% that of 143 

the region to avoid picking up dense regions of noncoding genes). Gene sets that overlapped the 144 

distal 16p11.2 region or the Major Histocompatibility Complex (a known gene-dense major 145 

GWAS-identified locus for schizophrenia) were excluded [36]. Overall, we found 38 comparable 146 

regions to 16p11.2 and 28 to 22q11.2. The list of control regions can be found in Supplementary 147 

table 4.  148 

 149 

Predicting the expression of pairs of 16p11.2 and 22q11.2 CNV genes 150 

 151 

As a simple way to model pairwise gene expression, we took every pair of genes in each CNV 152 

and defined pairwise “joint genes” with expression equal to the inverse-normalized sum of the 153 

expressions of each gene in GTEx. Normalized GTEx gene expression sums were used as inputs 154 

to the PrediXcan elastic net model training pipeline 155 

(www.github.com/hakyimlab/PredictDB_Pipeline_GTEx_v7), with covariates used for the 156 

GTEx v8 analyses downloaded from www.gtexportal.org/home/datasets. Given that our goal was 157 

to evaluate the contribution of these pairwise genes to specific traits, rather than a general-use 158 

pairwise model training process, a high overlap between the SNPs in our models and the GWAS 159 

datasets was vital. For that reason, we chose to repeat the training process for each trait, leaving 160 
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only the SNPs in each GWAS dataset as inputs for model training. We repeated this model 161 

training process again on the control pairs of genes.  162 

 163 

Association studies between predicted expression and traits  164 

 165 

Individual level 166 

 167 

Each PGC cohort was converted from PLINK to dosage format for PrediXcan input. Tissue-168 

specific prediction models were applied to each tissue in each cohort.  MultiXcan, a cross-tissue 169 

implementation of PrediXcan, was used to combine predicted expressions across tissues and 170 

perform association with trait [37]. Using the MultiXcan p-value and the average direction of 171 

effect of each gene across tissues, we used METAL to determine a per-gene result [38]. Both 172 

single gene and pairwise analyses were performed in the same way.  173 

 174 

Summary level 175 

 176 

The ‘MetaMany’ option in the MetaXcan package was applied to summary-level data using 177 

single-tissue prediction models to generate gene-level association results for each tissue [39]. S-178 

MultiXcan, a cross-tissue implementation of PrediXcan for summary level data, was used to 179 

combine across tissues for tissue-wide association results [37]. Cross-tissue covariances were 180 

downloaded from PredictDB for single-gene models and generated from single tissue 181 

covariances for pairwise models using the covariance builder script available at 182 
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www.github.com/hakyimlab/MetaXcan/blob/master/software/CovarianceBuilder.py.  Both 183 

single gene and pairwise analyses of summary statistics were performed in the same way.  184 

 185 

UK Biobank additional expression prediction  186 

While the best-powered GWAS meta-analyses of BMI and IQ were available as summary 187 

statistics, certain analyses such as interaction models and percent variance explained require 188 

individual-level data. We obtained IQ and BMI measurements from the UK Biobank and took an 189 

average across visits for people with multiple measurements. Analysis was limited to individuals 190 

who reported their ethnicity as “white”, and included age, age-squared, and 40 principal 191 

components as covariates. A large number of principal components was used due to the 192 

correlation between the BMI phenotype and components in the PC 30-40 range. Expression 193 

imputation for single genes and pairs was performed with PrediXcan as described above. 194 

 195 

Significance thresholds for association studies 196 

 197 

For all association studies, a permutation-based threshold was determined using the control gene 198 

sets. After association testing between control gene sets for a CNV and phenotype, the median of 199 

the 5th percentile of control sets was used as a 5% significance threshold for the true CNV 200 

region. As control genes are chosen independently of association with trait, using a median 201 

across all regions will counteract bias caused by any control gene set overlapping a strong 202 

GWAS peak for a trait. 203 

 204 

Estimating variance explained by pairwise models 205 
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 206 

Variance in phenotype explained by imputed expression was measured as the R2 of the linear 207 

model between case-control status and imputed expression for all genes in the CNV. 208 

Specifically, the adjusted R2 was used, as using all pairs of genes involves a large number of 209 

variables. For every tissue-cohort pair, R2 values were calculated using all single genes, all 210 

pairwise genes, and interaction terms. The number of times a model (single, pairwise, or 211 

interaction) had the greatest R2 for a cohort-tissue pair was tallied. The same process was 212 

implemented for control gene sets. A chi-square test was performed to determine whether the 213 

proportion of pairwise models being “best” in a CNV region was different from the proportion in 214 

control regions. This approach required individual-level data, and as we used summary level data 215 

for ASD, IQ, and BMI, we performed it in PGC ASD individual-level data (without iPSYCH), 216 

and UK Biobank for IQ and BMI (each of which was treated as one single cohort).    217 

 218 

We acknowledge that previous attempts to solve the problem of variance explained by predicted 219 

expression were made by Liang et al [40]. We attempted this method and found extremely large 220 

estimates for variance explained. This inflation might be due to our relatively small (<5 MB) 221 

regions of interest with high SNP and predicted-expression correlation structure, as opposed to a 222 

predicted transcriptome-wide screen. The estimates provided by our approach, where the 223 

adjusted R2 rarely exceeds 0.05, are a more reasonable estimate of the effect of one small set of 224 

genes on a trait.  225 

 226 

Testing a region-wide model 227 
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We estimated a region-wide score for each individual using their single-gene predicted 228 

expressions. First, we found the normalized rank of an individual for the expression of a gene; 229 

the median rank was used for genes expressed in multiple tissues. The sum of an individual’s 230 

gene-specific rankings became the individual’s region-wide score; these scores were converted 231 

to normalized (between 0 and 1) ranks. For quantitative traits, we quantified the relationship 232 

between score and phenotype as a Pearson correlation. For binary traits, we tested for a 233 

difference in score distribution between cases and controls (Kolmogorov-Smirnov test), as well 234 

as for a difference in score means between cases and controls (t-test). 235 

 236 

Initially, we attempted to approach region-wide association in the same way as pairwise 237 

association for schizophrenia. Region-wide sums of GTEx expressions of all CNV genes were 238 

used as inputs into elastic net models from GTEx SNPs, with the same covariates as before. 239 

After model quality filtering, models in only 5 tissues at 16p11.2 and 13 tissues at 22q11.2 240 

remained, all with R2 < 0.1. As a result, we did not further pursue this method.  241 

 242 

Results  243 

 244 

Summary of individual gene results 245 

 246 

We have updated our single-gene prioritization from our previous study using new models from 247 

GTEx version 8 and new data from schizophrenia PGC wave 3 (Table 1) [28,34]. With this 248 

enhancement, we find one 22q11.2 gene (PPIL2) significantly associated with schizophrenia at a 249 

permutation-based threshold (Table 1, Supplementary table 5). We note that the permutation-250 
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based threshold is less conservative than the experiment-wide thresholds used in previous 251 

analysis [22]. However, we can identify five top genes at 22q11.2 associated with BMI (YDJC, 252 

CCDC116, PPIL2, THAP7, UBE2L3), primarily located outside the canonical CNV region (LCR 253 

D-E), three with bipolar disorder (TMEM191B, TUBA8, PPIL2), six with ASD (CLTCL1, 254 

AC004471.10, UFD1L, DGCR14, CCDC188, DGCR9), and two with IQ (SEPT5, LINC00896) 255 

(Table 1, Supplementary table 5).  The top genes associated with ASD at 22q11.2 are located in 256 

the LCR A-B part of the variant, consistent with a previous study [41].  At 16p11.2, the majority 257 

of genes tested (30/38) show an association with BMI. We find that, after updating single-gene 258 

prediction models to GTEx v8, SPN is no longer a major driver of BMI and IQ, as the best 259 

predictive SNPs in the most up-to-date version of GTEx did not overlap with top SPN SNPs as 260 

before; however, new models for SULT1A4 indicated this gene as a major contributor to both 261 

BMI and IQ (Table 1, Supplementary table 5). INO80E and KCTD13 remained associated with 262 

BMI. We find that INO80E is a top association with bipolar disorder and ASD; this gene 263 

previously showed suggestive bipolar disorder association but did not meet experiment-wide 264 

significance criteria even with the updated models [22].  265 

 266 

Predicting expression of pairs of 16p11.2 and 22q11.2 genes 267 

 268 

We trained elastic net models for pairs of 16p11.2 and 22q11.2 genes (both coding and non-269 

coding when possible) using dataset-specific SNP lists to maximize overlap. In general, the 270 

model quality (as measured by the performance R2) of pairwise models was in-between that of 271 

the two genes that it comprised, as expected (Supplementary table 2).  In addition, we trained 272 

pairwise models for control gene regions (N=38 for 16p11.2 and N=28 for 22q11.2).  273 
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 274 

Pairwise prediction models explain more trait variance than single-gene or interaction models 275 

 276 

To assess whether analyzing pairs of genes provided more information than individual genes, we 277 

calculated how much variance in CNV-associated traits was explained by predicted gene 278 

expression as the adjusted R2 of linear models of individual gene expression predictions, 279 

pairwise additive gene expression predictions, and pairwise interaction models. We calculated 280 

the proportion of tissue-cohort pairs for which pairwise gene expression was the best predictor. 281 

In all trait-region pairs, with the exception of bipolar disorder at 22q11.2, we found that the trait 282 

variance explained was greater for gene pairs proportionally more often than either single genes 283 

or interactions (Table 2). To confirm whether this phenomenon was CNV region-specific and not 284 

a polygenic property of the trait, we additionally performed this analysis for control gene sets. 285 

For all traits tested at 16p11.2, the proportion of pairwise models exceeding single or interaction 286 

was greater than that of control regions (P < 0.05). At 22q11.2, the CNV region performed better 287 

than control regions in ASD (P = 1.3x10-9) and BMI (P < 2.2x10-16), but schizophrenia, bipolar 288 

disorder, and IQ showed similar proportion pairwise in control regions (Table 2). 289 

 290 

Pairwise association signal is oligogenic 291 

 292 

Using our pairwise models to perform association analysis, we found that there were 269 293 

16p11.2 and 278 22q11.2 pairs significantly associated with ASD, 204 16p11.2 and 132 22q11.2 294 

pairs associated with bipolar disorder, 695 16p11.2 and 129 22q11.2 pairs associated with 295 

schizophrenia, 74 16p11.2 and 30 22q11.2 pairs associated with IQ and 1,206 16p11.2 and 162 296 
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22q11.2 pairs associated with BMI (Table 1, Supplementary table 6, Supplementary table 7). The 297 

proportion of gene pairs exceeding the significance threshold was consistent with that of single 298 

genes, and in the cases where the proportions differed (such schizophrenia and IQ at 16p11.2, 299 

BMI and IQ at 22q11.2), the pairwise analysis had the lower proportion of significantly 300 

associated genes/pairs. We thus find that pairwise association signal is oligogenic, spread across 301 

many pairs rather than enrichment specific to top outlier results (Supplementary figure 1, 302 

Supplementary figure 2). Due both to the eQTL sharing between pairwise prediction models as 303 

well as to the sharing of genes across pairs, we are unable to use our approach to confidently 304 

identify specific candidate gene pairs; several pairs of potential interest are noted in the 305 

Discussion section. 306 

 307 

Patterns of genes most represented in associated pairs differ by phenotype 308 

 309 

We wanted to know whether the pairwise associations were primarily comprised of genes with 310 

independent association signal or indicated genes with uniquely combinatorial effects. The 311 

results were strikingly different across traits. In two cases – bipolar disorder at 16p11.2 and 312 

bipolar disorder at 22q11.2 – one gene stood out as a disproportionate contributor to pairs, but 313 

was also a top single gene association (INO80E and PPIL2 respectively). No single gene 314 

contributed disproportionally to pairs for ASD, schizophrenia, or BMI at 16p11.2 315 

(Supplementary figure 3). At 22q11.2, however, ASD pairs disproportionately included five 316 

genes - AC004471.10, CLTCL1, and CCDC118, which were in the top ASD single genes, as well 317 

as DGCR2 and DGCR6 which we did not pick up as top single gene associations. For IQ at 318 

22q11.2, COMT was a gene that disproportionately appeared in pairs and was not a top single 319 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2022. ; https://doi.org/10.1101/2022.09.29.22280538doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.29.22280538
http://creativecommons.org/licenses/by-nd/4.0/


 15 

gene (Supplementary figure 4). The remaining genes over-represented in pairs at both 16p11.2 320 

and 22q11.2 were primarily non-coding genes that did not have significant single-gene models, 321 

demonstrating potential regulatory effects of non-coding genes on CNV coding genes 322 

(Supplementary figure 3, Supplementary figure 4). Three of the common patterns – one single 323 

gene disproportionately represented, no genes disproportionately represented, and novel genes 324 

disproportionally represented – are illustrated in Figure 2.  325 

 326 

Region-wide contributions of 16p11.2 and 22q11.2 CNVs to phenotype  327 

After comparing the impacts of single genes and pairs of CNV genes on neurobehavioral traits, 328 

we wanted to test combinations greater than pairwise, but feasibility limited our combinatorial 329 

testing.  Therefore, we considered a polygene region-wide model: whether the average deviation 330 

of the multigenic region contributes to a phenotype. We assigned a region-wide score to each 331 

individual and tested whether scores were significantly different between cases and controls or 332 

correlated with quantitative traits. We found that the region-wide score was positively correlated 333 

with BMI for 16p11.2 genes (P = 2.0x10-11) and negatively correlated for 22q11.2 genes (P = 334 

0.0001) (Figure 3). IQ was also negatively correlated with region-wide score for 16p11.2 genes 335 

(P = 8.7x10-15) (Figure 3). None of the categorical traits showed a significant effect of region-336 

wide contribution (Supplementary figure 5). 337 

 338 

Discussion 339 

Our study aimed to provide insight into the genetic architecture of the 16p11.2 and 22q11.2 copy 340 

number variants. We modeled the neurobehavioral trait consequences of pairs of genes expressed 341 

in the same direction, extending our previous single-gene analysis (Figure 4). Both 16p11.2 and 342 
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22q11.2 had pairs of genes associated with all tested phenotypes based on a permutation-based 343 

threshold, however, despite a larger number of genes tested, the count of associated genes was 344 

larger for 16p11.2 gene pairs. Still, we found that for nearly all traits tested, variance in 345 

phenotype was better explained by pairs of genes than by single genes or traditional interaction 346 

models. The only exception was bipolar disorder at 22q11.2, where single genes explain more 347 

variance. However, for schizophrenia, BMI, and IQ at 22q11.2 the pairwise model was not 348 

specific to the CNV regions but appeared to be a trait-based property extending to matched 349 

control regions. These findings suggest that the pairwise effects are different between regions. 350 

The advantage of summed pair models in control regions over single and interaction models – 351 

even when it was less pronounced than that of CNV regions - was somewhat surprising due to 352 

our hypothesis that CNV regions have the unique property of dysregulation of nearby genes in 353 

the same direction.  However, perhaps regulatory landscape across many regions of the genome 354 

also biases towards expression dysregulation of physically colocalized genes in the same 355 

direction. 356 

 357 

As we observed neither enrichment in the proportion of significant pairwise tests nor outlier top 358 

signal in the QQ plots, the pairwise contribution to explaining trait variance seems to be 359 

oligogenic across the region.  However, in some cases we did observe outliers when examining 360 

the frequency of specific genes involved in top pairs.  There was striking variation across traits 361 

and regions in terms of whether the top single genes were also the top contributors to pairs or 362 

novel genes were equally likely to contribute. A single gene was repeatedly contributing to top 363 

pairs for bipolar disorder at 16p11.2 (INO80E, 26% of top pairs) and schizophrenia at 22q11.2 364 

(PPIL2, 42% of top pairs). The individual association with these genes was not detected, but the 365 
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recurrent role of these genes in pairs suggests an important trait contribution. In contrast, for 366 

schizophrenia at 16p11.2 and ASD at 22q11.2, multiple top single genes participate 367 

disproportionately in top pairs. Intriguingly, although pairwise models show similar advantages 368 

for ASD at 16p11.2 and IQ at 22q11.2, genes across the region are more evenly represented in 369 

top pairs. Bipolar disorder at 22q11.2 (with single genes models most often explaining variance) 370 

showed association with flanking genes on either side, TUBA8, TMEM191B, and PPIL2; PPIL2 371 

appeared in most of the pairs, as well. Because we did not find overall support for a pairwise 372 

model for bipolar disorder at 22q11.2, this may simply reflect the independent association of 373 

PPIL2. Our finding of PPIL2 as a bipolar disorder driving gene is supported by this gene’s over-374 

representation of rare protein truncating variants in the Bipolar Exome sequencing consortium 375 

data [42].  376 

 377 

Given that the pairwise signal tended to be oligogenic and that expression imputation of adjacent 378 

genes has high correlation, it is difficult to confirm the association of specific pairs of genes. For 379 

ASD at 16p11.2, the top 15 pairs include four with FAM57B. This gene was previously shown to 380 

have multiple within-region interactions in zebrafish [43]. Here, we find that the top pairwise 381 

contributions are with coding and non-coding genes in repetitive or flanking regions (RP11-382 

347C12.3, TBC1D10B, BOLA2B, NPIPB12). Studies of 16p11.2 CNV genes rarely include these 383 

flanking genes, but our data suggest that they may contribute to trait association. Notably, our 384 

expectation of expression dysregulation in the same direction would be less strong for flanking 385 

genes, so expanded testing of flanking regions may be worthwhile.  The FAM57B and DOC2A 386 

pair, associated with hyperactivity, head size, and length in the zebrafish study, was in the top 387 

quarter of associated pairs for BMI and IQ. We note that McCammon et al specifically excluded 388 
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additive effects, while our study is based on genes contributing additively to pairs (which we find 389 

explains more variance than traditional interactions). For BMI at 16p11.2, the top ranked pair is 390 

CDIPT with ALDOA. It is notable that these two genes were not top-ranked individual genes for 391 

BMI, demonstrating the utility of our pairwise approach to prioritize pairs that might not be 392 

detected as individual genes. The top pair for IQ, MVP and KCTD13, on the other hand, includes 393 

one top IQ-associated gene (MVP) and one gene (KCTD13) not associated with IQ. This finding 394 

is similar to an observation in zebrafish, where the expressivity of head-size phenotypes driven 395 

by KCTD13 overexpression was increased by additional overexpression of MVP [13]. For IQ at 396 

22q11.2, several top pairs contain COMT along with a non-coding gene. COMT is a gene with 397 

variants believed to affect multiple traits, including IQ [44], and whose expression is associated 398 

with IQ in the general population [45].Our data provides a refined hypothesis that the 399 

relationship between COMT and IQ is dependent on additional non-coding genes at 22q11.2. 400 

 401 

We also wondered whether there was a general contribution across many genes in the region. In 402 

our analyses, we found that there was a region-wide contribution to both BMI and IQ in both  403 

CNVs. The large number of 16p11.2 genes associated with BMI in both single and pairwise 404 

models was consistent with a region-wide signal. From previously established associations in 405 

CNV carriers, we would expect a negative correlation between increased expression and BMI for 406 

both 16p11.2 and 22q11.2 CNVs. However, we saw this only at 22q11.2 in the region-wide 407 

model. Previously, we found individual genes independently associated with both increases and 408 

decreases of BMI at 16p11.2 [22]. We hypothesized that there may be both BMI-increasing and 409 

BMI-decreasing genes in the 16p11.2 region due to our observation of association in both 410 

directions in single-gene models (and BMI decreases in syntenic deletion mice [12]), in which 411 
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case we might have been picking up more BMI-decreasing genes in our region-wide score. 412 

However, one potential limitation of our cross-tissue expression prediction approach is that our 413 

results may not be driven by the biologically-relevant tissues and thus appear to be opposite in 414 

direction [46].  We also note that BMI and IQ are quantitative traits with high sample size, and 415 

so we may have had power limitations in other traits.   416 

 417 

Previously, we proposed that INO80E at 16p11.2 is a driver of schizophrenia and BMI, a finding 418 

that has been corroborated in similar analyses by others. However, we found that pairwise 419 

models explained more trait variance in both schizophrenia and BMI at 16p11.2, so it is possible 420 

that the pathophysiological contribution of INO80E will be better explained in combination with 421 

other genes than independently, a hypothesis that might be of interest for experimental design.  422 

Our pairwise findings also suggest that INO80E has an important contribution to at least two 423 

other traits. In bipolar disorder, INO80E is the top individual associated gene and is the most 424 

disproportionate contributor to pairs. In ASD, INO80E is a weakly associated top individual gene 425 

and is the most frequent (albeit not strongly disproportionate) contributor to significant pairs. 426 

This finding suggests that four traits may be influenced by the INO80E gene, and at least in the 427 

case of ASD, this gene works in combination with other genes. However, we have not found 428 

evidence of the involvement of INO80E in IQ, highlighting that the neurobehavioral phenotypes 429 

of 16p11.2 may be broader than the impact of this single gene, under the assumption that IQ in 430 

the general population is a good representation of the 16p11.2-mediated impact on intellectual 431 

ability.  432 

 433 
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There are a number of limitations in our approach to probing the architecture of 16p11.2 and 434 

22q11.2 CNVs using pairs of gene expression predictions and region-wide gene expression 435 

scores. There are numerous combinatorial models that have not been tested, and the true 436 

architecture of gene-trait pairs may lie anywhere in between what we can capture in simplified 437 

models. In fact, given the observation that the entire 16p chromosome arm is enriched for ASD 438 

risk signal and has high amount of chromosomal contact, the region itself, as we had defined it, 439 

could be insufficient [26,47]. 440 

 441 

Another potential model that we have not tested is that only the extremes of the distribution – 442 

either in pairwise sums or region-wide scores – will impact a phenotype, and more modest 443 

increases and decreases in gene expression are buffered. For example, the BMI-16p11.2 panel in 444 

Figure 3 suggests a difference in the top and bottom decile compared to the BMI-score 445 

relationship in the intermediate deciles. Our study using all individuals has an advantage in 446 

statistical power if more typical gene expression levels are relevant to the trait, but a 447 

disadvantage given the potential noise that is introduced if only extreme expression deviation is 448 

relevant to uncommon traits such as schizophrenia, bipolar disorder, and ASD.   449 

 450 

A technical limitation of our study design is that available datasets are not always ideal for our 451 

approach.  For BMI, IQ, and ASD, the best-powered datasets are summary statistics. We use the 452 

summary statistics for single and pairwise association testing, determining permutation-based 453 

significance cutoffs, and finding top individual genes that are represented in pairs. However, in 454 

order to measure variance explained and region-wide scoring, we use individual-level data. We 455 

have to consider heterogeneity across the cohorts as a caveat when comparing results. Still, for 456 
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both ASD and IQ the individual level data used is a subset of the full cohort comprising 457 

summary level statistics, minimizing the differences. Finally, our study is based on multiple 458 

tissues derived from adults, rather than more targeted analyses of the brain at early development. 459 

Similarly, when we decide which model explains more variance, we do not weight tissues 460 

differently (according to trait relevance, sample size, etc.). Despite the limitations, we may be 461 

detecting signal driven by a subset of the data; for example, ASD-donor cerebral organoids show 462 

cell-type specificity of INO80E to neuroepithelial cells during development, yet we detect a 463 

pairwise contribution in cross-tissue analysis [48].  464 

 465 

The 16p11.2 and 22q11.2 regions are highly penetrant for neurobehavioral traits, but require a 466 

better understanding of genetic architecture to indicate key biological pathways. By extending 467 

transcription imputation to study a simple summed model of pairwise gene expression, we 468 

uncover a consistent pattern of higher variance explained by gene pairs than either single genes 469 

or traditional interaction models and several traits showing region-wide association signal 470 

(Figure 4).  Most of these patterns appear specific to CNV regions and did not appear to 471 

represent the genetic architecture in matched control regions. ASD, for which single gene 472 

approaches had small to no effect, shows pairwise association signal above that of controls at 473 

both 16p11.2 and 22q11.2. Having failed to dissect 22q11.2 with single-gene approaches, here 474 

we found least two 22q11.2 traits – BMI and IQ – that can be better modeled region-wide. Our 475 

study suggests that pathobiological insights might result from studying combinations of the 476 

genes in and near these CNVs, albeit with potentially differing genetic architecture across traits 477 

and regions. 478 

 479 
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 480 

 481 

 482 

Figures 483 

 484 

 485 

Figure 1: An overview of models of CNV pathogenicity due to gene expression.   486 

Rectangles represent individual genes in a chromosomal location.  Warmer colors represent 487 

increased mRNA expression.  Cooler colors represent decreased mRNA expression.  Greens 488 

represent population average mRNA expression. 489 

Downregulated genes Upregulated genes

Copy normal

Deletion carrier

CNV region

Trait driven by pair of downregulated genes

Trait driven by genes downregulated across the region

Trait driven by one downregulated gene

Duplication carrier

Models of expression downregulation effects in non-carriers:
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Top: Within a CNV region, deletion carriers have reduced expression across the majority of 490 

genes, duplication carriers have increased expression across the majority of genes, and copy 491 

normal individuals have “average” levels of expression across the majority of genes. These 492 

increases and decreases are specific to the CNV region experiencing increased or decreased 493 

DNA copies (potential positional effects on flanking genes not shown). 494 

Bottom: Three models of how gene expression downregulation in a CNV region may influence a 495 

CNV-associated trait in non-carriers. In the first model, decreased expression of a single gene is 496 

sufficient. In the second model, a trait is impacted when two specific genes both have reduced 497 

expression. In the third model, the trait becomes more likely due to reduction of expression in 498 

many genes across the region. These three models are utilized in our study.  499 
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 500 

 501 

Figure 2: Three representative examples of patterns of top single genes contributing to 502 

significant pairs. 503 

Y-axis: counts of the number of times each gene contributes to a significant pair (permutation P-504 

value < median of 5th percentiles of control region p-values).  Bars in teal represent genes 505 

significant (permutation P-value < median of 5th percentiles of control region p-values) in a 506 
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single gene model for the same trait, with rank indicated above the bar.  Bars in salmon represent 507 

genes not significant in a single gene model. X-axis: genes in chromosomal order. 508 

Disproportionately represented genes (mean + 2.5 standard deviations) are bolded. 509 

(A) For bipolar disorder at 16p11.2, one gene, INO80E is disproportionately represented in pairs; 510 

this gene is also a top single gene. 511 

(B) For ASD at 16p11.2, genes significant in a single gene model are not disproportionately 512 

represented in significant pairs, with no disproportionate outliers evident. 513 

(C) For ASD at 22q11.2, there is a mixture of genes that disproportionately appear in pairs: both 514 

genes that were picked up by single gene analyses (like CLTCL1) as well as genes that were not 515 

(like DGCR2). 516 

  517 
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 518 

 519 

 520 

Figure 3: IQ and BMI values are associated with region-wide score. 521 

Region-wide scores across individuals were binned into deciles and the mean (dot) and standard 522 

error (bars) of BMI and IQ values for each decile are plotted.  523 
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 525 

Figure 4: Insights gained into CNV-trait pairs  526 

For each CNV-trait pair, we specify whether pairwise models performed better than single gene 527 

models (left column), whether genes represented disproportionately in significant pairs primarily 528 

represented genes significant in a single gene model (middle column), and whether region-wide 529 

association with a trait was significant. Yes: salmon, No: teal. Dotted fields in the first column 530 

represent cases where the pairwise model advantage did not exceed that of control regions. 531 

Dotted fields in the second column represent cases where they were no over-represented single 532 

genes in pairs. 533 

 534 
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 536 

 537 

 538 

 Tables 539 

 540 

Table 1: Proportion of significantly associated (permutation P < median of 5th percentiles of 541 

control region p-values) single genes (single) and pairwise gene sums (pairs) for each trait and 542 

CNV. 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 16p11.2 22q11.2 

Trait N single (%) N pairs (%) N single (%) N pairs (%) 
ASD 8/42 (19%) 273/1542 (18%) 6/65 (9%) 282/3654 (8%) 

Bipolar 5/37 (14%) 142/1536 (9%) 3/59 (5%) 137/3669 (4%) 
Schizophrenia 21/37 (57%) 702/1543 (45%) 1/59 (2%) 129/4267 (3%) 

BMI 31/38 (82%) 1212/1554 (78%) 5/52 (10%) 176/3229 (5%) 
IQ 5/38 (13%) 74/1545 (5%) 2/65 (3%) 33/4052 (1%) 
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Table 2: Counts of the model estimated to explain most trait variance for each tissue-cohort pair.  552 

Best model is bolded in each case.  P-value represents a chi-square test comparing the proportion 553 

of pairwise to non-pairwise counts between CNV regions and controls. 554 

 555 

  CNV Region All Control Regions  

Region Trait 
single/interaction/pairwise 

(% pairwise) 
single/interaction/pairwise 

(% pairwise) 

region-
specific P-
value 

16p11.2 ASD 205/169/243 (39%) 5891/7588/6387 (32%)  0.00012 
  Bipolar 359/390/721 (49%) 14806/19593/19631 (36%)   < 2.2x10-16 

  Schizophrenia 754/730/1554 (51%) 26589/37723/47784 (43%)   < 2.2x10-16 
  BMI 0/0/49 (100%) 48/159/1744 (89%)  0.016 
  IQ 0/0/49 (100%) 98/232/1565 (83%)   0.0013 
22q11.2 ASD 174/196/267 (42%) 4909/7016/5313 (31%)  1.3x10-9 
  Bipolar 536/435/499 (34%) 11642/15167/14381 (35%)   0.44 
  Schizophrenia 871/816/1155 (41%) 19632/28147/35053 (42%)   0.07 
  BMI 0/0/49 (100%) 17/68/1258 (94%)  0.069 
  IQ 7/17/25 (51%) 20/92/1041 (90%)  <2.2x10-16 

 556 

Legends of Supplements: 557 

 558 

Supplementary figure 1: Pairwise signal at 16p11.2 is polygenic. 559 

Q-Q plots comparing PrediXcan association signal from single 16p11.2 genes (blue), pairs of 560 

16p11.2 genes (orange), single genes in control subsets (gray), and pairs of genes in control 561 

subsets (black). 562 

 563 

Supplementary figure 2: Pairwise signal at 22q11.2 is polygenic. 564 
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Q-Q plots comparing PrediXcan association signal from single 22q11.2 genes (blue), pairs of 565 

22q11.2 genes (orange), single genes in control subsets (gray), and pairs of genes in control 566 

subsets (black). 567 

 568 

Supplementary figure 3: Patterns of top single genes contributing to significant pairs at 16p11.2. 569 

Y-axis: counts of the number of times each gene contributes to a significant pair (permutation P-570 

value < median of 5th percentiles of control region p-values).  Bars in teal represent genes 571 

significant (permutation P-value < median of 5th percentiles of control region p-values) in a 572 

single gene model for the same trait, with rank indicated above the bar.  Bars in salmon represent 573 

genes not significant in a single gene model. X-axis: genes in chromosomal order. 574 

Disproportionately represented genes (mean + 2.5 standard deviations) are bolded. 575 

 576 

Supplementary figure 4: Patterns of top single genes contributing to significant pairs at 22q11.2. 577 

Y-axis: counts of the number of times each gene contributes to a significant pair (permutation P-578 

value < median of 5th percentiles of control region p-values).  Bars in teal represent genes 579 

significant (permutation P-value < median of 5th percentiles of control region p-values) in a 580 

single gene model for the same trait, with rank indicated above the bar.  Bars in salmon represent 581 

genes not significant in a single gene model. X-axis: genes in chromosomal order. 582 

Disproportionately represented genes (mean + 2.5 standard deviations) are bolded. 583 

 584 

Supplementary figure 5: Region-wide score association with ASD, bipolar disorder, and 585 

schizophrenia. 586 
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Region-wide scores across individuals were binned into deciles and the mean (dot) and standard 587 

error (bars) of case-control ratios for each decile are plotted. Top: 16p11.2. Bottom: 22q11.2. 588 

Left to right: ASD, Schizophrenia, Bipolar Disorder. 589 

 590 

Supplementary note 1: Members of the Psychiatric Genomics Consortium contributing to this 591 

work. 592 

 593 

Supplementary table 1: Pairwise and single predictive model qualities for 16p11.2 genes. 594 

Four different model sets were created for SNP overlap (ASD and bipolar used the same PGC 595 

panel). For each pair of genes, the median of prediction qualities (R2) among tissues along with 596 

the number of tissues for which predictive models are available (which can be zero) are noted. 597 

These are compared to single-gene predictive model qualities and coding/noncoding genes are 598 

annotated.  599 

 600 

Supplementary table 2: Pairwise and single predictive model qualities for 22q11.2 genes. 601 

Four different model sets were created for SNP overlap (ASD and bipolar used the same PGC 602 

panel). For each pair of genes, the median of prediction qualities (R2) among tissues along with 603 

the number of tissues for which predictive models are available (which can be zero) are noted. 604 

These are compared to single-gene predictive model qualities and coding/noncoding genes are 605 

annotated.  606 

 607 

Supplementary table 3: Cohorts used for analyses. 608 
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The specific cohorts from the Psychiatric Genomics Consortium that were used for this analysis 609 

are listed. 610 

 611 

Supplementary table 4: Genomic regions used as controls for analyses.  612 

Each region is annotated with genomic context (for example if it is dense with olfactory genes). 613 

Regions that were matched to each CNV but were not used for analysis due to MHC or study 614 

CNV overlap are labeled as such. 615 

 616 

Supplementary table 5: Single gene associations with five neurobehavioral traits. 617 

Genes are listed in order of MultiXcan/S-MultiXcan p-values and genes significant based on a 618 

permutation-based threshold are highlighted. 619 

 620 

Supplementary table 6: Pairwise associations with five neurobehavioral traits at 16p11.2.  621 

Genes are listed in order of MultiXcan/S-MultiXcan p-values and genes significant based on a 622 

permutation-based threshold are highlighted. 623 

 624 

Supplementary table 7: Pairwise associations with five neurobehavioral traits at 22q11.2.  625 

Genes are listed in order of MultiXcan/S-MultiXcan p-values and genes significant based on a 626 

permutation-based threshold are highlighted. 627 

 628 

 629 

Availability of data and materials 630 
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researchers/download-results/ . Summary-level genetic datasets for BMI and IQ are available to 633 

freely download from GIANT BMI 634 
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IQ (https://ctg.cncr.nl/software/summary_statistics). Individual-level UK Biobank data can be 636 
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