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Abstract
Background: Combinations of common drugs may, when taken together, have unexpected
effects on cancer. It is not feasible to test for all combination drug effects in clinical trials, but in
the real world, drugs are frequently taken in combination. Then, there may be undiscovered
effects protecting users from cancer–or increasing their risk. By analyzing massive health claims
data containing numerous people exposed to drug combinations, we have an opportunity to
evaluate the association of drug combinations with cancer risk. Discovering these effects can
not only contribute to prevention of cancer, but also suggest new uses for combinations to
prevent or treat cancer.
Method: Our approach emulates a randomized trial where one arm would have been assigned
to take a particular drug alone, while the other arm takes it together with a second drug.
Because discovery of associations from observational data is prone to spurious results due to
confounding, we develop strategies to distinguish confounding from biomedically relevant
findings.
Results: This tactic allows us to systematically assess effects across over 9,000 drug
combinations, on all common cancers. Through multiple sensitivity analyses we identify a
robustly supported beneficial drug combination that may synergistically impact lipid levels to
reduce risk of cancer.
Conclusions: This study demonstrates the importance of considering confounding factors in
drug-wide studies. But, we also show that our method is able to uncover associations with
robust support.
Impact: Searching for combinations of factors impacting cancer is crucial, but these effects can
only be systematically discovered through observational data analysis.

Introduction
Late onset chronic diseases are responsible for a bulk of deaths, with cancer ranking as

the second leading cause of death1. Despite intensive research, we have not identified effective
ways of preventing most cases, and new treatments are urgently needed. To address this
problem, one approach is to investigate what common exposures could be associated with
disease risk. Among people over 40 years old, one third use two or more drugs, and 20% use
more than five medications2. We propose that combinations of common medications could
influence cancer risk.

These effects are unlikely to have been uncovered in randomized trials, partly due to the
short follow-up period of most trials3,4. However, some drug combinations have been found to
impact cancers. While estrogen replacement as a treatment for menopause is not linked to
adverse cancer outcomes, combining estrogen with progesterone appeared to increase risk of
breast cancer over a three year follow-up period5. This effect may be explained biologically:
estrogen can promote proliferation, while progesterone enhances angiogenesis in the
proliferating tissue6. In addition to such deleterious effects, drug combinations can cause hidden
benefits. Statins, prescribed for high cholesterol, have been linked to reduced incidence of
multiple cancer types in epidemiological studies, and they are in trials for cancer therapy. Trials
have investigated anti-cancer effects of statins combined with celecoxib (anti-inflammatory) and
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metformin (a diabetic drug)7. These examples describe combinations of common drugs
positively and negatively impacting cancer.

As many thousands of common drug combinations could be tested for any of a dozen
types of common cancer, these effects are unlikely to be discovered through experimental trials.
Outside of the setting of clinical trials, one approach to discovering such drug effects is analysis
of observational data. Using such health data, we can follow health outcomes in people
exposed to the drug combination. Although reusing existing data is fast, cheap, and allows
systematic discovery, new methods are needed to find drug combination effects. Unlike
experimental data, observational data is subject to confounding: people are prescribed drugs
based on their health, and some health conditions incur increased risk of cancer. For instance,
smoking increases lung cancer risk, meaning that people who take smoking cessation drugs are
likely at increased risk of lung cancer. Without accounting for such variation in health, the drugs
and drug combinations most associated with cancer would be dominated by such spurious
associations.

The typical approach to discovering a biomedically relevant association from
observational data is to attempt to emulate a randomized trial that could have investigated the
same question8. Two study cohorts, consisting of users of a drug, or some control group are
"enrolled", and then the analysis compares their outcomes, adjusting for confounders of the
association. While we do not know of other drug combination-wide studies, we have reviewed
previous drug-wide association studies of cancer (single drug, not combinations)9–12. Because of
their systematic nature, these studies make some simplifying assumptions. Particularly, they
often adjust for a limited set of pre-defined confounders. It is not clear if these measures
adequately adjust for confounding. To attempt to detect and resolve bias due to remaining
confounding, a tactic called "empirical calibration" compares the effect of a drug on outcomes of
interest against its association with selected "negative control" outcomes13,14. For instance, the
authors expect most common drugs do not affect risk of ingrown nails, so any association
between medications and ingrown nail can be attributed to bias. This method uses effect
estimates across negative control outcomes to approximate, and thus remove, the bias. This
procedure requires the assumption that all effect estimates are centered around a single overall
bias. One weakness of this assumption is that bias is often specific to the particular pair of
exposure and outcome. For instance, people taking smoking cessation drugs are at risk of lung
cancer, but not breast cancer. As well, randomly selected negative controls may not suffer the
same bias; we expect no confounding effect associating smoking cessation agents with ingrown
nail.

Therefore, here we develop new methods for drug combination-wide association studies.
Our aim is a systematic discovery of drug combinations that, like other drug-wide methods,
allows unprejudiced investigation of the effect of any observable drug combination. In contrast to
other drug-wide methods, we make fewer assumptions about the nature of confounding: 1) we
consider that any event in medical history could be a possible confounding factor; 2) we do not
assume that all associations are subject to the same type of confounding. We accept that due to
the nature of observational data, our results must be replicated and verified by future
experimental studies. But, we make extensive efforts to identify remaining confounding, and we
use a number of sensitivity analysis to pinpoint associations that are most robustly supported. In
addition to these novel advances, this work is the first to develop a new method to
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systematically discover interaction effects of drugs on disease. We apply these methods to one
of the largest available compilations of health care data, the Truven MarketScan data set
containing over 100 million individuals. We expect both our methods and the identified drug
combination associations can provide advances toward clinically relevant insights from
observational data.

Results

Observational data to emulate a randomized trial of drug combinations
To develop our approach, we first consider a hypothetical randomized trial that would test the
association of any arbitrary single drug with a common cancer outcome. A hypothetical
experimental design could enroll people never exposed to the drug of interest (such as a statin),
and then randomize some to take statin, and others to remain unexposed, and then follow time
to cancer (Figure 1A). Previous drug-wide studies of cancer using observational data have
emulated this type of experimental study using either cohort study approach or a case-control
approach9–12. Typically, they select an index date to assess exposure and create the exposed
and unexposed cohorts. Then, time after the index date is considered time at-risk for the
outcome. This design allows us to assess whether a particular drug is associated with cancer,
and the same procedure is repeated for every common drug. These studies typically adjust for a
handful of possible confounding factors (such as age, and Charlson comorbidity index). For
example, in the study of Patel, et al., the authors followed people in a prescription database,
assessing exposure to drug as a time-varying covariate, and adjusting for age, sex, and
presence of any other prescriptions9. Støer, et. al., took a case-control approach, matching
cancer cases to non-cancers, and assessing presence of exposure based on prescription
history up to one year before cancer11. These designs all have the same basic goal of estimating
the result of the trial described in Figure 1A.
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Building on these works, we design a new hypothetical randomized trial to estimate the
effect of a combination of an arbitrary pair of drugs A and B. First, we would enroll new users of
some drug A who have never before taken either drug A or B, and with no history of cancer.
Then, the hypothetical trial would randomly assign some people to additionally take drug B
(Figure 1B). Finally, we would follow these two groups to observe incidence of cancer. This
approach is most similar to the method of Patel, et al., but we make extensive effort to adjust for
confounding. Analyses of the results could follow all people who were initially randomized,
called an intention-to-treat analysis. An alternative analysis could censor follow-up time for
those who discontinued use of drug A, known as a per-protocol analysis.

To emulate such a trial, we use a set of health claims data from Truven MarketScan
(now IBM), containing 150 million drug users. We obtain coded diagnoses, prescriptions, and
procedures, alongside basic demographic characteristics, over a twelve year span from 2003 to
2015. We observe 9,502 drug combinations with a median of 4,979 combination users per drug
pair (Figure 1C), and with a median of 20 exposed people who eventually develop a cancer
(Figure 1D). To summarize, we perform this emulation of a randomized trial for 9,502 pairs of a
drug A and B. For the rest of this manuscript, we refer to the first drug as drug A, and the
second drug as drug B. In theory, we might expect the same true effect if the order of the drugs
were reversed, but in practice sample size limitations mean we usually do not observe both
orders.

Approach to emulating the randomized trial
We divide our main design into three steps, analogous to steps of a randomized trial: 1)
enrollment (creation of our cohorts); 2) randomization (adjusting for time-varying confounding);
and 3) analysis of outcomes and estimation of effects.

In the enrollment step, as mentioned, we compile all new users of drug A, who have
never taken drug B, or had the outcomes of interest. Then, we follow this cohort over time,
seeing whether those who additionally take drug B alongside A (treated group) have different
cancer outcomes than those who take just drug A (comparator group). While in the randomized
setting, some subset would be immediately assigned to take the combination of drugs A and B,
in the observational setting, some people will start drug B immediately, while others might start
drug B later. While we could only compare those who start drug B immediately against those
who continue on drug A alone, this choice would drastically reduce our data size, making it
impossible to assess the effect of most drug combinations. In order to capture all person-time
under joint exposure of the drug combination, we follow the established approach of emulating a
sequence of randomized trials15,16. This tactic divides follow-up time after initiation of drug A for
each person into arbitrary but reasonable windows (we choose 3 or 6 month windows). Each
time window defines a trial in the sequence of trials: a person who has not initiated drug B yet at
follow-up time window w remains eligible to "enroll" in a trial that starts at that time window
(Figure 2A). Therefore, we are able to include all joint users of drugs A and B in one of these
trials. For instance, person i (Figure 2A,B) who started the drug combination in window 2 is in
the treated group for trial 2, but is in the comparator group for trial 1. This person is not eligible
to join trials starting after trial 2, because at that point they have a history of taking the drug
combination (an exclusion criterion). We can easily account for this replicated data by indicating
the repeated observations in our statistical analysis (see Methods).
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In the randomization step, we emulate randomization by adjusting for time varying confounding.
It is crucial to not only adjust for disparities between the treated and comparator groups at
baseline initiation of drug A. This is because changes in health over time can influence which
people are prescribed drug B (Figure 2C). For instance, onset of menopause ("Health at time 1"
in Figure 2C) may lead to hot flashes, which could be treated with a drug like gabapentin.
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Menopause also increases risk of breast cancer. Therefore, if we do not adjust for time-varying
confounding we would find a spurious association between gabapentin and breast cancer.
Previous drug-wide methods that analyze use of single drugs alone have not required
time-varying analysis, and these methods have adjusted only for selected confounders. In order
to perform a drug-wide scan, we must consider that many confounders, including unexpected
confounders, could affect prescription. Therefore, we consider that all medical history before
time window w could include possible confounders. Because of the time-specific nature of
medical data, colliders14 are unlikely: this would require both the treatment and the exposure to
affect some variable that occurs before either of them. While errors in the medical record induce
some cases of reverse causality, below we describe measures taken to guard against this issue.

To model confounding, we calculate probability of initiating drug B, based on both time
window-specific and overall medical history. Confounding also can influence whether someone
discontinues drug A, an issue that also arises in analysis of the data from a randomized trial. In
a per-protocol analysis of randomized trials, person-time is censored after discontinuation of
drug A. In order to best capture the effect of exposure to drug combinations, we also censor
person-time after discontinuation of drug A. To account for confounding impacting censoring, we
also model probability of discontinuation in the same way as we model initiation of drug B.
Finally, we obtain time to cancer outcome using a survival analysis. The probabilities calculated
in the randomization step are used as weights to remove the confounding effects associating
drug and outcome in a marginal structural model8. In this manner, we can estimate the
association between each drug combination and each common cancer, for those combinations
where enough cases are observed.

Drug-wide studies may be influenced by a wide range of confounders
Our analysis yields estimates for 9,502 drug combinations, for a median of 22 cancers where
more than 100 people in the cohort study were diagnosed with that type of cancer. As
mentioned, previous drug-wide studies typically account for only a handful of confounders. We
investigate the possible effects of considering a narrow range of confounders. In Figure 3A, we
compare the effect estimates that consider no confounders (unweighted); those derived from
cohort studies that only adjust for age, sex, year, and Charlson comorbidity index (minimal
confounding control); and our method of including a wide range of possible confounders
(weighted estimates). We find that globally, after accounting for confounding, effect estimates
are greatly reduced. Because this is a general effect, across many drug combinations and
cancer outcomes, we conclude that this is likely to be due to a number of assorted confounding
effects, rather than due to widespread effects of drug combinations of cancer. This suggests that
other drug-wide studies would benefit from considering a wide range of confounders. However,
the results also suggest that there is likely substantial remaining confounding: the observed
linear relationship in Figure 3B suggests that globally, the strongest associations between
treatment and outcome before adjusting for confounding are still the most associated after
adjusting for confounding. While this observation shows that we need further work to avoid this
bias (discussed below), this finding also underlines the importance of our drug-wide analysis.
That is, the ability to assess global confounding is a key advantage of taking a systematic drug
(combination)-wide approach to discovery.
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Initial results of the drug-combination wide scan and remaining confounding
Across around 200,000 resulting effect estimates, we investigate selected examples to assess
the nature of the remaining confounding. Among drugs most associated with increased risk of
cancer, we find two obvious patterns. First, drugs used in the treatment of cancer appear
associated with rates of multiple types of cancer. For example, fentanyl, morphine, and other
pain treatments, as well as anti-nausea medications such as prochlorzerpine or ondansetron
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appear co-prescribed in people who develop cancer. This is likely due to incompleteness of the
medical record: these people are overwhelmingly likely to be under treatment for cancer at the
time of prescription. If the medical record had accurately recorded their cancer diagnosis, then
they would not have been included in our study. Then, this is a case of reverse causality, where
the medications are a result of the diagnosis, rather than the other way around. In selected
cases of suspected reverse causality we find that the drug combination is associated with
heightened risk of multiple common cancers (Figure 3C). This is because of shared clinical
management of these diseases; many cancers are treated with surgery, chemotherapy, and
drugs to manage the symptoms and complications of these procedures. We later present a
simple heuristic to sort these cases.

The second pattern includes likely cases of confounding, which is usually specific to one
type of cancer. For instance, complications of kidney disease include glaucoma and kidney
cancer. We find that people taking a combination of two glaucoma treatments (latanaprost and
travaprost), as compared to those who take only latanoprost, are at higher risk of kidney cancer
(Figure 3D). This is overwhelmingly likely to be due to the confounding effect of kidney disease
on risk of both kidney cancer, and glaucoma (and thus these drugs). Note that this combination
is specifically associated with kidney cancer, which is logical due to the specific confounding
effect of kidney disease. Such examples indicate remaining confounding, a separate issue from
reverse causality. Again, our systematic exposure-wide assessment enables identification of this
issue.

Because the presence of confounding in observational studies is well known,
approaches like the Hill criteria seek to distinguish epidemiologic signals with strongest
evidence of biomedically relevant effects18. We implement these concepts in the
medication-wide setting, focusing on two criteria: consistency and specificity.

Consistency: The consistency criterion posits that a true effect should result in
consistently observed signals, such as in repeated studies or in similar contexts. Some previous
findings of drugs impacting cancer, like statins, include medications that consistently impact
multiple cancer types19. Our examples of confounding (rather than reverse causality), on the
other hand, are specific to a single cancer. Therefore, our current analysis seeks drug effects
that are consistent across multiple common cancer types. As well, we consider consistency
among drugs sharing an active ingredient as another form of positive signal.

Taking inspiration from the consistency heuristic, we implement an analytical approach to
integrate the results of multiple cohort studies and distinguish the strongest signals from
confounding. Because of the large size of the data when expanded into a sequence of windows
of person-time, we split up very large cohort studies (more than about 3 million person-time
points) into replicate cohort studies containing disjoint study populations. We integrate these
multiple effect estimates in a new Bayesian hierarchical model, to estimate the per-combination
effects on any cancer. The first level of the hierarchy assumes that the replicate cohort study
effects of the drug combination on each common cancer are centered around the true
per-cancer effect of that combination. Then, at the next level, our model specifies that effects of
the combination on a particular cancer type are centered around the overall pan-cancer effect of
the drug combination. In a slight variation on this model (Figure 3E), we estimate the effects for
a combination of drug A and a drug active ingredient B, by combining the effects of all drugs that
share this active ingredient. This model only differs from the previous model in that it has one
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extra layer in the hierarchy: we assume that the per-cancer effects for the each drug with the
ingredient are drawn from the overall effect of that ingredient class on that type of cancer. The
effect estimates (and their uncertainties) yielded by the Cox regression comprise the data input
to the model. After fitting the model to the effect estimates, we obtain the posterior distribution of
the overall effect of the combination on cancer (red star in Figure 3E). We classify protective
drugs as those where the upper 1% posterior interval is less than zero, and predisposing drugs
as those where the bottom 1% is greater than zero.

Specificity: Second, another criterion examines whether the associations are specific to
the outcome of interest. We could imagine that people in poorer health simply take more
medications; many indicators of poor health, such as sedentary lifestyle, increase overall cancer
risk. But, we expect that these people with poor health will also have increased risk of other
non-cancer diseases. Therefore, the association would not be specific to cancer but would
correspond to general sickliness. We create a set of negative control outcomes, matching each
common cancer with a non-cancer outcome with a roughly similar incidence rate in our study
population (Figure 4A). These outcomes are chosen to span a wide range of body systems. We
apply the same hierarchical model to our negative control outcomes, which allows us to identify
drug combinations that are generally associated with illness.

Detecting reverse causality: We find many examples of reverse causality, similar to the
one illustrated in Figure 3D. As mentioned, we expect that these are due to erroneous missing
information about a cancer diagnosis, where eventually the cancer diagnosis is recorded in the
coded data, but only after some amount of treatment. It is reasonable to assume that when
cancer in fact causes the treatment, the diagnosis of cancer will occur close in time to the
treatment. We develop two tests to detect these cases. First, we test among cancer cases,
whether the duration of time between the trial start date and date of cancer diagnosis is shorter
among those treated with the combination than those in the comparator group (Figure 4B).
Second, we test whether this temporal relationship is stronger for cancer types more strongly
associated with the drug combination; that is, if drug combinations appear to have a stronger
effect on cancers that also tend to occur more shortly after the combination is dispensed. In this
manner, we can exclude the obvious cases of reverse causality.

Sensitivity analyses to strengthen findings
Definition of exposure: After the previous series of tests, we are left with only a few significant
associations from our drug-combination wide scan. We further subject these signals to a set of
sensitivity analysis. These test whether the results are sensitive to some of the design decisions
we made. We re-run the same drug wide association study for the candidate signals, twice,
each with two different sets of assumptions. For each analysis, we perform the consistency
analysis sketched in Figure 3D to assess whether the drug pair impacts all-cancer risk.

First, we change the window width used for defining trial start periods. While our primary
design used 6 month windows, we create a secondary analysis that uses 3 month windows to
define trial start periods. Note that this creates more follow-up periods, and results in a larger
person-time matrix. Our second sensitivity analysis tests the effect of varying the definition of
drug combination. While our main analysis censored person-time when the person stopped
taking drug A, this results in a very limited follow-up time, where most people are followed for no
more than a year. This can only allow us to detect short term drug effects. Removing this
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requirement, we can follow time after exposure for an average of 3.25 years, which is as long as
people are followed for cancer outcomes in some randomized trials5. Removing the censoring
greatly increases the number of cancers we can observe in follow up, but it also increases the
size of our expanded person-time matrix. Both sensitivity analyses necessitate reduced
numbers of people included in replicate cohort studies.
Amount of drug: Our final sensitivity analysis assesses the association of amount of drug B
dispensed with cancer incidence. We find empirically that most drugs have a few common
amounts dispensed, and we simply categorize users as in the "low" amount group or the "high"
group. For instance, for fenofibrate users two main amounts dominate (Figure 4C). Because the
number of people exposed to a drug combination and later getting cancer is rather low (Figure
1D, Figure 3A,B), we do not further sub-categorize drug amounts. We consider the signal has
passed this test if 1) both categories are significant and 2) the effect size is stronger for the
high-amount group than for the low group.
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Combining the sensitivity analyses with the tests for artifacts, we narrow down our
signals to the final associations. Our final results are presented in Supplementary Table 1 and
Table 2 (see end). We find 50 single drug pairs are associated with either an elevated or a
reduced rate of cancer. Combinations that do not have a consistent effect across most cancers
can be excluded (Figure 4D). Among the combinations remaining, many can be further
excluded from a cancer effect by the negative control test. Further, by combining signals across
drugs in ingredient categories, we can prioritize drug combinations with a consistent effect in the
ingredient class. Among our protective findings, only the combination of omega-3 fatty acids
plus fenofibrate (Figure 4E) was able to be tested as an ingredient class (where fenofibrate is an
ingredient of two drugs: fenofibric acid and fenofibrate). The ingredient class also was
associated with reduced risk of cancer. As well, the sensitivity analysis showed that a higher
amount of medication dispensed as associated with stronger protective effects as compared to
the lower amount (average log hazard ratio of -2.9 for the high amount, versus -1.6 for the low
amount).

Discussion
We have described a systematic method to perform a drug combination-wide association study
across all cancer types. While further studies are needed, one interesting finding is that a
combination of Omega 3 acids (fish oil) with fenofibrate may be protective of cancer. Our
negative control analysis indicates that this is not merely an effect of increased health
consciousness but is specific to cancers. Our analysis of amount dispensed and other sensitivity
analysis further supports the results over a 3 year follow up period. This pair of drugs both
impact circulating lipid levels20,21. Changes to circulating lipids are known to influence cancer
development, due to the high metabolic demands of growing tumors22. Therefore a biomedically
relevant effect is plausible.

Our analysis has a number of limitations. Foremost, our results display evidence of
remaining confounding. We previously showed that the propensity score is not able to model
many important types of confounding23. This is because the medical record is incomplete. Many
unpredictable factors can influence drug prescription, ranging from various comorbidities in
medical history, to the patient's gender, ethnicity, and geographical location24. Other studies
have removed some sources of confounding by using methods that only compare each person
to themselves across time25,26, but these are best suited to identifying acute short-term drug
effects27. Therefore, future work must improve upon the propensity score and enable better
modeling of confounding. Our results can provide a starting point for these efforts by providing a
large set of cases of real-world confounding. A second limitation of our work is the limited
follow-up time available for observing drug combination effects. In our analysis with no
censoring, we have 3.25 years of follow-up time available. This is short, but it is in line with
some previously combination drug effects discovered in randomized trials5. A third limitation is
the small number of treated cases in some combinations of drugs. However, we are using one
of the largest available sets of health claims data: therefore this issue would limit any study
aiming to discover interactions from observational data. Finally, we use data covering the years
2003 to 2015, in order to avoid the change in the coding system to ICD-10. This should not
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impact our results, as any biological effect of a drug would not depend on year of administration,
and all studies are limited to some time span.

Our unique approach has a number of strengths. First, this work represents, to our
knowledge, the first application of marginal structural models for discovery of drug combinations
impacting health outcomes. Marginal structural models are an established method to describe
effects of time-varying exposures on health outcomes. But, our unique design implements these
methods to describe the time-varying effect of adding a second drug on top of treatment with an
initial drug. Another unique method is our hierarchical model for combining estimates of drug
effects on related diseases to create an overall summary of the effect on a disease category.
While some other studies have combined drug effect estimates using a hierarchical model28, our
study is the first to use hierarchical models to combine effects on related diseases to create an
effect estimate robust to some types of confounding.

A final and crucial strength of our design is its systematic nature. By performing a
comprehensive analysis across all testable drug combinations, we are able to compare methods
and discover their weaknesses. For instance, we showed that methods that only account for a
few general confounders are quite vulnerable to bias. Our thorough consideration of sensitivity
to study design, and our attempts to quantify remaining confounding, increase confidence in our
results. We expect that this approach can provide a basis for future work seeking to discover
drug combination effects from health data.

Methods

Expansion of medical record into person time
In order to account for time-varying confounding, we follow the approach of Danaei, et. al in
which participant time after enrollment (initiation of drug A) is used to form a sequence of
randomized trials15,16. We divide the health record into windows of time since initiation of drug A.
Our main analysis uses windows of 24 weeks, and a subsequent sensitivity analysis uses
windows of 12 weeks. For each window t, we obtain time-specific data for patient p, denoted

, including if they started drug B ( ), and other medical information at thatℎ𝑒𝑎𝑙𝑡ℎ
𝑝,𝑡

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
𝑝,𝑡

time, including incidence of any cancer. As outlined in Figure 2, we expand person-time into
repeated trials. Specifically, people are eligible for enrollment into a trial at window t as long as
1) they are still observed in the data set (and not censored, depending on the design) and 2)
they have not yet taken drug B, and they have not yet had the outcome of interest (here, a
specific cancer). In trial 1, the person's full time observed is the amount of time available for
follow-up: all time windows are included. For subsequent trials, follow-up time begins only after
trial initiation. In Table 1, we illustrate the expansion into person-time for person i and person v
from Figure 2. Therefore, the time intervals are used for two purposes: 1) to assess whether a
person remains eligible for a trial, and which treatment arm they fall into in the trial; and 2) to
follow the outcomes of people after enrollment into a trial. The shorter the windows are, the
more rows this table will have. The longer the follow-up time, the more rows this table will have.
Eligibility time and follow-up time increase when no censoring is performed, resulting in a larger
person-time table.
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Table 1: Expansion into trials

Person Trial

Follow-

up

Treatme

nt

Outcom

e

Treatment

weight

model

Treatment

probability comment

i 1 1 A no yes p(A+Bi,1=False)

person i is not eligible

for trials after trial 2

because they took the

combination at trial 2

i 1 2 A no no p(A+Bi,1=False)

i 1 3 A no no p(A+Bi,1=False)

i 1 4 A yes no p(A+Bi,1=False)

i 2 1 A+B no yes

p(A+Bi,1=False)ｘ

p(A+Bi,2=True)

i 2 2 A+B no no

p(A+Bi,1=False)ｘ

p(A+Bi,2=True)

i 2 3 A+B yes no

p(A+Bi,1=False)ｘ

p(A+Bi,2=True)

v 1 1 A no yes p(A+Bv,1=False) person v is only

followed for 2

windows, they have no

drug B or outcome in

either.

v 1 2 A no no p(A+Bv,1=False)

v 2 1 A no yes

p(A+Bv,1=False)ｘ

p(A+Bv,2=False)

Modeling confounding
We follow the marginal structural model approach, which adjusts for confounding by modeling
both time-varying confounding and baseline confounding of treatment. For each person p, for
each trial t, we estimate probability of the person participating in the drug combination arm,
rather than the single-drug arm, given medical history: 𝑝(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑝,𝑡
 | ℎ𝑒𝑎𝑙𝑡ℎ

𝑝,𝑡
, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑖𝑛𝑓𝑜

𝑝
) 

. Then, in the marginal structural model, we use these probabilities to create treatment weights.
The same weights apply to the entire trial.

First, we create the model to estimate the probability of treatment given health history. All
person-time windows eligible for enrollment are included in the model, but not the expanded
follow-up time of each person: in Table 3, all rows where "Treatment weight model" is "yes" are
included in model fitting. The outcome variable in the logistic regression would be the contents
of the "Treatment" column in that table. Typically, these models are built with a few selected
confounders. But, because we do not wish to assume that these are the only confounders, here,
we implement this model with a sparse high-dimensional logistic regression. We include all
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treatments and diagnoses as variables in healtht and baseline. Baseline info also includes
gender and cubic spline variables to model the effect of age, calendar time, and the number of
total diagnoses and treatments the person has, as a measure of overall medical burden.
Typically, our data has over 10,000 features, but we remove the features observed in fewer than
100 people. We fit the model using elastic net logistic regression using the scikit learn package,
performing a grid search with cross-validation to choose values for the regularization parameter
and the l1-ratio. For each model, we perform the hyperparameter tuning separately. After
regularization, typically only a hundred or fewer features have a non-zero coefficient in the
logistic regression model. Finally, we obtain the predicted probabilities of treatment from the
model.

Then, we create a marginal structural model to estimate the association of treatment with
a cancer outcome. In this method, each person-trial is weighted based on the probability of
initiating treatment at that trial (as calculated above), and no earlier, given their medical history.
So, for person i who initiated the drug combination at trial 2, they had to first not initiate the
combination in time 1, then initiate in time 2, so the total probability of initiating treatment at time
2 is . Therefore, to calculate the probability of the𝑝(𝐴 +  𝐵

𝑖,1
= 𝐹𝑎𝑙𝑠𝑒) × 𝑝(𝐴 +  𝐵

𝑖,2
= 𝑇𝑟𝑢𝑒) 

sequence of history that resulted in that person's enrollment in to the second trial, we multiply
the appropriate time window probabilities to obtain the overall probability:

.𝑝(𝐴 +  𝐵
𝑖,1

= 𝐹𝑎𝑙𝑠𝑒 | ℎ𝑒𝑎𝑙𝑡ℎ
𝑖1

, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑖𝑛𝑓𝑜
𝑖
) ×  𝑝(𝐴 +  𝐵

𝑖,2
= 𝑇𝑟𝑢𝑒 | ℎ𝑒𝑎𝑙𝑡ℎ

𝑖2
, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑖𝑛𝑓𝑜

𝑖
)

Finally, we transform the probabilities to weights: the inverse of the resulting probabilities are
used as treatment weights for each trial. Since previous publications in marginal structural
modeling proved that using the stabilized weights reduces extreme weights without adding bias,
we use stabilized weights. All follow-up time windows in the trial receive this same treatment
weight (see Table 3).

Censoring
In our primary analysis, we censor people when they discontinue drug A. This is a design choice
that allows us to estimate the effect specifically of simultaneous exposure to drugs A and B,
rather than including people with possibly sequential exposure. (Other designs are tested in the
sensitivity analyses). Time-varying confounding could cause someone to stop taking the drug,
influencing censoring and potentially biasing our results8,29. To account for time-varying
confounding of censoring, as with the treatment weights, we again model the relationship
between medical history and censoring, and use this to weight each person-time observation
that could be censored. Again we follow the method outlined in8, where we weight each
person-time observation by modeling probability of censoring given medical history. If someone
is not censored, they did not discontinue drug A, so we model

using a high-dimensional sparse𝑝(𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑑𝑟𝑢𝑔 𝐴
𝑝,𝑡

= 𝐹𝑎𝑙𝑠𝑒 | ℎ𝑒𝑎𝑙𝑡ℎ
𝑝,𝑡

, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑖𝑛𝑓𝑜
𝑝
)

logistic regression model, as in the creation of treatment weights. Finally, we obtain the weights
in the same manner described above. All person-time follow-up is eligible for censoring (and
censoring weights are the same for the same person-time window that appears in different
trials). To weight each observation adjusting for confounding of discontinuation of drug A and of
treatment with drug B, we multiply the two weights together. While this makes the assumption
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that the two treatment decisions are independent, by performing the sensitivity analysis without
censoring, we are able to assess whether that assumption impacts the results.

Estimating time to cancer in survival analysis
Once we obtain our weights, they can be applied in the weighted Cox regression using the R
survival package8,30. Specifically, our implementation uses the time interval encoding of
time-to-event data to indicate a subject's presence in the risk set and their treatment and
outcome (incidence of a cancer type) at each interval. We apply weights to each interval. This
part of our analysis follows the approach previously implemented in other studies modeling a
sequence of randomized trials with observational data15,16,31. In order to account for the repeated
presence of subjects in multiple trials, we use the "cluster" option, treating each subject as one
clustered set of observations32. Finally, we obtain hazard ratios and robust standard errors,
using the R survey package.

Hierarchical model
The hierarchical model shown in Figure 3E is presented in Appendix Model. The slightly simpler
version without the ingredient layer is very similar, as it only removes this layer of the hierarchy.
The model uses as input the log hazard ratios of the treatment effects estimated from the Cox
regression model. These are assumed to have a normal distribution in the Wald test. Our model
posits that these estimates are samples derived from a normal distribution centered around a
true effect estimate. We fit the model using Stan, and obtain the posterior distribution of the
all-cancer effect from this model. We use the same model to obtain the effect estimate across all
negative control outcomes, replacing the cancer estimates with the estimates of the effect of
each drug combination on incidence of each negative control health condition.

Sensitivity analyses and other tests
We repeat our drug-wide analysis, but only testing drugs that have effects tested in our main
analysis. For the first sensitivity analysis, we alter the size of the windows, and for the second
sensitivity analysis, we do not censor when drug A is discontinued. Because, as mentioned
above, both of these alterations can result in large increases in the size of the expanded
person-time data set, we must reduce the number of drug A users included in some analyses.
Therefore, we split the initial cohort into replicate cohort studies of independent cohorts; the
results are pooled in the hierarchical model.

To perform the reverse causality test, we gather data on time to cancer for the cancers
most strongly associated with the drug combination. Considering only the people who eventually
get that type of cancer, we use the rank-sum test to evaluate whether the time to cancer is
significantly shorter for those taking the combination versus those in the single-drug group.
These values are presented in Table 1 and 2, "reverse causality test" column.

To categorize combination users into those with "low" and "high" amount of the second
drug, we obtain the two most common amounts prescribed. We set the cut point to be half way
between those two amounts. Then, we encode all people as non-users, low users, and high
users, and obtain the effect of low or high drug use.
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Code availability
Python code to form the sequence of repeated trials, and R code to perform the survival
analysis will be provided alongside the code to run our stan model, at
https://github.com/RDMelamed/drug-combo-cancer.git

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2022.09.29.22280479doi: medRxiv preprint 

https://github.com/RDMelamed/drug-combo-cancer.git
https://doi.org/10.1101/2022.09.29.22280479
http://creativecommons.org/licenses/by-nc/4.0/


18

Supplementary Table 1: Drug combinations associated with reduced risk of cancer. The negative control test is passed for those in
yellow (no reduced risk of non-cancers)

1 Drug(A) Drug 2 (B)

1%

posterior

99%

posterior

1%

posterior,

negative

controls

99%

posterior,

negative

controls

50%

posterior--u

nweighted

reverse

causality

test

1%

posterior, 3

month

windows

99%

posterior, 3

month

windows

reverse

causality

test, 3

month

windows

1%

posterior,

no

censoring

99%

posterior,

no

censoring

reverse

causality test,

no censoring

tiotropium_bromide diclofenac_sodium -0.826 -0.325 -0.201 0.192 -0.185 0.089 -1.412 -0.466 0.056 -0.377 -0.095 0.84

metformin_hydrochloride

oseltamivir_phosph

ate -0.916 -0.282 -0.447 0.049 -0.029 0.58 -0.679 -0.17 0.405

spironolactone naproxen -0.974 -0.186 -0.674 -0.086 -0.023 0.991 -1.081 -0.032 0.973 -0.516 -0.017 0.346

fluticasone_propionate_sal

meterol_xinafoate

mometasone_furoa

te -0.628 -0.173 -0.58 -0.011 -0.192 0.554 -0.762 -0.169 0.299 -0.363 -0.03 0.02

niacin

penicillin_v_potassi

um -0.879 -0.148 -0.683 -0.015 -0.154 0.684 -1.269 -0.355 0.845 -0.338 -0.028 0.297

escitalopram_oxalate

oseltamivir_phosph

ate -0.757 -0.12 -0.72 -0.172 -0.047 0.929 -1.711 -0.499 0.991 -0.609 -0.06 0.416

pantoprazole_sodium

fluticasone_propion

ate -0.497 -0.112 -0.33 -0.026 -0.064 0.679 -0.711 -0.074 -0.299 -0.051

donepezil_hydrochloride olanzapine -0.856 -0.11 -0.352 0.417 -0.044 0.293 -1.422 -0.172 0.116 -0.641 -0.069 0.016

insulin_aspart__recombina

nt

glucagon_hydrochlo

ride -0.816 -0.104 -0.52 -0.065 -0.134 0.918 -0.999 -0.196 0.648 -0.675 -0.143 0.634

amlodipine_besylate pravastatin_sodium -0.484 -0.094 -0.121 0.164 -0.023 0.935 -0.612 -0.158 0.41 -0.349 -0.083 0.283

omega-3-acid_ethyl_esters fenofibrate -0.844 -0.092 -0.394 0.225 -0.254 0.466 -1.098 -0.129 0.935 -0.514 -0.016 0.282

fluticasone_propionate_sal

meterol_xinafoate cefdinir -0.948 -0.085 -0.613 -0.218 -0.107 0.408 -1.077 -0.157 0.025 -0.512 -0.176 0.063

nifedipine

codeine_phosphate

_guaifenesin -0.723 -0.076 -0.477 0.103 -0.038 0.494 -1.121 -0.245 0.418 -0.439 -0.022 0.631

ezetimibe_simvastatin fenofibrate -0.609 -0.063 -0.494 0.04 -0.033 0.527 -0.833 -0.092 0.29 -0.259 -0.072 0.818

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2022.09.29.22280479doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.29.22280479
http://creativecommons.org/licenses/by-nc/4.0/


19

glyburide

penicillin_v_potassi

um -0.802 -0.059 -0.698 -0.151 -0.047 0.198 -0.902 -0.038 0.184 -0.489 -0.096 0.984

fexofenadine_hydrochloride cefdinir -0.934 -0.049 -0.634 0.205 -0.038 0.555 -0.771 -0.025 0.406 -0.365 -0.084 0.46

budesonide_formoterol_fu

marate

oseltamivir_phosph

ate -1.062 -0.046 -0.761 0 -0.065 0.039 -0.702 -0.084 0.082

niacin

oseltamivir_phosph

ate -0.838 -0.026 -0.296 0.25 -0.049 0.879 -0.623 -0.177 0.242

valsartan

penicillin_v_potassi

um -0.513 -0.017 -0.436 0.065 -0.016 0.406 -0.763 -0.076 0.469 -0.289 -0.002 0.279

omeprazole

fluticasone_propion

ate -0.541 -0.012 -0.305 -0.055 -0.048 0.831 -0.783 -0.18 0.212 -0.311 -0.006 0.312

Supplementary Table 2: Drugs combinations associated with increased risk of cancer. The negative control test passes for those in
yellow (no increased risk of non-cancer). But, most of these are cancer therapies and likely due to reverse causality.

Drug 1 (A) Drug 2 (B)

1%

posterior

99%

posterior

1%

posterior,

negative

controls

99%

posterior,

negative

controls

50%

posterior--u

nweighted

reverse

causality

test

1%

posterior,

3 month

windows

99%

posterior, 3

month

windows

reverse

causality

test, 3

month

windows

1%

posterior,

no

censoring

99%

posterior,

no

censoring

reverse

causality test,

no censoring

polyethylene_glycol_3350

acetaminophen_ox

ycodone_hydrochlo

ride 0.18 0.723 -0.241 0.331 1.072 0.045 0.233 0.937

tramadol_hydrochloride

acetaminophen_pr

opoxyphene_napsy

late 0.078 0.581 -0.17 0.26 0.592 0.528 0.059 0.823

carvedilol

acetaminophen_pr

opoxyphene_napsy

late 0.008 0.471 -0.213 0.34 0.519 0.142 0.09 0.534 0.066 0.224 0.457 0.646

polyethylene_glycol_3350

acetaminophen_pr

opoxyphene_napsy 0.272 0.838 -0.015 0.417 0.937 0.003 0.331 1.076
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late

divalproex_sodium

acetaminophen_pr

opoxyphene_napsy

late 0.2 0.878 -0.064 0.399 0.795 0.684 0.137 0.649 0.322

tamsulosin_hydrochloride

acetaminophen_pr

opoxyphene_napsy

late 0.163 0.45 -0.044 0.28 0.643 0.987 0.111 0.392 0.366 0.534

fluoxetine_hydrochloride

acetaminophen_pr

opoxyphene_napsy

late 0.07 0.579 -0.23 0.257 0.742 0.015 0.086 0.758 0.005 0.253 0.551 0.199

risperidone

acetaminophen_pr

opoxyphene_napsy

late 0.301 1.183 -0.019 0.709 0.951 0.391 0.295 0.847 0.624

acetaminophen_propoxyphe

ne_napsylate alprazolam 0.02 0.56 -0.09 0.304 0.751 0.004 0.15 0.803

insulin_glargine__recombina

nt

ciprofloxacin_hydro

chloride 0.024 0.328 -0.038 0.281 0.72 0.029 0.015 0.418

amphetamine_salt_combina

tion

ciprofloxacin_hydro

chloride 0.086 0.742 -0.019 0.397 0.577 0.509 0.275 1.132

colchicine furosemide 0.131 0.945 0.092 0.763 0.722 0.007 0.047 0.89

glucose_meter_test_control

_strips furosemide 0.227 0.821 0.463 1.05 0.745 0.924 0.06 0.863 0.258 0.631

lansoprazole furosemide 0.103 0.758 0.094 0.869 0.553 0.001 0.124 0.925

clonidine_hydrochloride

hydralazine_hydroc

hloride 0.137 0.622 0.19 0.712 0.624 0.026 0.228 0.699 0.154 0.525

omeprazole lansoprazole 0.058 0.681 0.011 0.406 0.906 0.053

glyburide levofloxacin 0.106 0.505 0.205 0.564 0.814 0.018 0.004 0.471

insulin_glargine__recombina

nt lorazepam 0.041 0.462 0.073 0.475 1.109 0.076 0.036 0.549

sucralfate lorazepam 0.034 0.854 0.095 0.762 1.014 0.017 0.415 1.237
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risperidone

moxifloxacin_hydro

chloride 0.133 1.012 -0.133 0.604 0.809 0.273 0.332 0.881 0.072

ramipril

nitrofurantoin_mon

ohydrate_nitrofura

ntoin__m 0.085 0.859 0.121 0.825 0.707 0.009

morphine_sulfate ondansetron 0.001 0.848 -0.158 0.533 1.041 0.601

morphine_sulfate

ondansetron_hydro

chloride 0.386 0.923 -0.072 0.439 1.281 0.013 0.245 0.944

sucralfate

ondansetron_hydro

chloride 0.31 1.064 0.05 0.747 1.265 0.022 0.445 1.256

insulin_glargine__recombina

nt potassium_chloride 0.085 0.518 0.326 0.589 0.528 0.014 0.195 0.618

clonidine_hydrochloride potassium_chloride 0.071 0.662 0.39 0.724 0.617 0.002 0.106 0.651

glyburide potassium_chloride 0.03 0.678 0.596 1.057 0.68 0.118 0.001 0.575

pioglitazone_hydrochloride potassium_chloride 0.02 0.559 0.369 0.821 0.836 0.005 0.015 0.53 0.048 0.363

morphine_sulfate warfarin_sodium 0.134 0.92 0.338 1.014 0.879 0.702 0.017 0.518 0.166
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Supplementary Model:
data{

///
int <lower=1> N; // tot
int <lower=1> Noutcome;
real cancer_effect_sd; // prior variance for mean of eff
real percancer_devsd; // prior variance for mean of eff
real across_cancers_sd; // prior variance for mean of eff
vector[N] expvals;
vector[N] se;
//int<lower=0, upper=1> outcome_is_cancer[Noutcome];
int N_class;
int<lower=1,upper=N_class> drug2[N];

//int<lower=0, upper=1> cancer_indicator[N];
int<lower=1, upper=Noutcome> outcome_id[N];

}
parameters{

vector[N_class] eff_per_drug_cancer_tilde[Noutcome];
real class_cancer_effect;
real<lower=0> class_allcancer_sd;

vector<lower=0>[Noutcome] outcome_sd_across_drugs; // for each outcome, the spread across
drugs might be different

vector[Noutcome] class_per_cancer_effect_tilde;
}
transformed parameters{

real Xeff_rep[N];
vector[N_class] eff_percancer[Noutcome];
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vector[Noutcome] class_per_cancer_effect = class_per_cancer_effect_tilde * class_allcancer_sd
+ class_cancer_effect;

for(i in 1:Noutcome){
eff_percancer[i] = eff_per_drug_cancer_tilde[i] * outcome_sd_across_drugs[i] +

class_per_cancer_effect[i];

}
for (i in 1:N){

Xeff_rep[i] = eff_percancer[outcome_id[i]][drug2[i]] ;
}

}

model {
// these 2 are the effect & var of effect overall of cancer of drugs in that group
class_cancer_effect ~ normal(0, cancer_effect_sd);
class_allcancer_sd ~ normal(0,across_cancers_sd); // overall, how wide is the spread across

cancers

// then these are the variations across cancers of that
class_per_cancer_effect_tilde ~ normal(0, 1);

// then we get to the per-drug variation from that for each cancer: the random deviations,
and what we scale these by per cancer

outcome_sd_across_drugs ~ normal(0, percancer_devsd);
for(i in 1:Noutcome){

eff_per_drug_cancer_tilde[i] ~ normal(0,1); // each of these being random spread around
the per-cancer effect, across drugs in that class

}
if(run_estimation==1){

expvals ~ normal(Xeff_rep, se); }
}
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