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1. ABSTRACT 

Background: Dysbiosis of the human gut microbiota has been implicated in the development of 

Alzheimer’s disease (AD). However, the genetic correlation between gut microbiota and AD is not 

well addressed.  

Methods: Using the largest genome-wide association study (GWAS) of gut microbiota genera 

from the MiBioGen consortium, we conducted the “best-fit” model from PRSice-2 to determine the 

genetic correlation between 119 genera and AD in a discovery sample (case/control: 

1,278/1,293); we then replicated our findings in an independent sample (case/control: 799/778) 

and further performed meta-analyses to confirm the correlation. Finally, we conducted a linear 

regression to assess the correlation between the PRSs for the significant genera and the APOE 

genotype. 

Results: In the discovery sample, 20 gut microbiota genera were initially identified genetically 

associated with AD. Three genera (Eubacterium fissicatena as a protective factor, Collinsella and 

Veillonella as a risk factor) were validated in the replication sample. Meta-analysis confirmed nine 

genera to have a significant correlation with AD, three of which were significantly associated with 

the APOE rs429358 risk allele in a direction consistent with their protective/risk designation in AD 

association. Notably, the proinflammatory genus Collinsella, identified as a risk factor for AD, was 

positively correlated with the APOE rs429358 risk allele in both samples. 

Conclusion: Host genetic factors influencing the abundance of nine genera are significantly 

associated with AD, suggesting that these genera may serve as biomarkers and targets for AD 

treatment and intervention. Our results highlight that proinflammatory gut microbiota might 

promote AD development through interaction with APOE. Larger datasets and functional studies 

are required to understand their causal relationships.  

Keywords: Alzheimer’s disease; microbiome; polygenic risk scores (PRSs); genome-wide 

association studies (GWASs); neuroinflammation; APOE; dysbiosis 
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2. INTRODUCTION 

Alzheimer’s disease (AD), the most common form of dementia, is a neurodegenerative disorder 

characterized by a multitude of pathological and clinical hallmarks such as a progressive decline 

in cognitive function and the buildup of toxic β-amyloid and tau proteins (1,2). Due to growing 

elderly populations worldwide, the number of individuals with dementia is projected to reach 150 

million globally by the year 2050 (3). Despite this growing burden to world health, the mechanisms 

underlying the disease pathology are not fully understood, impeding the development of optimally 

effective treatments (4). Neuroinflammation has emerged as a key feature of AD with mechanistic 

and treatment implications due to the central role of microglia and inflammation in brain health 

(5,6). There remains an urgent need to understand the genetic risk factors and pathological basis 

of neuroinflammation in AD so that individuals with a higher risk can be identified for earlier 

intervention.  

Recently, an association between dysbiosis of the gut microbiome and neuroinflammation has 

been hypothesized to drive AD. The gut microbiota comprises a complex community of 

microorganism species that reside in our gastrointestinal ecosystem; alterations in the gut 

microbiota have been reported to influence not only various gut disorders but also brain disorders 

such as AD (7,8). The human gut microbiota has been suggested to modulate the brain function 

and behavior via the microbiota-gut-brain axis (MGBA), a bidirectional communication system 

connecting neural, immune, endocrine, and metabolic pathways (9). Observational studies across 

multiple countries show reductions in gut microbiota diversity in AD patients compared to cognitive 

normal controls (10–12). Current research indicates that bacteria populating the gut microbiota 

are capable of releasing lipopolysaccharide (LPS) and amyloids, which may induce microglial 

activation in the brain and contribute to the production of proinflammatory cytokines associated 

with the pathogenesis of AD (13). The secretion of these biomolecules also harms the integrity of 

the MGBA and blood-brain-barrier (BBB), which worsens with increasing dysbiosis (8,14). The 

composition of the human gut microbiota and risk for AD have been suggested as heritable traits 
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(2,15). Apolipoprotein E ε4 (APOE ε4), the most well-established risk gene for AD, has recently 

been shown to correlate with microbiome composition in humans and mouse models of AD (16–

18). However, few studies have explored the correlation between APOE alleles and microbiome 

taxa at the human genomic level. In this study, we aim to determine the genetic correlation 

between the abundance of gut microbial genera and AD diagnosis. We further investigate if gut 

microbial genera are correlated with APOE ε4 alleles. 

One promising approach to exploring this relationship is the use of polygenic risk scores (PRS) 

analyses. PRS is an overall estimate of an individual’s genetic liability for a specific trait. PRSice-

2 is designed to calculate the PRS by aggregating and quantifying the effect of many single-

nucleotide polymorphisms (SNPs) in the genome weighted by their effect sizes from genome-

wide association studies (GWASs) (19). This approach has previously been used to explore the 

genetic relationship of gut microbial abundance and complex traits like bone mineral density, 

rheumatoid arthritis, and depression (20–22). In the present study, we used this approach to 

determine the genetic relationship between 119 microbial genera and AD diagnosis. With the 

largest GWAS of the human gut microbiota (23), we first conducted PRS analyses in an AD 

discovery sample to identify the genera genetically correlated with AD. We then verified our 

results in an independent AD replication sample. Correlation between the top genera and APOE 

genotype was further analyzed by linear regression. 

3. METHODS AND MATERIALS 

3.1 Study design overview 

We obtained GWAS summary data (n = 18,340) from the MiBioGen consortium initiative 

(www.mibiogen.org) (23) and requested genotyping data from dbGaP 

(https://www.ncbi.nlm.nih.gov/gap/). A brief description for these studies is listed in Table 1. The 

overall design of the study is shown in Figure 1. Briefly, we used PRSice-2 (19) to calculate PRSs 

for individuals from our discovery sample. PRSs were calculated based on the summary statistics 

for 119 microbial genera from the MiBioGen consortium. Significant association between genera 
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and AD diagnosis was considered when the “Best Fit” PRS model with a p < 0.00042 (0.05/119 

with Bonferroni correction). We then validated the results in an independent sample. We 

conducted logistic regression analyses between the PRSs of associated genera and AD diagnosis 

to generate relative odds ratios (OR) for meta-analyses. Multivariate logistic regression was used 

to determine if the correlation between the PRSs of the associated genera and AD diagnosis was 

affected by sex, age, and APOE genotype. Furthermore, we conducted a linear regression 

analysis to evaluate the genetic association between the PRSs of nine significant genera and the 

APOE genotype of individuals in our discovery and replication samples. This study was approved 

by our institutional review board (IRB) at the University of Nevada Las Vegas (UNLV). 

3.2 Data sources  

3.2.1 Microbiome GWAS summary statistics 

We used the GWAS summary statistics (base data) of human gut microbiota in the MiBioGen 

consortium (www.mibiogen.org), which is the largest, multi-ethnic genome-wide meta-analysis of 

the gut microbiome to date (23). Participants (n = 18,340) were recruited in the original studies, 

where 16S rRNA gene sequencing profiles from each individual were utilized to characterize the 

gut microbiota using SILVA as a reference database (24) with truncation of the taxonomic 

resolution down to the genus level. In total, 31 loci from host genetic variations were associated 

with gut microbiota taxa abundance at the genome-wide significant threshold (p < 5.0 x 10-8), most 

of which (n = 24) were at the genus level (23). We chose the effect sizes of the host SNP-

microbiota associations (beta) for our analyses. Beta represents how the host genetic loci affect 

the relative abundance of each microbiome category (mbQTLs) (23). In the present study, we 

limited our analyses to the summary statistics from the 119 microbial genera, as 16S rRNA 

sequencing correlates more accurately with the functional role of gut microbiota at lower 

taxonomic levels (25). 
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3.2.2 AD genotyping data (target data): discovery and replication samples 

From dbGaP (https://www.ncbi.nlm.nih.gov/gap/), we requested genotyping data  from the 

NIA/LOAD cohort consents 1 and 2 (ADc12) as our discovery sample (26), and the Multi-Site 

Collaborative Study for Genotype-Phenotype Associations in Alzheimer’s Disease (GenADA) 

Study as our replication sample (27). In our study, AD cases were considered as any individual 

with dementia diagnosed with definite, probable or possible AD at any point in their clinical course, 

according to the Criteria proposed in 1984 by the National Institute of Neurological and 

Communicative Disorders and Stroke, and the Alzheimer's Disease and Related Disorders 

Association (NINCDS-ADRDA) (28). Included controls were neurologically evaluated individuals 

who were age-matched cognitively normal. Unspecified dementia, unconfirmed controls, and 

controls with other neurological diseases from the original study were removed from this study, 

resulting in 1,278/1,293 cases/controls in the discovery sample ADc12, and 799/778 

cases/controls in the replication sample GenADA. Demographic characteristics of the ADc12 and 

Gen/ADA samples are listed in Table 2, along with two major APOE SNP genotype information. 

More detailed descriptions of the data can be found in previous studies (26,27,29). In order to 

maximize genetic variants, we conducted imputation for both discovery and replication samples 

at the Michigan Imputation Server (minimac4) (https://imputationserver.sph.umich.edu) (30). The 

1,000 Genome Phase 3v5 was used as a reference. After the imputation, standard quality control 

was performed with plink command (--maf 0.01 --hwe 1e-6 --geno 0.01 --mind 0.01) (31,32). The 

final datasets were composed of 2,571 individuals with 9,997,692 SNPs in the discovery sample, 

and 1,577 individuals with 8,914,585 SNPs in the replication sample.  

3.3 Polygenic Risk Score (PRS) analyses via PRSice-2 software 

PRSice-2 software was designed to evaluate the genetic correlation between different traits when 

provided GWAS summary statistics data from a base trait (base data) and genotyping data from 

a target trait (target data) (19). PRS is a numerical approximation of an individual’s genetic liability 

weighed by the allele number and effect size from a set of genetic variants estimated from GWAS 
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summary statistics (33). This approach is called polygenic risk score (PRS) analyses, by which 

investigators can assess an individual’s genetic risk to a trait of interest and the genetic correlation 

between different traits (33). As mentioned above, our base GWAS data were from the 119 

microbiome genera in the MiBioGen consortium study (23). Our target samples were discovery 

sample ADc12 (26) and replication sample GenADA (27). In our study, we first calculated PRSs 

for the 119 microbiome genera in the discovery sample to determine the genetic correlation 

between the PRSs and AD diagnosis. PRSs for each genus were calculated from the PRSice-2 

program for the “best-fit” PRS model. For this purpose, a range of p value thresholds was set from 

5 x 10-8 to 1 with an incremental interval of 0.00005 (--interval 0.00005 --lower 5e-08) with LD 

clumping (--clump-kb 250kb --clump-p 1.0 --clump-r2 0.1) (19). To validate the significantly 

associated genera from the discovery sample, we conducted PRS analyses for the significant 

genera in an independent sample.  

To evaluate the overall association from our discovery and replication samples, we rescaled the 

"best-fit" PRSs of the associated genera with a range of -1 to 1 and performed a simple logistic 

regression between the rescaled "best-fit" PRSs and AD diagnosis. We then conducted meta-

analyses for both samples R packages metafor v3.8-1 (34). A forest plot was generated to 

visualize the overall AD protective and risk effect across the significant genera using the 

“forestplot” R package (35). We also created boxplots to compare the PRSs for those significant 

genera between AD patients and controls in the discovery sample. Box plots were generated by 

using the R program ggplot2 v.0.4.0 (36). Multivariate logistic regression was conducted by 

adding sex, age, and APOE genotypes (rs429358, rs7412) as covariates.  

3.4 Linear regression analyses between APOE genotyping and PRSs for the nine 

significant genera  

Two APOE SNPs, rs429358 minor allele C and rs7412 major allele C, are well-known risk factors 

for AD (37,38). We performed linear regression analyses to determine the genetic correlation 

between the PRSs of the nine significant genera and the two APOE SNPs. The association was 
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further assessed by linear regression adjusted for sex and age. Boxplots were created using the 

R packages ggplot2 (v3.3.6), ggpubr (v0.4.0), and stats (v0.1.0) (35,36,39). 

3.5 Statistical Analyses  

The p value threshold for significant association in the discovery sample and meta-analyses was 

set as p < 4.20 x 10-4 (0.05/119 with Bonferroni correction) (40). For the replication sample, one-

side significant level p < 0.005 (0.1/20 with Bonferroni correction) was used. For all other statistical 

analyses, such as linear regression, the ANOVA test, and Wilcoxon signed-rank test, p < 0.05 

was considered significant. The Wilcoxon signed-rank method was used to test two interrelated 

samples to see if their sample proportion ranks differed (41). The ANOVA method was utilized to 

test the association between the PRSs for genera and APOE genotype (42).  

4. RESULTS 

4.1 PRSs for nine microbiome genera were significantly associated with AD 

diagnosis.   

We first calculated the PRSs for the 119 microbiome genera for each individual from the discovery 

sample ADc12 and conducted the PRS analyses between the PRSs and AD diagnosis using the 

PRSice-2 program (19). We found that 20 out of the 119 genera were significantly associated with 

AD diagnosis at the “best-fit” model (p < 4.20 x 10-4) (Table 3). Among these 20 significant genera, 

six were identified as likely risk genera and 14 potentially protective genera for AD diagnosis. Risk 

genera included Alistipes and Bacteroides from the Bacteroidetes phylum, Lachnospira and 

Veillonella from the Firmicutes phylum, and Collinsella and Sutterella from the Actinobacteria and 

Pseudomonadota phyla, respectively. The most significant risk genus was Bacteroides (R2 = 

0.011, p = 3.32 x 10-6) at the “best-fit” p value of 0.179 with 47,844 SNPs. For protective genera, 

eleven out of fourteen were from the Firmicutes phylum (Anaerostipes, Candidatus Soleaferrea, 

Catenibacterium, Eisenbergiella, Eubacterium coprostanoligenes, Eubacterium fissicatena, 

Eubacterium nodatum, Intestinibacter, Lachnospiraceae UCG-008, Oscillibacter, and Roseburia), 

two were from Actinobacteria (Adlercreutzia and Gordonibacter), and one was from Bacteroidetes 
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(Prevotella 9). The most significant protective genus was Intestinibacter (R2 = 0.015, p = 1.01 x 

10-7) at the “best-fit” p value of 0.190 with 474,833 SNPs.  

To validate our findings for the top 20 genera in the discovery sample, we conducted replication 

analyses in an independent sample. Three genera, two risk genera (Collinsella and Veillonella) 

and one protective genus (Eubacterium fissicatena), were successfully validated for their 

association with AD diagnosis in the replication sample. Ten other genera did not reach the 

significant p value (p < 0.005) but had the same effect direction as in the discovery sample. To 

evaluate the overall association, we conducted meta-analyses with both the discovery and 

replication samples. As a result, a total of nine genera, including three genera validated from the 

replication sample, were significantly associated with AD diagnosis (See Table S1 and Figure 2). 

Six genera—Adlercreutzia, Candidatus Soleaferrea, Eisenbergiella, Eubacterium fissicatena, 

Gordonibacter, and Prevotella9—showed as a protective factor for AD, while three genera—

Collinsella, Lachnospira, and Veillonella—showed as a risk factor for AD. From the meta-

analyses, Eisenbergiella was identified as the strongest protective factor for AD with p < 0.0001, 

and OR = 0.568 (95 % CI 0.450 - 0.716), and Collinsella was identified as the strongest risk factor 

for AD p < 0.0001 and OR = 1.869 (95 % CI 1.495 - 2.338). Meta-analyses also found four genera 

to have a suggestive association (0.00042 < p < 0.05) with AD diagnosis genera, of which two 

genera were a potential risk factor (Bacteroides and Intestinibacter), and one genus was a 

protective factor (Roseburia). In addition, seven genera—Alistipes, Anaerostipes, 

Catenibacterium, Eubacterium coprostanoligenes group, Lachnospiraceae UCG-008, 

Oscillibacter, and Sutterella—originally identified to be associated with AD, did not show any 

association due to the opposite effects in the replication sample.    

Next, a multivariate logistic regression, including sex, age, and two APOE SNPs (rs429358 and 

rs7412) as covariates, was used to determine any confounding effects on the association between 

the nine significant genera and AD. As shown in Supplementary Table S2, the nine significant 

genera remained significantly associated with AD diagnosis in the discovery sample (p < 0.05), 
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which suggested that the genetic association between PRSs for those genera and AD diagnosis 

was independent of age, sex, and APOE. As expected, age and APOE were strongly associated 

with AD in the multivariate logistic regression analyses. Specifically, age and rs429358 minor 

allele C were risk factors because of their positive correlation with AD diagnosis, while rs7412 

minor allele T was a protective factor due to its negative correlation with AD diagnosis. However, 

sex did not show any association with AD in our study.  

To better visualize the difference of PRSs between AD cases and controls, we constructed a 

boxplot along with the Wilcoxon signed-rank test (41) for the nine significant genera in the 

discovery sample. As compared to cognitively normal controls, Figure 3A showed that AD 

patients had lower PRSs for the six likely protective genera (Adlercreutzia, Candidatus 

Soleaferrea, Eisenbergiella, Eubacterium fissicatena, Gordonibacter, and Prevotella9). On the 

other hand, Figure 3B showed AD patients had higher PRSs for the three risk genera (Collinsella, 

Lachnospira, and Veillonella). These results were consistent with the results from our PRS model 

and logistic regression between PRSs and AD diagnosis. 

4.2 Correlation between PRSs for nine significant genera and APOE genotyping 

APOE is a well-known genetic risk for AD (37,38). Depending on the alleles of two SNPs rs429358 

and rs7412, the human APOE gene has three major isoforms (ε2, ε3, and ε4) (38). The ε4 isoform 

is the most influential risk factor beyond age for AD with the presence of a single ε4 allele 

increasing the risk by 3- to 4-fold compared with ε2 or ε3 allele (37). A few studies have been 

conducted for the potential links between the APOE genotype (rs429358 and rs7412) and the gut 

microbiota (16–18), but not at the whole genomic level. For this reason, we sought to determine 

whether there was a genetic link between the PRSs for the nine significant genera and the APOE 

genotype. Linear regression analyses were performed between the rescaled "best-fit" PRSs for 

the nine significant genera and APOE minor alleles at rs429358 and rs7412. Collinsella was the 

only genus that showed significant correlation in both discovery and replication samples. The 

meta-analyses showed that three out of nine significant genera were correlated with APOE 
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rs429358 risk allele C (p < 0.05). Notably, Collinsella, a proinflammatory genus, was the only 

genus that was positively correlated with AD and APOE rs429358 risk allele C in both discovery 

and replication samples (p < 0.05) (Table 4). To illustrate the correlations between PRSs for 

Collinsella and APOE rs429358 risk allele C, we constructed a boxplot along with ANOVA 

analysis (36,43). As shown in Figure 4, a positive correlation between PRSs for Collinsella and 

APOE rs429358 risk allele C was found in the discovery sample, which indicated that a genetic 

factor determining Collinsella abundance was more likely to occur in individuals with APOE 

rs429358 allele C (CC and TC) as compared to individuals with two T alleles (TT). Overall, our 

results showed that PRSs for Collinsella were significantly higher in AD cases and individuals with 

APOE risk allele C. Two genera as a protective factor for AD were negatively correlated with 

APOE rs429358 risk allele C (Adlercreutzia and Prevotella9) (Table 4). These associations 

highlighted that certain members of the microbiome and APOE may contribute to modulation in 

some similar biologic pathways, synergizing in disease risk or protection. The associations 

between PRSs for the three genera and rs429358 risk allele and were independent of sex and 

age, as the results remained significant after adjustment for sex and age (Supplementary Table 

S2). For APOE rs7412, we did not see any significant correlation.  

4.3 Association between microbiome abundance and APOE genotype 

To further investigate APOE genotype association with the abundance of all the gut microbiota 

genera, we retrieved summary statistics for the two APOE SNPs rs429358 and rs7412 directly 

from the 119 genera GWAS summary statistics in the MiBioGen consortium study. As shown in 

Table 5, rs429358 was marginally correlated with the abundance of nine genera, and rs7412 was 

marginally associated with the abundance of eight genera (p < 0.05). Together, these findings 

indicate that the APOE genotype may have some impact on the microbiome abundance at the 

genus level, and that the association may synergistically contribute to the risk for human diseases 

such as AD. Our results open the door for future studies to explore the role of the interaction 

between APOE and the gut microbiota and find a new target for treatment in human diseases. 
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5. DISCUSSION 

The microbiota is a complex ecosystem that comprises more than 100 trillion symbiotic microbial 

cells in the human body, of which 95 % inhabit the human gut (44). The bacteria belonging to 

phylum Firmicutes and Bacteroidetes form a significant proportion (90 %) of the adult gut 

microbiota, and Actinobacteria composes the rest (45). Recently, significant evidence has shown 

that the gut microbiota influences normal systemic physiological homeostasis, and that dysbiosis 

of gut microbiota may contribute to the pathogenesis of brain diseases, including AD. The gut 

microbiota interacts with the central nervous system (CNS) across the MGBA via microbial 

components, metabolic products, and neural stimulation. In this study, we leveraged the extensive 

GWAS data to study the genetic correlation between gut microbiota genera and AD diagnosis. 

PRSs for 20 genera were initially found significantly associated with AD in the discovery sample, 

three of which were validated in the independent replication study. Further meta-analyses from 

our discovery and replication samples identified a strong genetic association between nine gut 

microbiota genera and AD diagnosis. Six genera were negatively associated with AD diagnosis 

and three genera were positively correlated with AD diagnosis. The negative association means 

that the abundance of these genera is negatively associated with AD diagnosis, thus, PRSs for 

such genera could be seen as a protective factor for the disease. Similarly, positive association 

means that the abundance of those genera is positively associated with AD diagnosis, thus, PRSs 

for these genera would be seen as a risk factor for the disease. Genera identified as a protective 

factor were primarily from the Firmicutes phylum (Candidatus Soleaferrea, Eisenbergiella, and 

Eubacterium fissicatena) as well as from Actinobacteria (Adlercreutzia, Gordonibacter) and 

Bacteroidetes (Prevotella9). Positively correlated, or risk-associated genera were from phyla 

including Firmicutes (Lachnospira and Veillonella) and Actinobacteria (Collinsella).  

In the discovery sample, the correlation of the nine significant genera remained statistically 

significant after being adjusted for sex, age, and two APOE SNPs (rs429358 and rs7412), 
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suggesting that the genetic correlation between the genera and AD diagnosis was independent 

of age, sex, or APOE genotype. In addition, we found that three of the nine significant genera 

showed a strong correlation with the APOE rs429358 risk allele C via linear regression analyses. 

Interestingly but not surprisingly, the genera showing positive correlation with APOE rs429358 

risk allele C tend to have a positive (risk) association with AD, while the genera showing negative 

correlation with APOE rs429358 risk allele C have a negative (protective) association with AD.  

In our analyses, Collinsella from the phylum Actinobacteria was found to be a risk factor for AD in 

the discovery samples and then was validated in replication sample. Collinsella was also found 

to be positively correlated with APOE rs429358 risk allele C in both samples. Collinsella is a 

proinflammatory genus that is associated with cumulative inflammatory burden in rheumatoid 

arthritis patients (46). Studies also found that Collinsella is abundant in atherosclerosis and type-

2 diabetes patients (47,48). Increased abundance of this genus has been observed in AD 

transgenic mice and AD patients (49,50). As type-2 diabetes is a well-established risk factor for 

AD (51), our association of genetically-predicted Collinsella with AD cases further supports a 

connection between the two diseases. The strong association between Collinsella and AD 

diagnosis along with its strong correlation with the APOE rs429358 risk allele C may provide new 

insight into how the interaction between the APOE ε4 gene and the AD-risk pathogens promotes 

the risk for AD development. Targeting the risk microbiota might be an effective therapeutic 

strategy for AD patients with APOE ε4 allele. Further studies to evaluate the impact of the APOE-

associated microbiota on AD-related phenotypes will be necessary to determine if alterations in 

the gut microbiome represent a novel mechanism and target for the development of potentially 

novel interventions for AD.   

Three genera of the Firmicutes phylum, Candidatus Soleaferrea, Eisenbergiella, and Eubacterium 

fissicatena group, had a negative association with AD diagnosis. Eisenbergiella and Eubacterium 

fissicatena group are known to contain species that metabolize the short-chain fatty acid (SCFA) 
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butyrate from dietary carbohydrates (52–54). Butyrate is a major SCFA metabolite in the colon 

and has been shown to be a critical mediator of the colonic inflammatory response. Alongside its 

anti-inflammatory properties, butyrate is also essential in maintaining the permeability of the gut 

across the MGBA (55,56). To our knowledge, there are no studies that presently implicate these 

genera in neurodegenerative diseases. Nevertheless, Eubacterium fissicatena, one of the three 

genera that was validated in the replication sample was found to decrease in mice with 

periodontitis, a disease linked to a prediabetes condition. Within the limitations of their study, the 

authors claimed that the gut microbiota may mediate the influence of periodontitis on 

prediabetes (57). On the other hand, studies found that Candidatus Soleaferrea tends to have a 

higher abundance in controls as compared to a rat prediabetic condition (58). Interestingly, the 

study found that colon Glucagon-like peptide-2 (GLP-2) was positively correlated with an 

abundance of Candidatus Soleaferrea (58). GLP-2, secreted from the metabolites (e.g., SCFA) 

of gut microbiota, is typically considered a trophic hormone involved in maintaining intestinal 

epithelial morphology and function. GLP-2, along with GLP-1, has been shown to possess 

neuroprotective properties in AD animal models (59,60). It is not clear exactly why Eubacterium 

fissicatena and Candidatus Soleaferrea have a protective effect against AD; however, based on 

the literature, both seem to have a higher abundance in the controls compared to prediabetes-

related condition, which may provide some clue for future study on their AD protection. Further 

study would provide more insights into how to utilize the microbiome and their metabolic 

molecules to improve AD treatment.  

In addition, we identified two Firmicutes genera as a risk factor for AD (Lachnospira and 

Veillonella). The association with Veillonella was validatedin the replication sample. Veillonella is 

a normal bacterium in the intestines and oral mucosa of mammals. Consistently, other studies 

found that AD patients seem to have more  abundance of Veillonella in their oral microbiome (61). 

Lately, another study found that overabundance of Veillonella parvula (belonging 
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to Veillonella genus) promotes intestinal inflammation by activating macrophages via the 

lipopolysaccharide-Toll-like receptor 4 (LPS-TLR4) pathway (62). Increasing intestinal 

inflammation by Veillonella might also promote AD through MGBA. On the other hand, gut 

Lachnospira and Veillonella species have also been identified as beneficial or commensal to gut 

health, such as Lachnospira being protective against Crohn’s disease, or Veillonella interacting 

with Streptococcus species to modulate immune responses in the small intestine (63,64). In an 

observational study from a Chinese group, patients with AD had decreased Lachnospira at the 

genus level compared with healthy controls (65).   

Prevotella9, belonging to Bacteroidetes, was identified as a protective factor against AD in our 

study. There is an inconsistent relationship between Prevotella abundance and intestinal diseases 

in human studies (66). In humans, Prevotella is more common in populations with plant-based 

and high-carbohydrate diets (67). Conversely, Bacteroides is more abundant in those consuming 

“western” diets high in protein and fat (68). One study found that a higher Prevotella-Bacteroides 

ratio in the gut was predictive of the effectiveness of a 24-week weight-loss regimen in obese 

patients (69). Another major study showed that Prevotella was higher in individuals with greater 

adherence to Mediterranean diets, which is thought to be protective against neurodegenerative 

diseases (70–72). The “protective” effects of Prevotella abundance may come from the positive 

dietary effects on the genus. In addition, Prevotella was also found to be negatively correlated to 

APOE rs429358 risk allele. It is not clear how the APOE gene interacts with the microbiome to 

provide the protective effect. Nevertheless, more work needs to be done to understand the 

association between the gut microbiota and APOE.  

Two protective genera, Gordonibacter and Adlercreutzia, are from the Actinobacteria phylum. 

These genera tend to produce metabolites beneficial to mitochondrial function, namely Urolithin-

A (UA) and Equol (73,74). UA is an anti-inflammatory compound that enhances mitophagy, the 

removal of dysfunctional mitochondria in a cell (75). Impaired mitophagy is part of the 
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pathogenesis of AD, as well as general aging processes, making UA and Gordonibacter species 

promising targets for therapeutics against the disease (76). Equol is an estrogen-like compound 

that reduces microglial inflammation when stimulated by LPS and downregulates genes in 

neurons related to apoptosis (77). The positive effects of these bacterial metabolites likely drive 

the protective association of Gordonibacter and Adlercreutzia abundance with AD that we found 

in this study.   

The strengths of our study include the use of the largest available GWAS of gut microbiota taxa 

to date, the identification of multiple genera genetically associated with AD in the discovery, and 

replication samples after a strict Bonferroni correction. The use of logistic regression alongside 

our initial PRS analyses allows us to adjust for potential confounders such as sex, age, and APOE 

alleles and further validate that the association was independent of those confounders. 

Additionally, we are the first to study the genetic correlation between the gut microbiota and APOE 

gene at the human genomic level. We found that three genera were associated with the APOE 

risk allele at rs429358, one of the strongest genetic risk variants for AD. The identified genetic 

relationship may provide candidate bacteria for subsequent causal relationships and functional 

studies. 

However, there are several limitations to our study. First, the sample size for the microbiome 

GWAS may still not be large enough to truly cover the effect size of the host genetic variants, 

even though the MiBioGen study has the largest sample size compared with other microbiome 

GWASs. The sample size for our target genotyping was also relatively small. Because of this, we 

may not have enough power to detect some of the associations in our meta-analyses. For 

example, two genera, Bacteroides and Intestinibacter, were originally identified to be the strongest 

risk and protective factors, respectively, from the discovery sample, however, meta-analyses only 

found a suggestive association with AD. The modest sample size might be one of the reasons. 

Heterogeneity between the discovery and replication samples could be another reason. Studies 
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have found that Bacteroides is capable of secreting LPS as an endotoxic biomolecule, which has 

been implicated in pathological endothelial dysfunction of the gut and can induce 

neuroinflammation in microglia cells (78–80). For Intestinibacter, its protective role for AD is 

unknown; however, the reduction of Intestinibacter is a well-known microbial biomarker of 

Metformin-induced gut dysbiosis in the treatment of type-2 diabetes (81–83). Future studies with 

larger sample sizes would be more capable of drawing solid conclusions about the genetic 

connection between the gut microbiota and AD. Second, our genotyping data was specifically 

drawn from individuals in the United States, which limits the generalization of our conclusions 

when applied to other nations or ethnic groups. More diverse genotyping and GWAS datasets 

would enable us to capture the variability in risk for AD across different ethnicities. Third, the 16S 

rRNA sequencing used to generate genetic associations in the “base” GWAS only provides taxa 

resolution to the genus level. Understanding the role of bacterial species that may drive the 

pathology of AD will require more studies of specific species.  

Overall, our novel findings provide new insights into understanding AD and point to new 

therapeutic targets for earlier intervention in the disease. Further investigations are needed to 

explore the microbial alterations in larger cohorts of AD patients from different ethnic backgrounds 

and identify the causal effect between the gut microbiome and AD. 
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6. SUPPLEMENTARY MATERIALS:  

Supplementary Tables 

Table S1. Logistic regression and meta-analyses between the PRSs for the top 20 gut microbiota 

genera and AD diagnosis in discovery and replication samples.  

Table S2. Association between the PRSs for the nine significant gut microbiota genera and AD 

adjusted for sex, age, and APOE genotype in the discovery sample. 

Table S3. Linear regression and meta-analyses between the PRSs for the nine significant gut 

microbiota genera and APOE rs429358 risk allele C adjusted for sex and age. 

7. DATA AVAILABILITY STATEMENT:  

Full GWAS summary statistics for mbQTLs are available at the www.mibiogen.org website built 

using the MOLGENIS framework (99). 
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Figure 1. Study design flowchart. In the PRS analysis, “Base” data included summary statistics 
for 119 microbial genera from the MiBioGen Consortium. “Target” data included AD genotyping data 
in NIA/LOAD cohort consents 1 and 2 (ADc12) for our discovery sample, and AD genotyping from 
the GenADA study as our replicate. PRS analyses with PRSice-2, logistic regression analyses, and 
meta-analyses were used to determine the genetic correlation between the 119 genera and AD 
diagnosis. 20 genera were found to be significantly genetically associated with AD in the discovery 
sample, three genera were validated in the replication sample, and nine genera were confirmed by 
meta-analyses with discovery and replicate samples. Linear regression analyses were used to 
determine the genetic correlation between the PRSs for nine significant genera and APOE 
genotyping. Three genera were identified genetically correlated with APOE rs429358 risk allele C. 
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Figure 2: Forest plot of odds ratio and 95% confidence intervals (CI) of rescaled PRSs for nine 
genera in AD cases compared to controls. The results came from meta-analyses of both discovery 
(ADc12) and replication samples (GenADA). A. Six genetically predicted genera showed significant 
association with AD as a protective factor, as p < 0.00042 and ORs < 1.0. B. Three genetically predicted 
genera showed significant association with AD as a risk factor, as p-value < 0.00042 and the ORs > 1.0. 
OR (95%CI): Odds ratio of respective genus with their lower and upper 95 % confidence intervals. 
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Figure 3. Comparison of rescaled PRSs [-1, 1] for top nine gut genera between AD cases and 
controls from discovery sample.  
A. PRSs for six genera were relatively lower as compared AD cases with controls (p < 0.05), suggesting 

those genetically predicted genera were likely to be a protective factor for AD. 
B. PRSs for three genera were relatively higher as compared in AD cases vs. controls (p < 0.05), 

suggesting those genetically predicted genera were likely be a risk factor for AD. 
Wilcoxon signed-rank test was applied to generate p values. X-axis: Diagnosis (AD cases/controls) 
with sample count. Y-axis: rescaled PRSs [-1,1] for each of the top nine genera. 
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Figure 4. Genetic association between PRSs for Collinsella and APOE rs429358 minor allele 
C in the discovery sample. Proinflammatory genus Collinsella that was positively associated with 
AD showed a positive correlation with APOE rs429358 minor allele C. 
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Table 1. Information for studies used in our analyses. 
 

Variable Consortium or Study PMID Year Sample Size Ethnic Group 

Gut microbiota MiBioGen 33462485 2021 18340 Multi-ethnic 

Alzheimer’s 
Disease 

ADc12  
19001172 2008 

2571 
Multi-ethnic dbGaP phs000168.v2.p2 

NIA/LOAD consent 1 and 2 
 1278 cases/1293 

controls 
GenADA  

17998437 2008 
1577 

Caucasian 
dbGap phs000219.v1.p1 799 cases/778 controls 
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Table 2. Demographic characteristic of the target data (ADc12 and GenADA) with APOE SNP genotyping. 
 

      Discovery Sample (ADc12)    Replication Sample (GenADA) 

   
Cases Controls  Total   Cases  Controls Total 

Age, mean ± SD 
1278 1293 2571   799 778 1577 

76.57 ± 6.71* 70.27 ± 10.29     72.24 ± 8.41** 73.40 ± 7.92   

Sex (Male/Female) 443/ 835 471/822 914/1657   339/460 276/502 615/962 

APOE SNP 
Genotype 

rs429358 

T/T, n(%) 409 (32.0) 847 (65.5) 1256 (48.9)   296 (37.0) 589 (75.7) 885 (56.1) 

T/C, n(%) 682 (53.4) 414 (32.0) 1096 (42.6)   397 (49.7) 177 (22.8) 574 (36.4) 

C/C, n(%) 187 (14.6) 32 (2.5) 219 (8.5)   106 (13.3) 12 (1.5) 118 (7.5) 

 C/C, n(%) 1206 (94.4) 1128 (87.2) 2334 (90.8)   739 (92.5) 661 (85.0) 1400 (88.8) 

rs7412 C/T, n(%) 71 (5.6) 159 (12.3) 230 (8.9)   60 (7.5) 113 (14.5) 173 (11.0) 

  T/T, n(%) 1 (0.0) 6 (5.1) 7 (0.3)   0 (0.0) 4 (0.5) 4 (0.3) 

 
Note: Both discovery (ADc12) and replication (GenADA) samples were downloaded from dbGaP. Age, mean ± SD. For 
each case, their “Age” was the age at onset (AAO). For each control, their “Age” was the age at examination (AAE). *p = 
5.97 x 10-71 when AAO compared to AAE in the discovery sample. **p = 4.94 x 10-3 when AAO compared to AAE in the 
replication sample.   
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Table 3. Association between top 20 microbiome genera and AD diagnosis at the “best-
fit” model from PRSice-2 in the discovery and replication samples. 

Genera Samples Threshold R2 P Coeff. SE SNP# SampleSize 
Adlercreutzia* ADc12 0.3705 0.0068 3.57E-04 -1870.66 524.00 101798 2571 

 GenADA 0.0020 0.0036 3.91E-02 -224.26 108.71 1684 1577 
Alistipes ADc12 0.1676 0.0080 1.04E-04 2581.83 665.28 67574 2571 

 GenADA 0.3246 0.0023 1.03E-01 -2953.44 1810.61 99785 1577 
Anaerostipes ADc12 0.0032 0.0078 1.18E-04 -469.15 121.86 2834 2571 

 GenADA 0.2989 0.0054 1.18E-02 4134.46 1641.01 96076 1577 
Bacteroides* ADc12 0.1792 0.0114 3.32E-06 3930.96 845.35 71984 2571 

 GenADA 0.0009 0.0037 3.68E-02 221.55 106.10 922 1577 
Candidatus Soleaferrea* ADc12 0.0002 0.0090 3.48E-05 -71.29 17.22 177 2571 

 GenADA 0.0199 0.0020 1.28E-01 -404.97 265.96 12431 1577 
Catenibacterium ADc12 0.3839 0.0082 8.54E-05 -1276.68 324.95 71434 2571 

 GenADA 0.0831 0.0080 2.11E-03 1068.34 347.56 25728 1577 
Collinsella ADc12 0.0002 0.0073 1.78E-04 125.63 33.51 230 2571 

 GenADA 0.0003 0.0143 4.36E-05 229.15 56.06 335 1577 
Eisenbergiella* ADc12 0.1049 0.0082 9.64E-05 -858.39 220.13 42727 2571 

 GenADA 0.0439 0.0066 5.28E-03 -1131.73 405.70 22002 1577 
Eubacterium 
coprostanoligenes ADc12 0.1020 0.0086 7.19E-05 -1085.22 273.37 48130 2571 

 GenADA 0.0101 0.0038 3.36E-02 707.65 333.01 7483 1577 
Eubacterium fissicatena ADc12 0.0404 0.0070 3.00E-04 -418.31 115.71 19567 2571 

 GenADA 0.0008 0.0090 1.17E-03 -142.85 44.01 663 1577 
Eubacterium nodatum* ADc12 0.4353 0.0072 2.52E-04 -1240.65 338.95 95579 2571 

 GenADA 0.1259 0.0025 8.82E-02 -805.51 472.45 42817 1577 
Gordonibacter* ADc12 0.0330 0.0089 5.57E-05 -254.45 63.13 16821 2571 

 GenADA 0.0116 0.0039 3.30E-02 -351.65 164.98 7135 1577 
Intestinibacter* ADc12 0.1903 0.0154 1.01E-07 -3014.37 566.17 70292 2571 

 GenADA 0.0024 0.0024 9.22E-02 -246.05 146.10 2152 1577 
Lachnospira* ADc12 0.0034 0.0067 3.30E-04 530.79 147.83 2997 2571 

 GenADA 0.0004 0.0021 1.11E-01 113.71 71.44 439 1577 
LachnospiraceaeUCG008 ADc12 0.0784 0.0081 1.08E-04 -776.50 200.53 35344 2571 

 GenADA 0.0041 0.0017 1.57E-01 197.29 139.40 3224 1577 
Oscillibacter ADc12 0.0124 0.0068 3.08E-04 -630.36 174.67 8305 2571 

 GenADA 0.0051 0.0027 7.55E-02 302.62 170.24 3884 1577 
Prevotella9* ADc12 0.0084 0.0075 1.57E-04 -556.34 147.21 6609 2571 

 GenADA 0.0008 0.0031 5.47E-02 -147.32 76.68 819 1577 
Roseburia* ADc12 0.2061 0.0100 1.35E-05 -3564.78 819.18 78446 2571 

 GenADA 0.0037 0.0027 7.64E-02 -366.88 207.02 3135 1577 
Sutterella ADc12 0.4928 0.0071 2.53E-04 3594.16 982.20 124985 2571 

 GenADA 0.0002 0.0009 3.08E-01 -34.75 34.10 156 1577 
Veillonella ADc12 0.0070 0.0081 8.83E-05 539.94 137.72 5406 2571 
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  GenADA 0.0021 0.0085 1.56E-03 369.43 116.78 1843 1577 
 
Note: The association from the “best-fit” threshold was generated from PRSice-2 with a range of 
p-value thresholds from 5 x 10-8 to 1 and incremental interval of 5 x 10-5; R2: Variance explained 
by the PRS model; P: p-value of model fit for the association; Coeff: Coefficient of the model; SE: 
standard error; # of SNPs: Number of SNPs included in the model at the specified threshold. 
Genera in bold are three genera identified to have genetically significant association with AD in 
both discovery and replicate samples. *: indicated ten genera that have the same direction in both 
discovery and replicate samples.  Seven genera, originally identified to be significantly associated 
with AD in the discovery sample, did not survive the replicate analysis due to the opposite direction 
in the replicate sample.  
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Table 4. Association between PRSs for nine significant gut microbiota genera and APOE 
rs429358. 

Trait Samples Coeff. SE z-value p OR (95%CI) 
Adlercreutzia ADc12 -0.014 0.009 -1.643 0.1006 0.99(0.97 - 1.00) 

 GenADA -0.026 0.011 -2.309 0.0211 0.97(0.95 - 1.00) 

 meta-analysis -0.019 0.007 -2.709 0.0068 0.98(0.97 - 0.97) 
Candidatus Soleaferrea ADc12 -0.020 0.009 -2.242 0.0250 0.98(0.96 - 1.00) 

 GenADA -0.004 0.007 -0.486 0.6271 1.00(0.98 - 1.01) 

 meta-analysis -0.011 0.008 -1.366 0.1719 0.99(0.97 - 0.97) 
Collinsella ADc12 0.037 0.008 4.413 1.06E-05 1.04(1.02 - 1.06) 

 GenADA 0.033 0.011 2.930 0.0034 1.03(1.01 - 1.06) 

 meta-analysis 0.036 0.007 5.278 <.0001 1.04(1.02 - 1.02) 
Eisenbergiella ADc12 -0.029 0.008 -3.382 0.0007 0.97(0.96 - 0.99) 

 GenADA 0.002 0.011 0.180 0.8575 1.00(0.98 - 1.02) 

 meta-analysis -0.014 0.015 -0.922 0.3565 0.99(0.96 - 0.96) 
Eubacterium fissicatena ADc12 -0.032 0.009 -3.557 0.0004 0.97(0.95 - 0.99) 

 GenADA -0.003 0.013 -0.252 0.8011 1.00(0.97 - 1.02) 

 meta-analysis -0.019 0.014 -1.353 0.1762 0.98(0.95 - 0.95) 
Gordonibacter ADc12 -0.032 0.009 -3.460 0.0005 0.97(0.95 - 0.99) 

 GenADA -0.004 0.012 -0.352 0.7248 1.00(0.97 - 1.02) 

 meta-analysis -0.019 0.014 -1.398 0.1621 0.98(0.95 - 0.95) 
Lachnospira ADc12 0.014 0.009 1.524 0.1277 1.01(1.00 - 1.03) 

 GenADA 0.014 0.012 1.169 0.2425 1.01(0.99 - 1.04) 

 meta-analysis -0.017 0.018 -0.969 0.3324 0.98(0.95 - 0.95) 
Prevotella9 ADc12 -0.012 0.008 -1.486 0.1373 0.99(0.97 - 1.00) 

 GenADA -0.020 0.011 -1.836 0.0666 0.98(0.96 - 1.00) 

 meta-analysis -0.015 0.007 -2.291 0.0220 0.99(0.97 - 0.97) 
Veillonella ADc12 0.024 0.008 2.946 0.0032 1.02(1.01 - 1.04) 

 GenADA -0.008 0.011 -0.664 0.5071 0.99(0.97 - 1.01) 
  meta-analysis 0.0094 0.016 0.5905 0.5549 1.01(0.98 - 1.04) 

 
Note: Genera in bold are three genera identified to have genetically significant correlation with 
APOE rs429358 minor allele C in the meta-analysis (p < 0.05). Collinsella was the only genus 
that showed significant correlation in both discovery and replication samples. 
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Table 5. List of gut microbiome genera that were nominally associated with APOE SNPs rs429358 and rs7412.   

 
Note:  The data were extracted from the largest GWAS of human gut microbiome conducted among 24 multi-ethnic cohorts 
in the MiBioGen consortium (www.mibiogen.org) (24). rsID (CHR:BP:Effect Allele): the rs-number of single nucleotide 
polymorphisms, chromosome number (CHR), base pair (BP), with the effect allele (genome assembly GRCh37/hg19). 
Microbiome: only contains the genus level with significant abundance associated with APOE two SNPs. Beta: Beta 
coefficient. SE: Standard Error. SZ: Weighted sum of z-scores. P: p-value (p<0.05 was considered as nominal association 
between the microbiome genera and APOE). N: sample count. # Cohorts: Number of cohorts involved. 
 

rsID (CHR:BP:Effect Allele) Microbiome Genera Beta SE SZ P N # cohorts 
rs429358 (19:45411941:C) Bacteroides -0.044 0.015 -2.881 0.0040 18173 23 

 Butyricimonas -0.044 0.020 -2.241 0.0250 10657 23 
 Dorea 0.030 0.015 2.127 0.0334 17494 23 
 Eubacterium coprostanoligenes 0.033 0.015 2.120 0.0340 17261 23 
 Faecalibacterium -0.035 0.015 -2.188 0.0287 17960 23 
 Olsenella 0.064 0.033 1.993 0.0462 3721 13 
 Parasutterella 0.040 0.019 2.216 0.0267 11291 23 
 Senegalimassilia 0.050 0.024 2.207 0.0273 6888 21 
 Veillonella 0.044 0.021 2.032 0.0421 9194 23 

rs7412 (19:45412079:T) Butyricicoccus 0.048 0.021 2.468 0.0136 15637 20 
 Collinsella 0.052 0.023 2.214 0.0268 12811 19 
 Coprococcus3 0.050 0.022 2.344 0.0191 14323 20 
 Eubacterium hallii 0.053 0.021 2.453 0.0142 14846 20 
 Lachnospiraceae UCG001 -0.071 0.027 -2.534 0.0113 9357 20 
 Olsenella -0.103 0.043 -2.346 0.0190 3721 13 
 Ruminococcaceae UCG004 0.080 0.028 2.901 0.0037 9049 20 
 Senegalimassilia 0.082 0.032 2.584 0.0098 6508 18 
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