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Abstract 15 

Antimicrobial resistance (AMR) is a critical global health threat, and drivers of the emergence of 16 

novel strains of antibiotic-resistant bacteria in humans are poorly understood at the global 17 

scale. We examined correlates of AMR emergence in humans using global data on the origins of 18 

novel strains of AMR bacteria from 2006 to 2017, human and livestock antibiotic use, country 19 

economic activity, and reporting bias indicators. We found that AMR emergence is positively 20 

correlated with antibiotic consumption in humans, whereas the relationship with antibiotic 21 

consumption in livestock is modified by gross domestic product (GDP), with only higher GDP 22 

countries showing a slight positive association. We also found that human travel may play a 23 

role in AMR emergence, likely driving the spread of novel AMR strains into countries where 24 

they are subsequently detected for the first time. Finally, we produced predictive models and 25 

country-level maps of the global distribution of AMR risk. We assessed these against spatial 26 

patterns of reported AMR emergence, to identify gaps in surveillance that can be used to direct 27 

prevention and intervention policies.   28 
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Introduction 29 

The emergence of antimicrobial resistance (AMR) is a critical global health challenge. AMR 30 

bacterial strains have been associated with increased mortality, longer illnesses, medical 31 

complications in surgery, barriers to chemotherapy, and higher health care costs (Cosgrove 32 

2006; World Health Organization 2014, 2015; Interagency Coordination Group on Antimicrobial 33 

Resistance 2019). Global human use of antibiotics has increased substantially over the last two 34 

decades, with an alarming uptick in last-resort compounds that are administered when other 35 

treatments fail (Klein et al. 2020). Rates of human use of antibiotics correlate with resistance 36 

rates in pathogenic bacteria at multiple scales and locations (Goossens et al. 2005; Riedel et al. 37 

2007; Bell et al. 2014; Llor and Bjerrum 2014). Combating AMR has become a priority for 38 

governments (e.g., the United States National Action Plan for Combating Antibiotic-Resistant 39 

Bacteria; UK Five-Year National Action Plan for Tackling Antimicrobial Resistance; Australia’s 40 

National Antimicrobial Resistance Strategy) and intergovernmental organizations (e.g., 41 

Tripartite-Plus Alliance on AMR, Food and Agriculture Organization, World Organisation for 42 

Animal Health, United Nations Environment Programme, and World Health Organization) and 43 

multi-lateral development banks and financing facilities (e.g., World Bank). 44 

Antibiotics are used routinely in livestock to prevent and treat bacterial diseases, and as growth 45 

promoters to expedite weight gain (Newell et al. 2010; Van Boeckel et al. 2019). Antibiotic use 46 

in livestock—which vastly exceeds their use in humans—has enabled intensive husbandry, and 47 

is projected to increase by 67% globally, and to nearly double in Brazil, Russia, India, China, and 48 

South Africa by 2030 (Van Boeckel et al. 2015; Van Boeckel et al. 2019). Resistance genes, AMR 49 
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bacterial strains, and plasmids including some of human clinical relevance, such as MRSA 50 

(Methicillin-resistant Staphylococcus aureus), have been reported from livestock, wildlife, and 51 

environmental samples (Van Boeckel et al. 2019; Wellington et al. 2013; Papadopoulos et al. 52 

2018; European Food Safety et al. 2019; Tsai et al. 2020). These findings have led to policy 53 

efforts to reduce antibiotic use in livestock (World Health Organization 2015; Interagency 54 

Coordination Group on Antimicrobial Resistance 2019). However, the relative roles of antibiotic 55 

use in animals or humans in driving AMR emergence of clinical relevance to humans, has not 56 

yet been thoroughly assessed. 57 

To our knowledge, there are no published analyses on the relative roles of human and livestock 58 

consumption of antibiotics in driving the emergence of novel strains of antibiotic-resistant 59 

bacteria in human clinical cases. In the current study, we use a database that we assembled of 60 

global AMR emergence events containing 1,604 records of the first clinical reports of novel 61 

bacterial resistance over 11 years from 2006 to 2017, to examine global patterns in the 62 

emergence of new AMR strains in humans (Mendelsohn et al. 2021). We model how observed 63 

AMR emergence events are correlated with human and livestock consumption of antibiotics; 64 

human population and mobility (migrant population and tourism); economic activity (gross 65 

domestic product [GDP] and healthcare expenditure); antibiotic exports as a proxy for 66 

production; and biomedical surveillance efforts. We then use these correlations to produce 67 

predictive models of the global distribution of AMR emergence risk. 68 

A key challenge in interpreting global patterns of AMR emergence is variation in AMR 69 

surveillance and reporting. Underreporting in lower-income countries is a persistent problem in 70 
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AMR datasets (World Health Organization 2014; ResistanceMap 2017), and may be particularly 71 

important given that many lower-income countries are most affected by resistant infections 72 

(e.g., malaria, tuberculosis, neonatal sepsis) (Byarugaba 2004; World Health Organization 2015; 73 

Laxminarayan et al. 2016) and are experiencing the greatest increases in consumption of 74 

antibiotics in humans and livestock (Klein et al. 2018; Van Boeckel et al. 2019). In this study, we 75 

apply methods used in our previous work analyzing the emergence of zoonoses (Allen et al. 76 

2017) to correct for underlying biases in reporting novel emergence by using quantitative 77 

metrics of AMR surveillance.  78 

Results 79 

Our AMR emergence database contains 1,604 records of first clinical reports of novel bacterial 80 

resistance occurring in 59 countries from 2006 to 2017, extracted from biomedical literature. 81 

The United States had the greatest number of reported events (n = 132), followed by India (n = 82 

127), China (n = 120), Canada (n = 98) and Japan (n = 75). For more detail on the database, see 83 

Mendelsohn et al. 2021.  84 

We modeled the frequency of reported AMR emergence as a function of human antibiotic 85 

consumption, animal antibiotic consumption, per capita GDP, health care expenditure (% of 86 

GDP), population, inbound tourism and migrant population, and measures of reporting and 87 

publication bias. Our model explained 63% (standard deviation = 5.1%) of country-level 88 

variance in AMR emergence rates. 89 
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Human antibiotic consumption was positively associated with AMR emergence rates (odds ratio 90 

[OR] = 1.04 per defined daily dose [DDD]; 89% credible interval [89CI] = 1.00-1.10) (Figure 1).  91 

We use 89% as the range for credible intervals because it is considered more stable than higher 92 

ranges, such as the commonly used 95% intervals (Makowski et al. 2019). For a country in 93 

which AMR emergence is expected (i.e., non-zero prediction), a 33% (±6%) greater than 94 

average AMR emergence rate is expected at twice the average human antibiotic consumption 95 

(mean human antibiotic consumption = 7.5 DDD), with all other variables held at average. 96 

The interaction between livestock antibiotic consumption and GDP, both normalized to the 97 

human population, was a consistent predictor of AMR emergence rates (OR = 1.9; 89CI = 1.4-98 

2.3) (Figure 1). This interaction term indicates that the effect of livestock antibiotic 99 

consumption on AMR emergence increases at increasing levels of GDP (Figure 2). Specifically, 100 

for every unit increase in GDP (log-dollars per human capita), the log-odds of the effect of 101 

livestock antibiotic consumption (logged, kg per human capita) increases by log(1.9). The main 102 

(non-interaction) effect of livestock antibiotic consumption was consistently inversely 103 

associated with AMR emergence (OR = 0.0014 per log of kg antibiotics consumed by livestock 104 

per human capita; 89CI = 0.00016-0.028), which accounts for the negative relationship between 105 

livestock antibiotic consumption and AMR emergence observed at lower GDP levels. The overall 106 

effect of GDP (log-dollars per human capita) was highly associated with AMR emergence (OR = 107 

31; 89CI = 7.2-97). 108 

Inbound tourism volume per country, normalized to population, was positively associated with 109 

AMR emergence (OR = 1.4 per log of inbound tourists per capita; 89CI = 1.2-1.6). For a country 110 
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in which AMR emergence is expected (i.e., non-zero prediction), a 26% (±5%) greater than 111 

average AMR emergence rate is expected at twice the average inbound tourism (mean inbound 112 

tourism per capita = 1.4), with all other variables held at average. Migrant population, 113 

normalized to total population, was not a consistent predictor of the outcome (OR = 0.92 per 114 

log of migrant population per capita; 89CI = 0.76-1.1). The dollar value of antibiotic exports, 115 

normalized to the human population, was consistently inversely associated with AMR 116 

emergence (OR = 0.89 per log of antibiotic exports per capita; 89CI = 0.87-0.93). Healthcare 117 

expenditure was also consistently inversely associated with AMR emergence (OR = 0.85 per 118 

percent of GDP; 89CI = 0.83-0.90). 119 

We used several variables to quantify reporting bias in AMR reports: The number of times a 120 

report of an AMR disease on ProMED related to a country (ProMED mentions) was consistently 121 

positively associated with AMR emergence (OR = 1.7 per log of ProMED mentions per capita; 122 

89CI = 1.2-2.1), while speaking English in a country was inversely related (OR = 0.71; 89CI = 123 

0.53-0.96), and the publication bias index was not a consistent predictor (OR = 0.91, 89CI = 124 

0.81-1.0). Partial effect plots in both parts of the hurdle model are shown in Figure S1. 125 

Due to lack of data on human and livestock antibiotic consumption for many, especially low-126 

income countries, (Table S1), we used model-imputed values for these correlates. To test 127 

robustness of results, we evaluated results under four imputation scenarios: 1) no imputation 128 

of antibiotic consumption (n = 36), 2) imputation of either human or livestock antibiotic 129 

consumption (n = 73), 3) imputation of human and livestock antibiotic consumption for 130 

countries within GDP range of countries with complete human and animal antimicrobial 131 
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consumption data (n = 88), and 4) full imputation (n = 190). While odds ratios differed among 132 

the models, the overall direction of effects was consistent, and interpretation did not vary 133 

drastically between models (Figure S2). For reporting model results here, we use the third 134 

scenario—imputation of human and livestock antibiotic consumption for countries within the 135 

GDP range of countries with complete human and animal antimicrobial consumption data. This 136 

scenario was selected because it maximizes data coverage without predicting beyond the 137 

conditions of the observed data. Results for all other scenarios are reported in the 138 

Supplementary Information.  139 

We also tested alternative formulations of the model to assess the robustness of results. 140 

Because the United States is a singular outlier in the number of reported events, GDP, 141 

publication bias index, ProMED mentions, and antibiotic exports, we ran a model without the 142 

United States. In this scenario, use of the English language in a country and healthcare 143 

expenditure were no longer associated with AMR emergence, the publication bias index 144 

became inversely associated, and other results remained largely the same (Figure S2). In a 145 

separate scenario, we replaced per-human-capita livestock antibiotic consumption with per-146 

livestock biomass antibiotic consumption and found that per-livestock biomass antibiotic 147 

consumption was not associated with AMR emergence while livestock population on its own 148 

was inversely associated with emergence. Finally, we repeated the analysis on a subset of 149 

emergence data representing the first global appearances of unique drug-pathogen 150 

combinations (i.e., including only the first country in which resistance of a pathogen to a drug is 151 

observed). Results were largely consistent with the main model, with the use of the English 152 
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speaking in a country becoming no longer associated with AMR emergence and the publication 153 

bias index becoming positively associated.  154 

We used our model to estimate zero-corrected AMR emergence rates for each country, that is, 155 

predicted rates conditional on equal reporting variables across countries (Figure 3). These 156 

results show higher predicted rates for 77% of countries, including those that have the highest 157 

counts in our database (United States, China) and in countries that previously reported few or 158 

zero events. Countries with the greatest increase in predicted AMR counts were Russia (95th 159 

percentile range = 109-367), Saudi Arabia (91-379), and Turkmenistan (19-96), all of which had 160 

zero reported events in our database.  161 

Discussion 162 

This paper reports the first global analysis of drivers of the emergence of antimicrobial 163 

resistance (AMR) in humans, with efforts to correct for reporting bias and inconsistencies in 164 

data on antibiotic use. Previous studies have described the presence, prevalence of, and trends 165 

in caseloads over time for specific resistant strains (Riedel et al. 2007; Song et al. 2011; Smith et 166 

al. 2013; Llor and Bjerrum 2014; Paterson et al. 2014; Papadopoulos et al. 2018). Others have 167 

reviewed broad patterns in the emergence of AMR based on trends in the literature without 168 

correcting for underlying ascertainment bias, or testing hypotheses on underlying causal factors 169 

(Byarugaba 2004; Bonn 2007; Bell et al. 2014; World Health Organization 2014). Some studies 170 

have analyzed patterns of use or sale of antibiotics for human or livestock use in specific 171 

regions or globally (Goossens et al. 2005; Van Boeckel et al. 2015; Klein et al. 2018). There is a 172 
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previous analysis of broad patterns of global AMR emergence in livestock that evaluated 173 

surveillance bias but did not test hypotheses on the relative significance of different drivers 174 

(Van Boeckel et al. 2019). Efforts to identify trends and drivers of emerging infectious diseases 175 

are hampered by a lack of clarity on the origins of past events, and by spatial and temporal 176 

biases in surveillance (Jones et al. 2008; Allen et al. 2017). Here, we used records of first clinical 177 

reports of unique bacterial-drug cases from 2006 to 2017 (Mendelsohn et al. 2021), datasets of 178 

antimicrobial drug sales for human and livestock use, and published strategies for dealing with 179 

reporting bias, to analyze the origins, trends, and likely drivers of global emergence of AMR. 180 

Our analysis showed that human use of antimicrobials is positively correlated with the origins 181 

of AMR events in people, and that this scales with defined daily dose (DDD). Previous analyses 182 

of AMR trends have modeled the presence or prevalence of specific resistant strains and 183 

provided evidence that antibiotic use in people directly contributes to AMR in hospitals and 184 

clinics, communities, and countries (Goossens et al. 2005; Riedel et al. 2007; Koningstein et al. 185 

2010; Bell et al. 2014; Llor and Bjerrum 2014). However, this correlation has not previously 186 

been demonstrated on a global scale, controlling for reporting biases, and over a broad swath 187 

of AMR pathogen/drug combinations. Another prior study assessed how socioeconomic and 188 

demographic factors correlate with an index of antimicrobial resistance in 103 countries and 189 

found that human antimicrobial drug use was not correlated with resistance (Collignon et al. 190 

2018). However, the current study analyzes the drivers of the first known clinical cases of a 191 

novel AMR emergence, whereas (Collignon et al. 2018) analyzed the level of resistance to 192 

several drug classes in three pathogens encountered in clinics in a country. Our analysis is 193 

consistent with the findings of (Collignon et al. 2018) that the prevalence of AMR in a country is 194 
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likely driven also by contagion – the spread of antimicrobial resistance after its emergence – 195 

and that this occurs independently to the degree of antibiotic consumption. Together, these 196 

papers provide a more detailed explanation of what drives the origins, spread and impact of 197 

AMR, and are therefore of value in developing policy to control each aspect of emergence. 198 

We found that the relationship between antibiotic consumption for animal husbandry and the 199 

origins of new AMR strains in people is modified by GDP, with the highest GDP countries having 200 

a slight positive association, and lower GDP countries having a neutral or negative association. 201 

Under a separate formulation, in which we normalized livestock antibiotic consumption to 202 

livestock biomass instead of human population, no consistent association with AMR emergence 203 

was observed. Given the limited number of data points for livestock antibiotic consumption (n = 204 

41), additional data collection is needed to better understand the relationship between animal 205 

husbandry and AMR emergence. Nonetheless, our findings suggest that the relationship 206 

between antibiotic use in livestock and the emergence of novel AMR strains in humans may be 207 

complex or mediated by other factors.  208 

Other research has demonstrated that antibiotic use for animal husbandry is a significant public 209 

health threat in contributing to the spread of specific existing resistance strains in humans 210 

(Vieira et al. 2011; Smith et al. 2013). A meta-analysis of antimicrobial use in animals that 211 

includes a small number (n=21) of human AMR cases, found that reduced animal use of 212 

antimicrobials led to a reduction in the pooled prevalence of AMR cases in people (Tang et al. 213 

2017). We conclude that, while our analysis indicates that human use of antibiotics is likely 214 

more important for human AMR emergence than animal use, further research is needed to 215 
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better understand the patterns of transmission of AMR strains among livestock and people 216 

(Vieira et al. 2011; Smith et al. 2013; Muloi et al. 2018). We hypothesize that dense populations 217 

of livestock may act as maintenance or amplifying hosts for known AMR strains, a scenario 218 

similar to the role of intermediate livestock hosts in the emergence of novel zoonoses such as 219 

Nipah virus disease, MERS and SARS (Morse et al. 2012).  220 

In recent years, environmental contamination by antibiotics has been increasingly linked to the 221 

emergence and spread of AMR (Wellington et al. 2013; Singer et al. 2016). In our analysis, we 222 

assumed that countries with higher levels of production (and therefore export) of antibiotics 223 

would have higher environmental contamination. Countries with antibiotic export had lower 224 

rates of AMR emergence, suggesting that either this is a poor proxy, or that environmental 225 

contamination is not a significant driver of novel strain emergence. This does exclude the 226 

possibility of environmental contamination being a factor in maintaining or spreading AMR 227 

strains once they have emerged.  228 

To assess if the emergence of a novel strain is caused by the spread of infection (bacterium or 229 

gene transmission) into a country rather than its de facto evolution and origin, we included 230 

measures of human population movement in our model. Inbound tourism, normalized to 231 

population, was a predictor of AMR emergence, while inbound migration, normalized to 232 

population, was not. These results suggest that first emergences in a country may be driven, in 233 

part, by the spread of existing resistant strains from other countries. We repeated the analysis 234 

on a subset of emergence data representing first global appearances of unique drug-pathogen 235 

combinations (i.e., including only the first country in which resistance of a pathogen to a drug is 236 
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observed). This analysis did not alter our findings related to tourism and migration, suggesting 237 

that mechanisms of spread (e.g., gene transfer) in addition to mutation may also drive first 238 

global emergences. 239 

More developed public infrastructure and higher metrics of good governance inversely 240 

correlate with AMR rates (Collignon et al. 2018). In our study, we used data on GDP per capita 241 

and healthcare expenditure as proxies for the ability of countries to control AMR, identify cases, 242 

and manage consumption patterns through education programs. GDP per capita was 243 

consistently positively associated with AMR emergence in a country. Healthcare expenditure 244 

was consistently inversely associated with AMR emergence in a country, but this relationship 245 

was no longer consistent when we removed the United States from the dataset. These findings 246 

likely reflect the fact that our outcome measure is not the level of resistance seen in clinics in a 247 

country (e.g. prevalence, incidence, occurrence of known or novel AMR strains), but the 248 

number of novel AMR strains originating in a country. The latter may be more strongly 249 

correlated with human antibiotic drug use as a driver of the evolution and emergence of novel 250 

strains, while the former is linked to ability to control these strains once they have emerged. 251 

In previous work, we analyzed global trends and identified predictive hotspots of emerging 252 

infectious diseases (Jones et al. 2008), and emerging zoonoses (Allen et al. 2017) by correcting 253 

for underlying biases in reporting of novel emergence. In the current study, we accounted for 254 

country-level surveillance and reporting effort by including use of English language in a country 255 

(as the database was limited to English-language literature), number of ProMED mentions, and 256 

a publication bias index produced previously (Allen et al. 2017). We used our model to estimate 257 
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predicted (zero-corrected) AMR rates of emergence for each country, and found the greatest 258 

increase in predicted rates in Russia, Saudi Arabia, and Turkmenistan, all of which had zero 259 

reported events. These findings point to significant reporting gaps in these countries and the 260 

need to apply surveillance beyond the relatively limited number of countries where surveillance 261 

currently occurs. 262 

There are several limitations to this study. First, it analyzes trends in novel AMR strains 263 

reported in the literature from 2006 to 2017 against data on potential drivers from different 264 

time periods within this range. Variation in these factors over the 11 years of AMR reporting 265 

may reduce the accuracy of the analysis. This may be further confounded if countries that 266 

identify novel AMR events have then significantly reduced or modified antimicrobial use. 267 

Second, it uses published data on novel AMR strains. While we included several measures of 268 

reporting and publication bias, the changes in interest or capacity to diagnose and identify AMR 269 

over this period may have varied among countries irrespective of economic capacity, due to 270 

trends in research fields. Third, data availability of some of the correlates are skewed to richer 271 

countries. Livestock antibiotic consumption data, estimated from country-reported antibiotic 272 

sales from livestock (Van Boeckel et al. 2019), is especially sparse (available for 41 countries) 273 

and biased towards developed economies. Finally, it is important to emphasize that the 274 

relationships discussed in this paper are associative, and causality can only be hypothesized 275 

through this type of global analysis. Further work on the mechanisms of what drives the origin 276 

of new strains, and what drives their maintenance, amplification and spread is urgently needed.  277 
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Methods 278 

Data 279 

We used AMR emergence data from the database described in (Mendelsohn et al. (2021), 280 

(https://zenodo.org/record/4924992) which contains records of first clinical reports of unique 281 

bacterial-drug AMR detections from 1998-2017, drawn from scientific literature and disease 282 

surveillance reports. We filtered the database for events starting in 2006 and later, as database 283 

coverage prior to 2006 is limited to disease surveillance reports. To perform analyses at the 284 

country level, we summed the count of emergence events by country. This approach allows the 285 

same drug-bacteria combination to be represented in multiple country counts. As part of our 286 

robustness analysis (below), we also ran the model using first reported global emergences as an 287 

alternate outcome (i.e., each drug-bacteria combination reported only once).  288 

Predictor variables are from multiple sources, listed in Table S1. We included data on human 289 

and livestock consumption of antibiotics, human population and mobility (migrant population 290 

and tourism), economic activity (GDP and healthcare expenditure), and antibiotic exports as a 291 

proxy for production. In addition, we included five variables representing reporting bias: 292 

population, GDP, English language spoken, ProMED mentions, and publication bias index. The 293 

publication bias index is based on total biomedical publications originating from or referring to 294 

geographic regions, (Allen et al. 2017), an approach used for a variety of global-scale disease 295 

detection studies (Huff et al. 2016; Olival et al. 2017; Carlson et al. 2022).  296 
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Prior to modeling, lognormally distributed continuous variables were natural log transformed, 297 

and some variables were normalized to GDP or population, as indicated in the measurement 298 

units field of Table S1. Livestock antibiotic consumption was normalized to human population, 299 

rather than livestock population, as we are interested in the potential contribution of antibiotic 300 

use in agriculture to AMR emergence in humans. In our robustness analysis (below), we ran an 301 

alternate version of the model with livestock antibiotic consumption normalized to livestock 302 

biomass. Because initial data exploration found that the relationship between livestock 303 

antibiotic consumption and AMR emergence differed between low- and high-income countries, 304 

we included an interaction term for livestock antibiotic consumption and country GDP.  305 

Missing data handling 306 

We limited the total number of countries in the dataset to those that have population and GDP 307 

data available (n = 190). As shown in Table S1, data availability was not consistent across other 308 

variables. We inferred zeros for missing values for the AMR emergence field, and one half the 309 

minimum value for the publication bias index, ProMED mentions, and antibiotic export fields.  310 

The following remaining variables were unavailable for some countries, with a distinct bias of 311 

missing data in low-income countries: human antibiotic consumption, livestock antibiotic 312 

consumption, health expenditure, and inbound tourism. We imputed missing values for these 313 

variables, using four approaches of to check for robustness:  314 

1) No imputation of antibiotic consumption – Dataset limited to countries with values 315 

for both human and animal antimicrobial consumption (n = 36). 316 
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2) Imputation of either human or livestock antibiotic consumption – Dataset includes 317 

countries with values for human and/or animal antibiotic consumption (n = 73). 318 

3) Imputation of human and livestock antibiotic consumption for countries within GDP 319 

range – Dataset includes countries that are missing both human and livestock 320 

antibiotic consumption if the country has a GDP within the range of GDPs of 321 

countries from scenario 1 ($5,870/capita [Thailand] - $101,417/capita 322 

[Luxembourg]), which have both human and animal antimicrobial consumption data 323 

(n = 88). 324 

4) Full imputation – Includes all countries in the dataset (n = 190). 325 

We used a Multivariate Imputation by Chained Equations (MICE) algorithm with classification 326 

and regression trees (CART) to model missing values based on the available data (Buuren 2018). 327 

CARTs are commonly used for imputation for their robustness against outliers and ability to 328 

handle multicollinearity and skewed distributions (Buuren 2018). For each variable we 329 

generated 30 imputations, each with 40 iterations. We visually examined diagnostic plots to 330 

confirm convergence. We included two additional variables—antibiotic imports and livestock 331 

biomass—in the MICE routine to better estimate missing consumption data. We did not include 332 

these variables in the model itself, however, as consumption is a better estimate of direct 333 

antibiotic exposure.  334 
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Robustness scenarios 335 

We tested several alternative formulations of our model to determine robustness of results. 336 

We used scenario 3 for missing data handing (see above; n = 88) for all robustness scenarios. 337 

First, because the United States is a singular outlier in the number of reported events, GDP, 338 

publication bias index, ProMED mentions, and antibiotic sales (which informs the human and 339 

livestock antibiotic consumption variables), we ran a model with the United States removed. 340 

Second, we used an alternative scaling of livestock antibiotic consumption, replacing per-341 

human-capita livestock antibiotic consumption with per-livestock biomass antibiotic 342 

consumption. In this formulation, we also included livestock biomass, defined as the total mass 343 

of cattle, pig, and chicken populations within a country (Van Boeckel et al. 2015), as a separate 344 

feature to allow disaggregation of the effects of livestock antibiotic consumption and livestock 345 

biomass. Finally, we used an alternate outcome variable representing the first global 346 

emergence of antibiotic strains within countries, rather than first national emergences. This 347 

way, a drug-bacteria combination is counted only in the single country in which it first emerged 348 

in our dataset. 349 

Statistical approach 350 

We first examined data for collinearity, and spearman rank coefficients were less than 0.7 for 351 

all variable pairs. We used a Poisson-hurdle model, in which the response is a function of two 352 

components: a logistic component representing the probability of observing any reported 353 

cases, and a Poisson component of the number of AMR emergence events in the period, 354 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2022. ; https://doi.org/10.1101/2022.09.29.22280519doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.29.22280519
http://creativecommons.org/licenses/by/4.0/


 

19 
 

conditional on observed reporting. For the logistic equation, we included our five reporting bias 355 

variables (population, GDP, English language spoken, ProMED mentions, and publication bias 356 

index). All variables were included in the Poisson component, with population treated as an 357 

offset variable.  358 

We took a Bayesian approach to estimating model parameters, using a No-U-Turn Hamiltonian 359 

Monte Carlo implemented in Stan and assuming a wide student’s t-distribution (nu = 3, mu = 0, 360 

sigma = 10) for all coefficient priors (Hoffman and Gelman 2014; Stan Development Team 361 

2018). We used four Markov chains with 2000 iterations per chain to fit the model on each of 362 

the multiple imputed datasets. Posterior samples were then combined across all imputed 363 

datasets to generate posterior distributions. 364 

We visually examined Markov chain trace plots and used effective sample convergence 365 

statistics (R-hat convergence <1.05) to confirm convergence across chains (Vehtari et al. 2019). 366 

We compared posterior predictions to the empirical distribution of AMR events with density 367 

overlay plots and interval plots. In addition, we compared the proportion of zeros in the 368 

posterior predictions to the empirical proportion to confirm that hurdle model accurately 369 

captured the excess zeros in the dataset (Figure S3).  370 

Model Predictions  371 

We generated zero-corrected predictions of AMR emergence counts by calculating predictions 372 

for all countries our raw dataset (including imputed values) using only the Poisson component 373 

of the model, assuming a reporting probability of 1. By removing the logistic equation from the 374 
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hurdle model, we were able to estimate AMR emergence counts corrected for excess zeros due 375 

to underreporting. We used a sample of 500 beta coefficients generated from our model for 376 

each variable to be able to produce median and 95th percentile count estimates for each 377 

country.  378 

Software and reproducibility 379 

Data analysis was performed in R version 4.0.4 (R Core Team 2021), using the tidyverse 380 

framework for data manipulation (Wickham 2017) and the drake package for workflow design 381 

(Landau 2018). We used the mice package (Groothuis-Oudshoorn 2011) for the MICE 382 

imputation routine and the brms package (Bürkner 2017), built on the Stan language (Stan 383 

Development Team 2018) for Bayesian model fitting. Visual model diagnostics were generated 384 

with the bayesplot package (Gabry and Mahr 2019). 385 

All code and data used in this project are available for download at 386 

https://github.com/ecohealthalliance/amr-analysis and on Zenodo 387 

(https://zenodo.org/record/7051952). 388 

  389 
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Figures 390 

 391 

392 

Figure 1. Odds ratios and 89% 393 

credible intervals of features in 394 

the main model. Asterisks 395 

indicate that the variable is a 396 

consistent predictor of the 397 

outcome (i.e., 89% credible 398 

intervals do not include 1). 399 

Figure 2. Additive change in 400 

counts (marginal effects) of AMR 401 

emergence for each model 402 

21 
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variable. Faded lines represent individual model iterations; solid line is average model. Rug ticks403 

show raw values. Asterisks indicate that the variable is a consistent predictor of the outcome 404 

(i.e., 89% credible intervals of odds ratios do not include 1). 405 

 406 

407 

22 
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 408 

Figure 3. Reported and median predicted AMR emergence event counts for 88 countries (A). 409 

Difference between predicted and reported counts (B).  10 countries with largest absolute 410 

difference between reported and median predicted counts, with 95th percentile predicted 411 

range in parenthesis (C).  412 

C 
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