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High-throughput sequencing measurements of the vaginal microbiome have yielded intriguing potential16

relationships between the vaginal microbiome and preterm birth (PTB; live birth prior to 37 weeks of17

gestation). However, results across studies have been inconsistent. Here we perform an integrated analysis18

of previously published datasets from 12 cohorts of pregnant women whose vaginal microbiomes were19

measured by 16S rRNA gene sequencing. Of 1926 women included in our analysis, 568 went on to deliver20

prematurely. Substantial variation between these datasets existed in their definition of preterm birth,21

characteristics of the study populations, and sequencing methodology. Nevertheless, a small group of taxa22

comprised a vast majority of the measured microbiome in all cohorts. We trained machine learning (ML)23

models to predict PTB from the composition of the vaginal microbiome, finding low to modest predictive24

accuracy (0.28-0.79). Predictive accuracy was typically lower when ML models trained in one dataset25

predicted PTB in another dataset. Earlier preterm birth (<32 weeks, <34 weeks) was more predictable from26

the vaginal microbiome than late preterm birth (34 - 37 weeks), both within and across datasets. Integrated27

differential abundance analysis revealed a highly significant negative association between L. crispatus and28

PTB that was consistent across almost all studies. The presence of the majority (18 out of 25) of genera29

was associated with a higher risk of PTB, with L. iners, Prevotella, and Gardnerella showing particularly30

consistent and significant associations. Some example discrepancies between studies could be attributed31

to specific methodological differences, but not most study-to-study variations in the relationship between32

the vaginal microbiome and preterm birth. We believe future studies of the vaginal microbiome and PTB will33

benefit from a focus on earlier preterm births, and improved reporting of specific patient metadata shown to34

influence the vaginal microbiome and/or birth outcomes.35
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Introduction38

Preterm birth (PTB), defined as live birth prior to 37 complete weeks of gestation, is the primary cause of neonatal39

morbidity and mortality worldwide with an average PTB prevalence of around 11% (Chawanpaiboon et al., 2019;40

Manuck et al., 2016). However, our current understanding of PTB is limited with no clear causative factor for the41

majority of PTBs (Ferrero et al., 2016). One of the known risk factors of PTB is bacterial-related inflammation in42

gestational tissue (Donders et al., 2009; Goldenberg et al., 2008), including bacterial vaginosis (BV) – a polymicrobial43

alteration of the vaginal microbiome characterized by depletion of Lactobacillus species and overgrowth of typically44

strict anaerobes (Onderdonk et al., 2016).45

In the past decade, the development of high-throughput sequencing technologies has reformed the study of the46

human microbiome. High throughput sequencing of PCR-amplified marker genes (e.g., 16S rRNA gene), and47

shotgun metagenomic sequencing of total sample DNA are now widely used to measure the composition and48

functional potential of whole microbial communities. To date, at least 15 studies have used high-throughput49

sequencing to investigate the link between the vaginal microbiome and PTB, or preterm premature rupture of50

membranes (PPROM), which precedes between 30-40% of all PTB cases. All these studies employed a similar51

study design: (a) cohorts of pregnant women were recruited prospectively; (b) vaginal swabs were collected during52

the pregnancies; (c) birth outcomes (e.g., PTB) were recorded; (d) 16S rRNA gene sequencing was performed on a53

subset of women selected to meet pre-specified inclusion criteria and a target PTB to term birth (TB) ratio. However,54

these studies reported varied and sometimes inconsistent associations between the vaginal microbiome and PTB.55

For example, Romero et al. (2014) found that vaginal microbial composition was not different in PTBs and TBs in56

a cohort of 90 pregnant women (88% African American; PTBs <34 weeks). DiGiulio et al. (2015) reported that57

lower Lactobacillus and higher Gardnerella abundances in the vaginal microbiome were associated with a higher58

risk of PTB (55%+ white; PTBs <37 weeks). Callahan et al. (2017) replicated these findings in a study cohort59

drawn from the same population as DiGiulio et al. (2015), but not in a different cohort with a prior history of PTB60

(82% African American; PTBs <37 weeks). Kindinger et al. (2017) found a lack of Lactobacillus crispatus and61

Lactobacillus iners dominance were risk factors for PTB in a cohort of UK women (65% white; PTBs <34 weeks).62

Fettweis et al. (2019) reported lower L. crispatus abundance was a risk factor for PTB in a predominantly black cohort63

of women (75% African American; PTBs <37 weeks). These studies employed a variety of different sequencing64

methodologies, including targeting different regions of the 16S rRNA gene, and varied in how they included and65

reported spontaneous versus indicated preterm births.66

The substantial heterogeneities between previous studies almost certainly contribute to the variation in reported67

associations between the vaginal microbiome and PTB. These studies were highly heterogeneous in (1) the68

population being sampled (e.g., maternal race, BMI and age), (2) study size, (3) technical choices in microbiome69

profiling methods (e.g., DNA extraction method, 16S rRNA gene hypervariable region) and (4) definitions of term birth70

(TB) and PTB (e.g., spontaneous and indicated PTB, early and late PTB). Black women have a higher risk of PTB and71

BV compared to white women (Schaaf et al., 2013), and these study cohorts have very different racial compositions.72

Advanced maternal age is considered a risk factor of PTB, yet it is rarely accounted for in studies investigating the73

vaginal microbiome in pregnancy (Waldenström et al., 2014). Standard primers for the V4 hypervariable region74

of the 16S rRNA gene have higher sensitivity to the important Gardnerella genus compared with common V1-V375

primers (Frank et al., 2008; Mizrahi-Man et al., 2013). The mechanisms of spontaneous and indicated PTB might be76

different as spontaneous PTB is usually related to preterm rupture of membranes (PPROM) or cervical dilation while77

indicated PTB is related to induced or cesarean section labor due to obstetrical complications (Stout et al., 2014).78

Similarly, early PTB (< 32), moderate PTB (>= 32, < 34), and late PTB (>= 34, < 37) might be related to different79

causative factors, with an infectious etiology more commonly associated with early PTB (Goldenberg and Culhane,80

2003). Lack of power also contributes to inconsistencies in reported associations. Many of these studies have small81

sample sizes — 12 cohorts included less than 50 women that experienced PTB, and 7 cohorts had an overall sample82

size of less than 100. This lack of power is exacerbated by the typically untargeted analyses that must account for83

the tens to thousands of taxa being simultaneously investigated.84

In a meta-analysis, the results from multiple studies regarding a common biological question are synthesized85

to achieve greater power and generalizability of the conclusions. For example, two meta-analyses of the gut86

microbiome and colorectal cancer (CRC) performed integrated analyses of multiple metagenomic CRC datasets87

to reveal consistent associations between the gut microbiome and CRC and to better understand the reproducibility88

of such associations across studies (Thomas et al., 2019; Wirbel et al., 2019). Meta-analysis can help identify factors89

that cause inconsistencies between studies, aggregate signals across studies to improve power, and point the way90

towards improvements in future study design and analysis. Haque et al. (2017) pooled 4 vaginal microbiome datasets91

to understand the temporal differences between the vaginal microbiome communities and found the diversity92

measures are significantly different between vaginal microbiomes sampled from women with term and preterm93

outcomes. However, they did not look into the role of specific genera or species. Kosti et al. (2020) aggregated 594
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longitudinal vaginal microbiome datasets with batch correction and reported several microbial genera as associated95

with PTB. However, they did not explore the heterogeneity cross-study and did not perform predictive analyses.96

Gudnadottir et al. (2022) performed a network-based meta-analysis of 17 longitudinal vaginal microbiome datasets97

using community state types (CSTs). Their results supported the predictivity of preterm birth using the vaginal98

microbiome but did not build any prediction models and CSTs reduce the description of the vaginal microbiome to99

the identity of its most abundant member.100

In this study, we performed a meta-analysis of 12 prospective case-control PTB datasets obtained by using 16S rRNA101

gene sequencing to measure the vaginal microbiome during pregnancy. All together, these 12 datasets included102

1926 pregnant women, 568 of whom went on to deliver preterm. After re-processing the raw sequencing data103

using a consistent bioinformatics pipeline, we used a machine learning approach to investigate the predictability of104

PTB from the composition of the vaginal microbiome in each study (Pasolli et al., 2016; Topçuoğlu et al., 2020).105

We evaluated cross-dataset reproducibility of PTB predictions from the vaginal microbiome, and investigated PTB106

and study-specific factors that affected prediction accuracy. We explored the association between specific microbial107

taxa and PTB within and across studies. Finally, we synthesized these results into specific recommendations and108

cautions applicable to future study of the vaginal microbiome in PTB, and perhaps to the study of microbiomes in109

health and disease more broadly.110
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Results111

Published studies of the vaginal microbiome in term and preterm births are highly heterogeneous112

We searched the published literature for studies between 2014 and 2020 that used high-throughput 16S rRNA gene113

sequencing to characterize the vaginal microbiome during pregnancy in term and preterm births. We identified 15114

such studies, all of which used some variation of a nested case-control study design drawn from larger cohorts115

of women who were prospectively enrolled and sampled during pregnancy. From these 15 studies, we identified116

12 datasets from independent cohorts of women that were complete enough (raw sequencing data and sufficient117

metadata) for us to include in this meta-analysis (Table 1; Methods). In total, these datasets include 6,891 vaginal118

microbiome samples from 2,023 pregnant women, 570 of whom had preterm births.119

There was a large amount of heterogeneity in technical, clinical and cohort characteristics among these studies120

of the vaginal microbiome in term and preterm births. The number of subjects in the datasets we included in our121

meta-analysis varied from a low of 38 to a high of 539, and the percentage of subjects who went on to have preterm122

births varied from a low of 20% to a high of 81%, respectively. In terms of gestational age at sampling, three datasets123

(Ki, Bl, and Ta) obtained samples only from first trimester (0 - 13 weeks) or early of second trimester (14 - 26 weeks).124

Su datasets obtained samples only from late second trimester. All other eight datasets obtained samples across125

all trimesters. Furthermore, seven datasets are from longitudinal studies, with averages from 2.1 to 25 samples126

per subject. Furthermore, six datasets have subjects that included samples from all three trimesters. The number127

of subjects sampled in all trimesters varied from 3 to 45, and the number of those subjects who experienced PTB128

varied from 1 to 12 (Supplementary Figure S1; Supplementary Table S1). The V1-V2 region of the 16S rRNA gene129

was sequenced in five of these datasets, and the V4 gene region in the other seven. Four datasets had most130

participants self-report their race as black and six datasets had a majority of participants self-report their race as131

white. Three datasets excluded late PTB (>= 34, < 37) or early TB (>= 37, < 39), while all other datasets included132

these two categories. Seven datasets only included spontaneous PTB and at least two other datasets included both133

spontaneous and indicated PTB. The distributions of gestational age at delivery and select population characteristics134

also varied substantially between datasets (Supplementary Figures S2 & S3).135

Table 1. Characteristics of the 16S rRNA gene sequencing and study cohorts for each dataset included in this meta-analysis.

Dataset Sequencing
Region

No. of Subjects
(PTB**)

No. of
samples

Maternal
BMI***

Maternal
Age***

Maternal
Race

Gestational age at
sampling ***

Reference

Brown2018 (Br)* V1-V2 192 (157) 374 25 (18-42) 33 (19-51) 43/50/84/0 22 (6-36) Brown et al. (2018, 2019)

Fettweis2019 (Fe) V1-V3 135 (45) 546 - - 0/101/21/13 28 (3-41) Fettweis et al. (2019)

Kindinger2017 (Ki) V1-V3 161 (34) 161 25 (18-48) 33 (21-42) 27/30/104/0 16 (16-16) Kindinger et al. (2017)

Romero2014 (Ro) V1-V3 90 (18) 349 30 (19-54) 25 (17-43) 1/79/5/5 26 (6-41) Romero et al. (2014)

Stafford2017 (St) V1-V3 133 (26) 158 - 29 (16-42) 4/8/110/11 24 (15-35) Stafford et al. (2017)

Digiulio2015 (Di) V3-V5 40 (11) 996 28 (18-50) 30 (19-41) 7/2/22/9 25 (1-40) DiGiulio et al. (2015)

Elovitz2019 (El) V4 539 (107) 1505 - - 0/399/115/25 - (16 - 28) Elovitz et al. (2019)

Blostein2020 (Bl) V4 125 (25) 135 26 (18-37) 28 (18-44) - 9 (<16) Blostein et al. (2020)

ST_Callahan2017 (SC) V4 39 (9) 897 25 (18-51) 33 (25-42) 4/1/22/12 24 (2-41) Callahan et al. (2017)

Subramaniam2016 (Su) V4 38 (19) 38 25 (16-38) 22 (15-35) 0/18/20/0 - (21 - 25) Subramaniam et al. (2016)

Tabatabaei2019 (Ta) V4 450 (94) 450 24 (13-51) 31 (20-44) 19/31/322/78 - (8 - 13) Tabatabaei et al. (2019)

UAB_Callahan2017 (UC) V4 96 (41) 1282 31 (16-73) 27 (17-38) 1/79/9/7 27 (11-41) Callahan et al. (2017)

* Dataset Brown2018 was combined from Brown et al. (2018) and Brown et al. (2019).

** PTB: Preterm birth, live birth prior to 37 completed weeks of gestation.

*** Maternal BMI, age and gestational age at sampling were summarized as mean (range).

**** Maternal race was categorized as Asian/Black/White/Other.

A limited set of core taxa make up a vast majority of the vaginal microbiome136

We used a consistent bioinformatic protocol based on the DADA2 tool and the Silva reference database to generate137

tables of taxonomically-assigned amplicon sequence variants (ASVs) from the raw 16S sequencing data for each138

dataset (Supplementary Tables S2 & S3; Methods). To work at the highest level of resolution possible, datasets were139

partitioned into the V1-V2 or V4 groups based on which region of the 16S gene was sequenced. Within each group,140

ASVs were truncated to the “intersection” region contained within all sequenced amplicons, allowing an ASV table141

containing all datasets in the group to be constructed. For analyses using all datasets combined, taxonomic profiles142

at the genus level (with special species-level discrimination performed within the Lactobacillus genus) were merged143

into a single table.144
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Figure 1. The average proportion of all sequencing reads in each dataset derived from the set of common ASVs (found in every
dataset), top ASVs (proportion larger than 0.1% in any dataset) and core genus-level taxonomic features (abundance > 0.1% and
prevalence > 10% for at least 5 datasets). Note that common and top ASV features were determined within the V1V2 and V4
dataset groups independently, as non-overlapping ASVs are not directly comparable (Methods).

A small number of taxa comprised a large majority of the vaginal microbiome in all studies included in our145

meta-analysis. In the V1-V2 group we found 42 “common” ASVs that were present in all datasets, and 157 “common”146

ASVs in the V4 group (Supplementary Table S4). These common ASVs constituted a large majority of the vaginal147

microbiome in every dataset in both the V1-V2 and V4 groups (71.3% - 94.8% of total reads). Another frequent148

strategy that is used to select a set of cross-dataset taxonomic features is to consider all taxa that appear above149

some abundance threshold in any dataset. Here we defined “top” ASVs as those that had a relative abundance150

larger than 0.1% in any dataset. We found 172 top ASVs and 159 top ASVs in the V4 group and the V1-V2 group,151

respectively. This still modest number of ASVs constituted an overwhelming majority of the vaginal microbiome in152

every dataset (90.4% - 98.0% total reads; 349 - 5479 ASVs). Finally, we also selected a set of “core” genera from153

the all-study table (both V1-V2 and V4 studies classified at the genus level, with Lactobacillus discriminated at the154

species level) using a hybrid filtering strategy that kept all genera present in at least 0.1% abundance and 10%155

prevalence in at least 5 datasets. Just 25 “core” genus-level taxa made up 88.4% - 97.1% of the total reads in every156

dataset (Figure 1; Supplementary Figures S4 & S5). Five genera had particularly high average relative abundance157

(> 0.05) and prevalence (> 40%): L. iners (0.35, 87%), L. crispatus (0.29, 78%), L. jensenii (0.06, 57%), L. gasseri158

(0.057, 46%), and Gardnerella (0.054, 56%).159

The predictivity of preterm birth from the vaginal microbiome is low160

We employed a machine learning (ML) approach to assess the predictability of preterm birth outcomes from the161

genus-level composition of the vaginal microbiome. In order to assess the generalizability of ML predictions,162

we performed three types of ML analyses – intra-dataset analyses in which the ML model is trained and tested163

within a single dataset, cross-dataset analyses in which the ML model is trained on one dataset and tested on164

another, and leave-one-dataset-out (LODO) analyses in which 11 of 12 datasets are pooled together for training and165

testing is performed on the left-out dataset (Figure 2A; Methods). Based on our evaluation of overall performance166

(Supplementary Figures S6 & S7; Supplementary Methods) and precedent in the microbiome field, we used the167

random forest classifier and either proportions or centered log-ratio (CLR) transformed abundances as our ML168

features. We used the area under the receiver operating characteristic curve (AUC) as our primary measure of169

ML prediction accuracy.170

The predictivity of PTB from the vaginal microbiome varied substantially across studies. Intra-dataset AUCs ranged171

from 0.32 (no predictivity) to 0.68 (moderate predictivity) across the datasets we considered (Figure 2B, values in the172

major diagonal). We did not discern an obvious pattern amongst the higher or lower-predictivity datasets. There was173

no clear increase in AUC with study size: low intra-study AUC (0.52) was obtained in the relatively well-powered Ta174

study (n=450) while the highest intra-study AUC was in the relatively low power SC study (n=39). The three studies175

(Br, Ro, and SC) with the highest AUCs (0.67-0.68) include cohorts with predominantly white and predominantly176

black racial backgrounds, cohorts from California, Michigan and the United Kingdom, and variously considered both177

all-cause and only spontaneous preterm births.178

The predictivity of PTB by ML models trained on data from a different dataset was generally low. In the cross-dataset179
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Figure 2. (A) A schematic of different analytical strategies using machine learning. Each square represents a different dataset,
and squares are colored by how they are used to train or test the ML model. (B) The prediction accuracy, as measured by the
AUC, for random forest ML models trained on the vaginal microbiome profiles (genus-level proportions) in one dataset (rows) and
tested in the same or a different dataset (columns). “Ave.” indicates the average AUC of each row (same training dataset) or each
column (same testing dataset).

analyses – in which the ML model is trained on one dataset and then used to predict on a different dataset – only180

22% of training/testing dataset pairs yielded AUCs larger than 0.6, and just 3% had AUCs larger than 0.7. There was181

some indication that certain datasets were easier, or harder, to predict PTB in than others (columns of Figure 2B).182

AUCs for predictions in the SC dataset were greater than 0.6 for ML models trained on most other datasets, while183

the AUCs for predictions in the Ta study never exceeded 0.57 for any training dataset. The leave-one-dataset-out184

(LODO) analysis yielded slight increases in AUC in 10 out of 12 datasets compared to the average cross-dataset185

AUC. While similar in direction to the previous results in the meta-analysis of the gut microbiome in Thomas et al.186

(2019) and Wirbel et al. (2019), the magnitude of the increase in prediction accuracy obtained by pooling datasets187

together for ML training was much smaller than observed in those studies.188

Earlier Preterm Birth Is More Predictable Than Late Preterm Birth189

Preterm birth is a syndrome with multiple causes, the relative importance of which may vary between different190

populations, and between different sub-categories of preterm birth. One important subdivision of preterm birth is191

based on gestational age at delivery, with morbidity and mortality increasing sharply with earlier preterm births. Here,192

we used information available from each study about gestational age at delivery to define three PTB subgroups: (1)193

early preterm births (< 32 weeks); (2) early or moderate preterm births (< 34 weeks); and (3) late preterm births (>=194

34 and < 37 weeks). Seven datasets had sufficient numbers of PTBs in each subgroup (8+) to include in our analysis.195

We employed intra-dataset and cross-dataset ML approaches to compare the predictivity of early, moderate and late196

preterm births, with the control group set to full-term births (>= 39 weeks). To completely remove any potential effect197

of preterm birth sample size from the results, within each study we resampled the number of women in each PTB198

subgroup to the smallest number of women among all subgroups (Methods). Unfortunately, due to both a lack of199

available data in some studies and the exclusion of indicated preterm births in other studies, we were unable to200

perform a similar analysis comparing indicated and spontaneous preterm births.201

Earlier preterm births were much easier to predict from the composition of the vaginal microbiome than were later202

preterm births. The accuracy for predicting late PTB was low to moderate in all intra-dataset and cross-dataset ML203

analyses (all AUC values <= 0.65, Figure 3C). In contrast, the accuracy for predicting early PTB was acceptable204

to good in most datasets (21 AUC values >= 0.65, 7 AUC values > 0.75, Figure 3C). Classification accuracy for205

early-to-moderate PTB was intermediate, as expected. In most datasets the intra-dataset and LODO accuracy for206

predicting early PTB were substantially better than late PTB (Figure 3A and 3B), but the Fe dataset was an exception207

where classifier performance remained poor (AUC < 0.6) for all categories of PTB. Similar results were observed208

whether using proportions or CLR-transformed abundances as the features in the analysis (Supplementary Figure209

S8).210
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Figure 3. Assessment of prediction performance for different preterm birth groups using intra-dataset analysis (A), LODO analysis
(B) and cross-dataset analysis (C) using CLR-transformed data. A resample procedure is used to ensure each preterm birth group
has the same sample size. The experiment is repeated 10 times and the average AUC and/or standard error are calculated. For
each heatmap, diagonal AUC values are from intra-analysis, and off diagonal values are from cross-analysis.

More Resolved Taxonomic Features Inconsistently Improved the Predictivity of PTB211

We compared the prediction accuracy of our random forest ML models trained on the proportions of taxonomic212

features at different levels of resolution, from ASV up to Phylum (Table 2). In intra-dataset analysis, ASV level213

features had the overall best performance for the V1-V2 group, and there was an overall trend of decreasing AUC214

with increasingly broad taxonomic features. However, this trend was not evident in the V4 group (Table 2). In both215

the V1-V2 and V4 groups of datasets, the AUC measured in the cross-dataset and LODO analyses showed no clear216

trend with the breadth of the taxonomic features considered. Given the previous observation that earlier preterm217

birth is more predictable, we further investigated the prediction accuracy at different levels of feature resolution using218

only early PTB (< 32 weeks) and late-term birth (>= 39 weeks). In the V1-V2 group, we observed the same overall219

trend of decreasing AUC with increasingly broad taxonomic features consistently in intra-dataset, cross-dataset, and220

LODO analysis. However, we again did not see a similar trend in the V4 group of datasets (Supplementary Table221

S5).222

Table 2. Average AUC values for different taxa level features.

Analysis
V1-V2 group V4 group

ASV Genus Family Order Class Phylum ASV Genus Family Order Class Phylum

Intra 0.65 0.63 0.60 0.57 0.58 0.55 0.58 0.57 0.59 0.56 0.52 0.54

Cross 0.53 0.54 0.57 0.56 0.56 0.57 0.57 0.56 0.56 0.55 0.53 0.55

LODO 0.56 0.57 0.57 0.58 0.60 0.61 0.60 0.62 0.61 0.60 0.56 0.59
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The Importance of Microbial Taxa to Machine Learning Models Varies Across Datasets223

We further investigated the ML models by computing the importance of genus-level microbial features using SHAP224

(SHapley Additive exPlanations) values (Lundberg and Lee, 2017). Figure 4 shows the feature ranking for each225

study for random forest models trained on proportional data. Averaged across all datasets, L. crispatus is the226

taxa that contributes most to the machine learning predictions, followed by Prevotella and L. iners. However, there227

is substantial variation in the importance of most taxa in ML models trained on different datasets. Consider, for228

example, Finegoldia. There are three datasets for which Finegoldia is among the three most important taxa and two229

studies for which it is among the three least important taxa. Mycoplasma is ranked as the most important taxa for230

the Bl dataset and the least important taxa for the Ta dataset. Further inconsistencies can be seen by examining the231

SHAP summary plot for each dataset (Supplementary Figure S9). For most studies for which Prevotella is among232

the most important features, a high relative abundance of Prevotella is associated with preterm birth (see the Br, Ki,233

and St datasets). However, a high relative abundance of Prevotella is associated with term birth in the Bl dataset.234

The varying importance of taxa in different datasets contributes to the lower prediction accuracy for PTB in the235

cross-dataset and leave-one-dataset-out (LODO) analyses. As an example, Aerococcus was the most important236

feature for the Ro dataset but was unimportant for all other datasets. Machine learning models trained on the Ro237

study heavily weight the abundance of Aerococcus in their predictions, even though Aerococcus is a poor predictor238

of preterm birth in other datasets. We trained ten random forests on the Ro dataset with and without including239

Aerococcus as a feature and made predictions on the other studies (Supplementary Figure S10). For most studies,240

the AUC was higher when excluding Aerococcus from Ro, with notable improvements for the Fe, Di, SC, and Su241

studies.242

Figure 4. The feature importance ranking for genus-level taxonomic features (rows) in random forest ML models trained in
different datasets (columns). Feature importance was quantified as the absolute SHAP value. Genera are ordered by their mean
importance rank across all datasets.
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Emerging consensus associations between microbial genera and PTB243

At an individual dataset level, differential abundance (DA) analysis using the one-sided Wilcoxon rank-sum test found244

associations between bacterial genera and PTB that largely agreed with the results reported in the original papers245

(Supplementary Figure S11). This re-analysis confirms that for many genera, there is too much variation in the effect246

sizes and even direction of their association with PTB to draw robust conclusions from individual dataset analyses.247

This is unsurprising given the low power of many of these datasets. However, taxa with more consistent directions248

of effect did emerge from when considering all the individual dataset DA results. In particular, L. crispatus was249

negatively associated with preterm birth in 10/12 datasets and Gardnerella was positively associated with preterm250

birth in 11/12 datasets.251

In order to increase power, we performed an all-dataset differential prevalence analysis that also accounted for252

maternal age, BMI and self-reported race. We created a prevalence (presence-absence) table at the genus level253

for each study by defining a genus as present in a sample if its proportion was greater than 0.1%. We fit a254

generalized linear mixed model (GLMM) to estimate the odds ratio between a genus is present versus absent with255

dataset-specific random effects separately for each genus (Figure 5; Supplementary Figure S12; Methods). The256

presence of three Lactobacillus species - L. crispatus, L. jensenii and L. gasseri - were associated with reduced risk257

of PTB, while the presence of L. iners was associated with increased risk of PTB. Based on unadjusted p-value at258

a 0.05 level, we observed significant associations of L. iners (p = 0.043) and L. crispatus (0.007). The presence of259

most non-Lactobacillus genera (18 out of 21; Figure 5A) was associated with a higher risk of PTB, consistent with260

a higher-diversity “bacterial-vaginosis-like” vaginal microbiome being associated with PTB. There were significant261

positive associations between PTB and the presence of Gardnerella (p = 0.002), Shuttleworthia (p = 0.02), Prevotella262

(p = 0.0002), Megasphaera (p = 0.0007), Atopobium (p = 0.0001), Sneathia (p = 0.003), Streptococcus (p = 0.04),263

Dialister (p = 0.03) and Mycoplasma (p = 0.008). We further investigated these associations in PTBs subdivided into264

early, moderate and late subgroups as previously described (See Methods). We found that the associations between265

PTB and L. iners, L. crispatus, and Prevotella were stronger, i.e., had larger effect sizes and were more statistically266

significant, in earlier PTB than in late PTB (Supplementary Figure S13).267

Figure 5. Cross-dataset differential abundance analysis. A: point estimates and 95% confidence interval of log odds ratio between
a genus present and absent based on a relative abundance of 0.001 for each genus using a generalized linear mixed model. The
model included all 12 datasets and no population characteristic covariates. Point estimates less than 0 are shown as blue points
and greater than 0 as red points. Confident intervals less than 0 are shown as blue bars and greater than 0 as red bars. B:
posterior distribution of log odds ratio using pooling and set-specific methods for four selected genus/species.
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Ignoring dataset-specific characteristics in microbiome analyses can cause false signals268

We developed two related Bayesian analyses of the association between genus prevalence and PTB, one in which269

datasets were pooled together as exchangeable equals (Pooling) and another in which the baseline rate at which a270

taxon was detected was allowed to vary among datasets (Set-specific). More specifically, we performed two Bayesian271

analyses in which the log odds of a genus to be present given preterm birth and the odds ratio of PTB relative to272

TB follow prior distributions. We calculated the posterior distribution of the odds ratio between PTB and TB using273

two methods: (1) Pooling, in which all datasets were combined as a large dataset; and (2) Set-specific, in which274

the posterior distribution of the association between genus prevalence and preterm birth was sequentially updated275

by application to each dataset while allowing for a dataset-specific baseline rate at which that genus was detected.276

Consistent with the GLMM results reported above, in the set-specific method, 18 genera had a maximum a posteriori277

(MAP; mode of the posterior distribution) value of their odds larger than 0 (i.e., a positive association between their278

presence and PTB) and seven genera had MAP smaller than 0 (Supplementary Figure S14). Meaningful differences279

emerged when accounting for dataset-specific detection rates in some genera. For example, the set-specific method280

estimated a significant and positive association between the presence of Gardnerella and PTB, while the pooling281

method estimated a significant and negative association (Figure 5B). Further inspection of this result revealed282

different detection rates of Gardnerella by most of the V1-V2 and the V4 studies. In Supplementary Figure S4B,283

for example, we observed that the prevalence of Gardnerella at three V1-V2 studies (Br: 10%, Ki: 7%, St: 25%) are284

much lower than in all V4 studies. This result suggests that accounting for dataset-specific detection rates might be285

important when aggregating results across microbiome studies.286
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Discussion287

The identification of robust associations between host-associated microbiomes and health outcomes remains an288

elusive goal in many areas of microbiome research, as highlighted by many examples of specific associations that289

did not reproduce across studies (Callahan et al., 2017; Huybrechts et al., 2020; Wirbel et al., 2019). There are290

several potential reasons for this. Most microbiome studies to date have been underpowered when considering291

the substantial temporal and inter-individual variability of host-associated microbial communities. Rapid progress292

in the laboratory and computational methods used to study microbiomes means that any two microbiome studies293

likely used measurement protocols different enough to make their results quantitatively incomparable (Martin, 2019;294

McLaren et al., 2019; Tierney et al., 2022). The interaction between microbiomes and the host is mediated by poorly295

understood, and hence largely unrecorded, environmental and individual factors. And myriad other challenges296

that are generic beyond microbiome studies, such as differences between study populations and the criteria used297

to define cases and controls. With these challenges in mind, we used a machine-learning and meta-analysis298

approach to study the relationship between the vaginal microbiome and preterm birth across 12 independent299

datasets consisting of taxonomic profiles obtained by 16S rRNA gene sequencing of vaginal swabs obtained during300

gestations that resulted in term and preterm births. Overall, this analysis revealed substantial heterogeneity in the301

relationship between vaginal microbiome measurements and preterm birth outcomes from different studies. Yet,302

generalizable results and lessons also emerged, perhaps most importantly the higher predictivity of the vaginal303

microbiome for earlier preterm births.304

Earlier preterm births (< 32 weeks, < 34 weeks) were more predictable from the composition of the vaginal305

microbiome than were late preterm births (34-37 weeks). This pattern was observed across most of the seven306

datasets included in our analysis of PTB sub-categories. It was observed both in ML models that were trained307

and tested in the same dataset and in ML models that were trained in one dataset and tested in another. The two308

datasets (Ta and Fe) in which this pattern was not evident were also the two datasets in which PTB was the least309

predictable overall. A strength of this analysis is the strong control of between-study differences: Comparisons are310

being made between early and late preterm births within a study, and the number of preterm births in each category311

per study is held constant. We believe these results support the prioritization of earlier preterm birth (< 34 weeks,312

or even earlier) in future studies of the relationship between the vaginal microbiome and PTB. Prioritization of earlier313

preterm births is consistent with their much higher morbidity and mortality. It is also supported by the arbitrariness314

of the 37-week cutoff, which can result in weak differences between term births (37 - 40 weeks) and the late preterm315

births (i.e., 34 - 37 weeks) that predominate in study cohorts targeting all preterm births.316

Our meta-analysis of these 12 independent vaginal microbiome datasets increases the credibility of reported317

associations between L. crispatus and reduced risk of preterm birth, reported associations between Gardnerella318

and Prevotella and increased risk of preterm birth, and the different roles played by L. iners compared to other319

vaginal Lactobacilli. The most consistent finding across individual datasets was the negative association between320

the relative abundance of L. crispatus and preterm birth: 10 out of 12 datasets showed the same direction of effect.321

In 6 of these, the association had a raw p-value < 0.05. In our machine learning models, L. crispatus had the highest322

average importance across all studies for predicting PTB. When considering all datasets together, the association323

between the presence of L. crispatus and reduced risk of preterm birth was highly significant (p = 0.007) and was324

stronger for earlier preterm births. The association between L. iners and preterm birth was different from the other325

vaginal Lactobacilli : L. iners was associated with increased PTB risk in most individual studies, across all studies326

considered together, and more significantly so in earlier preterm births. Although the presence of several genera was327

associated with a higher risk of preterm birth when considering all studies together, Gardnerella was the genus most328

consistently associated with a higher risk of preterm birth at the individual-dataset level. Prevotella was the second329

most important taxa on average across our machine learning models. When all studies were considered together330

it had the second most significant association with PTB and even stronger effect size and statistical significance in331

earlier preterm birth.332

Two example taxa, Aerococcus and Gardnerella, demonstrate the important ways that differences in taxon-specific333

detection rates across studies can alter measured associations between the microbiome and preterm birth. In the334

cross-dataset meta-analysis, Aerococcus comprised a small to vanishing fraction of the vaginal microbiome and the335

presence of Aerococcus was marginally associated with higher PTB risk. In contrast, in the Ro dataset, Aerococcus336

was significantly associated with decreased PTB risk and was detected at a significantly higher baseline rate. ML337

models trained on Ro have Aerococcus as the most important genus for predicting PTB, whereas Aerococcus has338

little to no importance in models trained on other datasets. The importance of Aerococcus in Ro-trained models339

reduces their prediction accuracy in other datasets; the cross-dataset accuracy of models trained on Ro is higher340

when the Aerococcus feature is removed prior to training. We do not know what is driving this significant difference341

in the detection rate of Aerococcus, it could reflect real differences between the populations studied in Ro versus342

other studies, or it could reflect methodological differences such as a higher detection efficiency for Aerococcus343
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of the primer mixture used in the Ro study. In another example, the taxon Gardnerella, it has been known for344

some time that common V1 primers used in several studies here do not effectively amplify Gardnerella or the345

related Bifidobacterium (Frank et al., 2008; Romero et al., 2014). Consistent with this, we observed much lower346

proportions of Gardnerella in the V1-V2 studies, especially the Br, Ki, and St studies, that did not supplement their347

primer mixtures to detect Gardnerella better. Left unaddressed, this interfered with the cross-study estimation of348

the association between Gardnerella presence and preterm birth. Naively pooling the samples from all studies349

together led to the estimation of a negative association between Gardnerella and preterm birth. However, when350

our modeling incorporated study-specific differences in detection rates, Gardnerella was found to be significantly351

positively associated with preterm birth, in line with most reports in the literature.352

The complex heterogeneities between different datasets significantly impede obtaining robustly generalizable results.353

The relative paucity of available subject metadata did not allow for post-hoc control of many individual characteristics354

thought to modulate the vaginal microbiome, PTB risk, or both. Although maternal race, age, BMI, and gestational355

age at delivery were available from most datasets, several other important metadata were only available in some356

or a few datasets. For example, the definition of spontaneous vs. indicated PTB was only available for three357

datasets, while two datasets reported mixed spontaneous or indicated PTB. Prior history of preterm birth, which is358

a known risk factor for PTB, was only recorded for three datasets. Other complications such as pre-eclampsia and359

gestational diabetes, which are associated with a higher risk of PTB, were also underreported. Data on feminine360

hygiene practices such as douching was unavailable for several studies and has recently been reported to alter the361

relationship between the vaginal microbiome and preterm birth in white women (Nieves-Ramírez et al., 2021). It is362

therefore important that future studies capture and report comprehensive and detailed patient metadata that permit363

deeper analyses of potential confounding (Mirzayi et al., 2021).364

When considering all-cause and all-type PTB, we found that the predictivity of PTB from the composition of the365

vaginal microbiome was low to modest. This should not be surprising. PTB is a syndrome with multiple causes,366

and it is highly unlikely that PTBs arising from different causal mechanisms, e.g., indicated PTB due to placenta367

previa versus spontaneous preterm labor due to intrauterine infection (Chan et al., 2022), will associate with similar368

patterns in the vaginal microbiome. Indeed it is likely that some etiologies of preterm birth will have no measurable369

relationship with the vaginal microbiome, and their inclusion in ML models would restrict the predictive accuracy.370

However, prediction of well-defined subtypes of PTB from the vaginal microbiome with moderate to high accuracy371

needed for clinical relevance may be achievable.372

The cross-dataset and leave-one-dataset-out machine learning results highlight the importance of careful373

interpretation when evaluating the generalizability of machine learning classifiers trained on microbiome data and374

indicate that single-study examples of high AUC should be met with caution. Figure 2B presents a classifier trained375

on the Br dataset that performs moderately well when tested on withheld test data from the same study (AUC = 0.68).376

However, it performs much worse when tested on data from other studies (average AUC = 0.52). This same behavior377

can be seen in previous microbiome meta-analyses that explored cross-dataset predictivity using machine learning378

(Thomas et al., 2019; Wirbel et al., 2019). However, such analyses can also highlight differences in the underlying379

microbiota-host interactions of different patient cohorts. The Br dataset was enriched for PTB cases preceded by380

preterm prelabor rupture of the fetal membranes (PPROM), which is often associated with an infectious etiology381

(Bennett et al., 2020). Thus, despite producing a highly accurate within-study classifier, the performance of this382

classifier may not be maintained in other cohorts where population characteristics (e.g., PPROM prevalence) differ383

substantially. Methodological differences in DNA extraction or sequencing may also restrict cross-study classification384

accuracy. Consistent with this, we found that combining datasets for training ML models (the LODO analyses)385

did not meaningfully improve cross-dataset prediction accuracy versus using a single dataset for training. This is386

different than the meaningful improvements in accuracy obtained by pooling studies together reported for predicting387

colorectal cancer from the gut microbiome in Thomas et al. (2019) and Wirbel et al. (2019). The reasons for this388

difference remain unclear but could arise from the higher heterogeneity of vaginal microbiome studies or even the389

PTB phenotype itself.390

Finally, we make three suggestions for future studies of the vaginal microbiome and PTB studies: (1) earlier preterm391

birth should be prioritized, (2) the core genera discussed in this meta-analysis should be captured in future studies392

to reflect the community of the vaginal microbiome and (3) comprehensive subject metadata should be recorded,393

accounted for within data modeling and made available to the wider research community. Specifically, we recommend394

capturing and reporting maternal race, age, BMI, prior history of PTB, the use of interventions designed to prevent395

preterm birth, gestational age at delivery, gestational age at the time of sample collection, and whether PTB was396

spontaneous or indicated.397
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Methods398

Data Collection and Availability399

We included 12 datasets that at least have raw sequence data and minimal metadata, including subject/sample ID400

identifier and gestational age at sampling, that are available to us. Additional metadata were also collected if they are401

available, including maternal age, BMI, self-reported race, prior PTB, PPROM, PTB type (spontaneous or indicate),402

gestational complication and intervention. The raw sequence data and metadata were downloaded from the NCBI403

Sequence Read Archive, or obtained from the supplementary materials of original papers, or directly shared by404

authors. See Supplementary Table S1 for details.405

Bioinformatics406

DADA2 (Callahan et al., 2016) was used to process the raw sequence data and infer the amplicon sequence407

variants (ASVs). The details of the DADA2 pipeline for each study can be found in Supplementary Table 2. To408

obtain comparable ASVs among datasets, we divided the datasets into two groups based on the region of the 16S409

gene that was sequenced (V1-V2 and V4) with five datasets in the V1-V2 group and seven datasets in the V4410

group. Then we truncated the original ASVs separately for each group to a common V1-V2 or V4 region in three411

steps: (1) align the original ASVs to the SILVA reference database using the mothur software (Schloss et al., 2009);412

(2) identify the overlapping sequencing region common to all ASVs in the group using an alignment visualization413

tool (MSAviewer); (3) truncate the original ASVs and remove alignment gaps using the extractalign and degapseq414

commands. Furthermore, we assigned the taxonomy levels to each truncated ASV using DADA2. Lactobacillus415

species were assigned manually using BLAST against sequences from cultured Lactobacillus strains.416

Data processing417

Samples with total reads less than 100 were excluded in the analysis. The 25 core genera/species were obtained by418

the following steps: (1) assign the genus-level (species-level for Lactobacillus) name to “common” ASVs and “top”419

ASVs for both the V1-V2 and V4 groups; (2) match the genus level features between V1-V2 and V4 groups from420

both “common” and “top” sets; (3) filter the genera using the following criteria (i) at least 5 datasets have the average421

relative abundance > 0.1%; (ii) at least 5 datasets have the average prevalence > 10% (Supplementary Figure S4) .422

For longitudinal datasets, we obtained the subject-level proportions of each genus by averaging the proportions from423

samples in the same subject.424

Machine Learning425

A machine learning framework using random forest classifier was employed for intra-dataset, cross-dataset, and426

leave-one-dataset-out (LODO) analysis. Intra-dataset analysis was performed on a single dataset using 5-fold427

cross-validation. Cross-dataset analysis was performed based on a pair of two datasets: one dataset as a training set428

and the other as a testing set. LODO analysis was performed by combining all datasets as a training set except one429

hold-out dataset as a testing set (see Figure 2A). Given the predicted and true results, the area under the receiver430

operating characteristic curve (AUC) is calculated using the ‘pROC’ R package. The AUC from intra-analysis was431

averaged among 20 repetitions. We performed ten repetitions of intra-dataset, cross-dataset and LODO analysis in432

the preterm birth subgroup analysis and calculated the average AUC. The random forest classifier was implemented433

using the ‘randomForest’ R package. We set the hyperparameter nTree = 1000, and tuned mtry using the ‘caret’ R434

package.435

Feature Importance436

We used the SHAP value from the random forest classifier to determine the feature importance. SHAP values that437

are large in absolute value indicate that the corresponding feature was influential in the machine learning prediction438

for the given sample. Here positive SHAP values indicate that the feature value is associated with preterm birth439

whereas negative SHAP values indicate that the feature value is associated with term birth. We trained random440

forest models on each dataset using the scikit-learn implementation of a random forest classifier. For each dataset,441

we used 5-fold cross-validation with ten repetitions and calculated the SHAP values (Lundberg and Lee, 2017) of the442

validation data using the Tree SHAP algorithm (Lundberg et al., 2020) as implemented in the SHAP package. The443

features were ranked according to the importance of each study by comparing the mean absolute SHAP values.444

Data Transformation445

Due to the arbitrary sequencing read depth of each sample, we first converted count data obtained from the DADA2446

pipeline to proportional abundance data by dividing the read depth of each sample. As the proportional abundance447
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data does not account for the compositionality of the microbiome data, we further performed the centered log-ratio448

(CLR) transformation (with 10−6 pseudo-abundance) and compared the performance with proportional data in the449

ML framework and DA analysis. We found that data with CLR transformation have a similar prediction accuracy with450

the proportional abundance data using the ML model. The one-side Wilcoxon rank-sum test using CLR-transformed451

data or proportional data sometimes give an opposite direction of effect. For genera with low prevalence and low452

abundance, if CLR-transformed data is used to do analysis, their effects on preterm birth are mostly determined by453

the geometric mean of all genera, instead of their own abundance. However, if proportional data are used, their454

effects are only determined by their own abundance. In addition, we also included additive log-ratio (ALR), natural455

logarithm (log), and rank transformation methods in the ML framework comparison.456

Statistical Analysis457

A one-sided Wilcoxon rank-sum test was used to perform the dataset-specific differential abundance analysis and
implemented using the wilcox.test function in R. A generalized linear mixed model was used to do differential
abundance analysis with a random effect for each study. Specifically, for each genus we fitted the following model:

logit(P (Y = PTB) = Genus+Race+BMI +Age+(1|Study)

Genus=1 if a genus is present based on an abundance threshold of 0.001 and 0 otherwise. Race represents the458

maternal race; BMI represents the maternal BMI; Age represents the maternal age. The generalized linear mixed459

model was implemented using the glmer function in the ‘lme4’ R package. Due to missing maternal race, BMI, and460

age in some datasets and non-significance of these covariates except self-reported Black race vs. white race (p =461

0.04), we also fitted the model without adjusting these covariates.462

We further performed a Bayesian analysis by assuming that (1) the log odds of the presence of a genus given463

preterm birth follow a uniform prior distribution for each dataset; (2) the odds ratio between PTB and TB has the464

same underlying true distribution for each dataset. We use a uniform prior distribution for the odds ratio for the465

first dataset, then calculate the posterior distribution. Then we let the posterior distribution of the odds ratio from466

the first dataset be the prior distribution for the second dataset and update the posterior distribution. We repeated467

the process until the last dataset to obtain the final posterior distribution of the odds ratio. See the Supplementary468

Methods section for more details.469
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Ethics Statement470

The study was approved by the Institutional Review Board of North Carolina State University (Protocol Number471

23575).472
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