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Research in context 

Evidence before this study 

Recent studies have recognized that retinal measurements can indicate an 

accelerated risk of aging and multiple systemic diseases preceding clinical 

symptoms and signs. Despite these insights, it remains unknown how retinal 

alterations are biologically linked to systemic health. 

 

Added value of this study 

Using the UK Biobank, we identified ganglion cell–inner plexiform layer 

thickness (GCIPLT) metabolomic signatures, and revealed their association 

with the risk of all- and specific-cause mortality and six age related diseases: 

type 2 diabetes, dementia, stroke, myocardial infarction, heart failure, and 

obstructive sleep apnea/hypopnea syndrome. The meta-GCIPLT score 

significantly improved the discriminative power of the predictive models for 

theses health outcomes based on conventional risk factors. 

 

Implications of all the available evidence 

GCIPLT-associated plasma metabolites have the potential to capture the 

residual risk of systemic diseases and mortality not quantified by traditional 

risk factors. Incorporating GCIPLT metabolomic signatures into prediction 

models may assist in screening for future risks of these health outcomes. 

Since metabolism is a modifiable risk factor that can be treated medically, the 

future holds promise for the development of new strategies that reverse or 

interrupt the onset of these diseases by modifying metabolic factors.  
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Summary 

Background: The retina is considered a unique window to systemic health, 

but their biological link remains unknown. 

Methods: A total of 93,838 UK Biobank participants with metabolomics data 

were included in the study. Plasma metabolites associated with GCIPLT were 

identified in 7,824 participants who also underwent retinal optical coherence 

tomography; prospective associations of GCIPLT-associated metabolites with 

12-year risk of mortality and major age-related diseases were assessed in 

86,014 participants. The primary outcomes included all- and specific-cause 

mortality. The secondary outcomes included incident type 2 diabetes mellitus 

(T2DM), obstructive sleep apnea/hypopnea syndrome (OSAHS), myocardial 

infarction (MI), heart failure, ischemic stroke, and dementia. C-statistics and 

net reclassification indexes (NRIs) were calculated to evaluate the added 

predictive value of GCIPLT metabolites. Calibration was assessed using 

calibration plots. 

Findings: Sixteen metabolomic signatures were associated with GCIPLT (P< 

0.009 [Bonferroni-corrected threshold]), and most were associated with the 

future risk of mortality and age-related diseases. The constructed meta-

GCIPLT scores distinguished well between patients with high and low risks of 

mortality and morbidity, showing predictive values higher than or comparable 

to those of traditional risk factors (C-statistics: 0.780[0.771-0.788], T2DM; 

0.725[0.707-0.743], OSAHS; 0.711[0.695-0.726], MI; 0.685[0.662-0.707], 

cardiovascular mortality; 0.657[0.640-0.674], heart failure; 0.638[0.636-0.660], 

other mortality; 0.630[0.618-0.642], all-cause mortality; 0.620[0.598-0.643], 

dementia; 0.614[0.593-0.634], stroke; and 0.601[0.585-0.617], cancer 

mortality). The NRIs confirmed the inclusion of GCIPLT metabolomic 

signatures to the models based on traditional risk factors resulted in 

significant improvements in model performance (5.18%, T2DM [P=3.86E-11]; 

4.43%, dementia [P=0.003]; 4.20%, cardiovascular mortality [P=6.04E-04]; 

3.73%, MI [P=1.72E-07]; 2.93%, OSAHS [P=3.13E-05]; 2.39%, all-cause 
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mortality [P=3.89E-05]; 2.33%, stroke [P=0.049]; 2.09%, cancer mortality 

[P=0.039]; and 1.59%, heart failure [P=2.72E-083.07E-04]). Calibration plots 

showed excellent calibration between predicted risk and actual incidence in 

the new models. 

Interpretation: GCIPLT-associated plasma metabolites captured the residual 

risk for mortality and major systemic diseases not quantified by traditional risk 

factors in the general population. Incorporating GCIPLT metabolomic 

signatures into prediction models may assist in screening for future risks of 

these health outcomes. 

Funding: National Natural Science Foundation (China). 
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metabolomics; mortality; type 2 diabetes; obstructive sleep apnea/hypopnea 

syndrome; myocardial infarction; heart failure; stroke; dementia 
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Introduction 

The retina is an extension of the central nervous system and a unique window 

to systemic health since its microstructures can be non-invasively imaged.1-3 

Optical coherence tomography (OCT) of the retina has identified retinal nerve 

fiber layers (RNFL) and ganglion cell–inner plexiform layer (GCIPL) as 

biomarkers of aging and related diseases preceding clinical symptoms and 

signs.4-13 With the booming OCT deployment in primary care settings and 

people’s concerns for eye health, the easily accessible, risk-free, and high-

resolution retinal scans are becoming an attractive alternative for screening 

systemic health in routine community scenarios.14-17  

 

The biological link between alterations in retinal layers and systemic health 

remains unknown. Metabolomics offers a novel opportunity to study the 

biological signatures behind these complex features,18 especially considering 

that metabolic risk factors contribute substantially to various age-related 

diseases.19-21 Conversely, previous studies have reported associations 

between circulating metabolites and alterations in retinal layers,22-24 but these 

are limited to single-biomarker approaches. Additionally, these studies majorly 

focused on the RNFL (representing axons of retinal ganglion cells [RGCs]), 

while studies analyzing metabolic factors with GCIPL (representing cytosol 

and dendrites of RGCs) are rare, despite growing evidence suggesting that 

GCIPL is more sensitive and a reproducible mirror representing retinal 

damage and systemic diseases.6, 25-27  

 

We hypothesized that metabolites may underlie the links between retinal layer 

changes and systemic health. Since RGCs are extremely susceptible to 

systemic injury,27 studying GCIPL-mediated biological changes in vivo may 

predict the future risk and course of systemic diseases earlier in their 

pathogenesis. Therefore, the objective of this study was to investigate the 

association between the GCIPLT metabolomic signature and the risk of 
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mortality and major age-related diseases in a large population-based cohort.  

 

Methods 

Study population 

This study utilized participants from the UK Biobank, a large population-based 

cohort study including over half a million participants aged 40–69 years from 

England, Scotland, and Wales registered with the National Health Service 

(NHS). The study design is described previously.28 This study was conducted 

in accordance with the principles of the Declaration of Helsinki and was 

approved by the North West Multi-center Research Ethics Committee. All the 

participants signed an informed consent form. 

 

The overall design of this study is shown in Figure 1 and consists of two 

phases, in which the UK biobank was divided into three parts: with both 

metabolomic and OCT data (population I), with metabolomic data only 

(population II), and without metabolomic data (population III). Population I was 

included in the phase I analysis; 7,824 participants who underwent a 

qualifying macular OCT scan and had available nuclear magnetic resonance 

(NMR) metabolomic data were included after stringent exclusion criteria. A 

total of 110,730 participants who underwent NMR metabolomics were 

included in phase II analysis. After excluding participants with missing 

metabolomic data (population III), missing hospitalization records (n = 

18,032), and data used in phase I analysis (n = 6,684), 86,014 participants 

were finally included in phase II analysis. The detailed inclusion and exclusion 

criteria for this study are shown in Supplementary Figure S1. 

 

Participants’ demographic, systemic, and ocular characteristics 

At baseline (2006–2010), physical measurements, face-to-face interviews, 

and detailed self-administered touchscreen questionnaires were conducted on 

all participants. The questionnaires included demographic and socioeconomic 
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factors (age, sex, race, education level, Townsend deprivation index, and 

income), lifestyle factors (smoking and drinking status), family history, and 

medical history, including the use of insulin, lipid-lowering medications, and 

antihypertensive drugs. Baseline diseases were defined using questionnaires, 

interviews, and inpatient data based on the ICD-10 codes. Physical 

measurements including baseline body mass index (BMI), waist-to-hip ratio 

(WHR), blood pressure, visual acuity, refractive error, spherical equivalent, 

intraocular pressure (IOP), total cholesterol, low-density lipoprotein 

cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) levels, 

glycosylated hemoglobin A1c, urine microalbumin and creatinine levels were 

obtained. (Supplementary Methods) The presence of apolipoprotein E 

(apoE) ε4 allele was defined using the apoE ε4+ dominant model of ε3/ε4 

and ε4/ε4. The field codes are listed in Supplementary Table S1. 

 

Proton nuclear magnetic resonance metabolomics 

A total of 249 metabolic metrics were quantified in plasma samples from 

participants using high-throughput NMR platform (Nightingale Health, 

Finland). Details about the metabolic-profiling protocol are described 

elsewhere,29-31 but in brief, cryopreserved plasma samples were thawed and 

centrifuged, and the supernatant was mixed with phosphate buffer. The 

samples were then loaded onto a cooled sample changer, and two NMR 

spectra of each plasma sample were recorded using a 500 MHz NMR 

spectrometer (Bruker AVANCE IIIHD). One spectrum characterized 

resonances produced mainly by proteins and lipid lipoprotein particles, 

whereas the other detected low-molecular-weight metabolites. After quality 

control, the metabolic metrics were quantified using the Nightingale Health 

biomarker quantification library 2020, including 168 metrics presented at 

absolute levels and 81 metrics presented as ratio values. For the lipoprotein 

subgroups, lipid concentrations and compositions were measured based on 

the triglyceride (TG), phospholipid, total cholesterol, cholesteryl ester, free 
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cholesterol, and total lipid concentrations in each subclass. Metabolic 

indicators were measured in absolute concentration units (mmol/L) or ratios. 

 

Spectral-domain optical coherence tomography imaging 

Spectral-domain OCT was performed in a closed darkroom using a Topcon 

3D OCT-1000 Mk II (Topcon, Inc., Oakland, NJ, USA). The system had an 

axial resolution of 6 μm and an image acquisition rate of 18,000 A-scans/s. 

Using a three-dimensional 6 × 6 mm macular volume scan mode, the retina 

was imaged at a scan density of 512 A-scans × 128 B-scans in 3.6 s. The 

Topcon Advanced Boundary Segmentation algorithm (version 1.6.1.1) 

automatically segmented the retinal layers and determined the macular 

GCIPL thickness. The image quality score, internal limiting membrane 

indicator, validity count, and motion indicators were used to detect and ensure 

quality control, whereby images with low signal strength (Q<45) or poor 

segmentation or centration (poorest 20% of each indicator) were excluded. If 

both eyes were eligible for the analysis, one eye was randomly selected for 

further analysis. 

 

Mortality and morbidity outcomes 

The Hospital Episode Statistics database, Scottish Morbidity Record, and 

Patient Episode Database were used to record inpatient hospital records for 

England, Scotland, and Wales. Mortality data were obtained from national 

datasets with the NHS Digital (England and Wales) and NHS Central Register 

(Scotland), and the primary cause of mortality was recorded using the ICD-10 

(Supplementary Table S1). The follow-up period was from March 16, 2006, 

to March 31, 2021. Person-days for each participant were calculated from the 

date of baseline assessment to the date of disease onset, mortality, or the end 

of follow-up, whichever came first. 

 

Statistical analysis 
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R software (version 4.1.2) was used for all data analyses and for the 

presentation of the results. Student’s t-test and the chi-square test were used 

to compare continuous and categorical variables, respectively. The z-score 

was first standardized for all metabolite measurements to ensure 

comparability across metabolites. 

 

In the phase I analysis, the association between 249 metabolite measures 

and macular GCIPLT was assessed using a multifactorial linear regression 

model after adjusting for age, sex, race, education, Townsend deprivation 

coefficient, household income, BMI, smoking status, alcohol consumption 

status, use of lipid-lowering medications, spherical equivalent, and IOP. After 

performing principal component analysis on 249 circulating metabolites, P 

values for multiple comparisons were set using the Bonferroni method to 

reduce the false-positive rate. 

 

In phase II analysis, participants were randomly categorized by 1:1 ratio into 

training and validation sets. Participants diagnosed with the corresponding 

disease at baseline were excluded from the corresponding analysis (e.g., in 

T2DM analysis, participants diagnosed with T2DM at baseline were 

excluded). The metabolites that reached significant levels in the phase I 

analysis were analyzed using multifactorial Cox regression for the risk of six 

age-related diseases (T2DM, obstructive sleep apnea/hypopnea syndrome 

[OSAHS], myocardial infarction [MI], heart failure, ischemic stroke, and 

dementia) and four mortality types (all-cause, cardiovascular, cancer, and 

other mortality), adjusting for covariates similar to those in the phase I 

analysis, excluding spherical equivalents and IOP. 

 

Subsequently, the metabolic risk scores were calculated for each disease. 

First, all metabolites that reached significance in the phase I analysis were 

selected as candidate variables. Metabolic markers included in the calculation 
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were screened based on Bayesian information criteria using a forward–

backward method. The metabolic score was calculated using the following 

formula: meta − GCIPLT	score = β3×c35
367 !where β3 represents the 

coefficient of the ith metabolite [ln (hazar ratio)] and c3 represents the 

concentration of the ith metabolite (after z-score normalization). The 

participants were divided into the top 10% and bottom 10% groups based on 

their metabolic GCIPLT scores, and Kaplan–Meier survival analysis was used 

to compare the risk of morbidity and mortality of participants within the top 

10% metabolic scores with those in the bottom 10%. The predictive value of 

the metabolic scores for the occurrence of these systemic diseases and 

mortality types was compared with those of the traditional risk factors. Next, 

the metabolic GCIPLT score was analyzed for additional predictive value 

compared with the conventional model. NRIs were calculated to quantify the 

net benefit of adding the metabolic score to the classical model. Finally, 

calibration plots were created to compare the predicted and actual risk. 

 

Role of the funding source 

The funding source had no role in the study. 

 

Results 

Characteristics of the study population 

A total of 3,913 right eyes and 3,911 left eyes of 7,824 participants (population 

I) were eligible for phase I analysis (Supplementary Figure S1). For the 

phase II analysis, 86,014 participants were eligible (population II). Participants 

who underwent OCT measurements were younger (P<0.001), male 

(P=0.002), more educated (P<0.001), had a higher income (P<0.001), had a 

lower BMI (P=0.002), smoked less (P=0.029), and were less likely to be on 

lipid-lowering (P=0.004) or antihypertensive medications (P<0.001) than those 

who did not. The distributions of participant characteristics in the training and 

validation sets were similar (all P>0.05). The baseline characteristics of the 
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study population are summarized in Table 1. 

 

Metabolite associated with GCIPLT 

Supplementary Figure S2 shows the association between the metabolites 

and macular GCIPL thickness. Principal component analysis of the 249 

circulating metabolites showed that 55 principal components accounted 

for >95% of the total variation. Thus, a Bonferroni-corrected P-value of <0.009 

(0.05/55) was considered statistically significant. Of these, 16 metabolic 

indicators reached significance and were considered GCIPLT metabolomic 

signatures (Supplementary Figure S3). 

 

Higher levels of phospholipids in medium high-density lipoprotein (HDL) and 

total HDL, total lipids in medium HDL and total HDL, free cholesterol in 

medium HDL and total HDL, and cholesterol and cholesteryl esters in medium 

HDL were significantly associated with reduced macular GCIPLT. In addition, 

apolipoprotein A1 (apoA1), medium HDL particle concentration, total HDL 

particles, ratios of saturated fatty acids (FAs) to total FAs, and ratios of 

phospholipids to total lipids in small HDL were significantly associated with 

reduced macular GCIPLT. In contrast, the ratios of linoleic acid to total FA, 

omega-6 FA to total FA, and apolipoprotein B (apoB) to apoA1 were positively 

correlated with GCIPLT (Supplementary Results, Supplementary Table 

S2). 

 

Metabolomic signature and risk of incident morbidity and mortality 

In the phase II analysis, after follow-up (median=12.0 years), 6,524 

participants died. Of these, 1,544 died of cardiovascular disease; 3,151, of 

cancer, and 1,559 of other causes (Supplementary Table S3). A total of 

5,714 participants developed T2DM, 1,366 developed OSAHS, 1,219 

developed dementia, 1,578 developed ischemic stroke, 2,537 developed 

heart failure, and 2,866 had MI. These participants were associated with older 
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age, male sex, higher Townsend deprivation indices, lower income, higher 

BMI, were smokers, or drank alcohol more frequently (all P<0.001). The 

baseline characteristics of the participants stratified by outcomes are 

summarized in Supplementary Tables S4–S10. 

 

Figures 3 and 4 show the correlation of the GCIPLT metabolic signatures 

with the risk of mortality and systemic diseases. Of the 16 aforementioned 

metabolic markers, numerous were independently associated with each 

health outcome. Consistent correlations were obtained in the validation set 

(Supplementary Results, Supplementary Tables S14–S23). 

 

Meta-GCIPLT score between high- and low-risk participants 

Participants with metabolic scores in the top 10% percentile had significantly 

higher risks for all- and specific-cause mortality as well as systemic diseases 

than those in the bottom 10% percentile (all P <1.48E-11) (Supplementary 

Figures S4–S5). Similar results were obtained for the validation set 

(Supplementary Figures S6–S7). This suggests that the GCIPLT metabolic 

score distinguishes between individuals at low and high risk of mortality and 

major systemic diseases. 

 

Predictive power of Meta-GCIPLT score  

The GCIPLT metabolomic signature showed a predictive value higher than or 

comparable to that of traditional risk factors for all endpoints (Figures 5–6). 

For mortality prediction, GCIPLT metabolomic signatures had the best 

prediction capacity aside from age in all models, with an C-statistic of 0.630 

(95% confidence interval [CI]:0.618, 0.642) for all-cause mortality (age, 0.687; 

95% CI:0.677, 0.697; P=2.38E-15), 0.685 (0.662–0.707) for cardiovascular 

mortality (age, 0.688; 95% CI:0.670, 0.707, P=0.363), 0.638 (0.636–0.660) for 

other mortality types (age, 0.700; 95% CI:0.675, 0.713; P=8.05E-06), and 

0.601 (0.585–0.617) for cancer mortality (age, 0.660; 95% CI, 0.646, 0.674; 
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P=1.82E-11), exceeding all other risk factors (all P<1.33E-05). 

 

In the models predicting the risk of T2DM, GCIPLT metabolomic signatures 

had the largest C-statistic (0.780; 95% CI:0.771–0.788), which exceeded all 

traditional risk factors (all P<2.20E-16). In the models predicting the 

development of OSAHS, GCIPLT metabolomic signatures and BMI had the 

largest C-statistic (0.725; 95% CI:0.707, 0.743, and 0.724; 95% CI:0.708, 

0.741, respectively, P=0.856) compared with other risk factors (all P<0.005). 

For the prediction of dementia, age had the highest C-statistic (0.768; 95% 

CI:0.753, 0.784), followed by GCIPLT metabolomic signatures and the apoE 

ε4 allele (0.620; 95% CI:0.598, 0.643, and 0.594; 95% CI:0.574, 0.614, 

respectively, P=0.128), followed by other traditional risk factors (all P<0.001). 

 

When comparing the C-statistics of the models predicting the risk of MI, 

GCIPLT metabolomic signatures had the largest C-statistic (0.711; 95% 

CI:0.695, 0.726) compared with traditional risk factors (all P<2.52E-05). For 

the prediction of ischemic stroke, age had the highest C-statistic (0.692; 95% 

CI:0.674–0.710), followed by the GCIPLT metabolomic signature and 

hypertension (0.614; 95% CI:0.593, 0.634, and 0.600; 95% CI:0.582, 0.618; 

P=0.259), followed by other risk factors (all P<0.005). In the models predicting 

the risk of developing heart failure, age had the highest C-statistic (0.690; 

95% CI:0.676, 0.705), followed by GCIPLT metabolomic signatures (0.657; 

95% CI:0.640, 0.674), and other risk factors (all P<0.005). Consistent results 

were obtained in the validation set (Supplementary Figures S8–S9). 

 

Incremental value of GCIPLT metabolomic signatures 

After adding the GCIPLT metabolomic signatures to the conventional model, 

an increase in C-statistic was observed for all endpoints. (Supplementary 

Results, Table 2, Supplementary Figures S10-S11). Similar results were 

obtained for the validation set (Supplementary Figures S12–S13). 
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NRIs quantified the net benefits in the reclassification ability of adding 

metabolic scores to conventional models for each disease. After the addition 

of GCIPLT metabolomic signatures, NRI values were 2.39% (standard error 

[SE]=0.006, P=3.89E-05) for predicting all-cause mortality, 4.20% (SE=0.012, 

P=6.04E-04) for predicting cardiovascular mortality, 2.09% (SE=0.010, 

P=0.039) for predicting cancer mortality, and 5.17% (SE=0.021, P=0.042) for 

predicting other mortality types. Similarly, the NRI values were 5.18% 

(SE=0.026, P=3.86E-11) for predicting T2DM, 2.94% (SE=0.007, P=3.13E-05) 

for predicting OSAHS, 3.73% (SE=0.007, P=1.72E-07) for predicting MI, 

1.59% (SE=0.004, P=2.72E-08) for predicting heart failure, 2.33% (SE=0.009, 

P=0.049) for predicting stroke, and 4.43% (SE=0.006, P=3.01E-12) for 

predicting dementia (Supplementary Figures S14–S15). Similar results were 

obtained for the validation set (Supplementary Results, Supplementary 

Figures S16–S17). 

 

Calibration of the combined model 

Good calibration between the predicted risk and actual onset was shown for 

all six systemic diseases and four mortality risks in both the training and 

validation sets (Supplementary Figures S18–S21). 

 

Discussion 

In the present study, 249 plasma metabolites were tested for their association 

with GCIPLT and 16 were identified as metabolic signatures. Further analyses 

revealed an independent association of these metabolites with the risk of 

developing future mortality and major age-related diseases. After a metabolic 

score was constructed, GCIPLT signatures could differentiate between high- 

and low-risk patients for all health outcomes, and its predictive power was 

higher than or comparable to that of traditional risk factors. Their addition to 

conventional predictive models significantly improved model discrimination, 
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suggesting that these metabolites have the potential to capture the residual 

risk for systemic diseases not quantified by traditional risk factors in the 

general population. 

 

Among the 16 signatures identified, numerous were HDL-associated 

metabolites that were protective against all-cause, cardiovascular, and 

cancer-related mortality, reinforcing their powerful roles in systemic health and 

disease processes in the human body. In addition, these signatures had 

stronger predictive power than that of other risk factors, notably comparable to 

that of age, for the prediction of cardiovascular mortality. This is plausible 

since these signatures were associated with various major cardiovascular 

diseases in our analysis, including MI, heart failure, and stroke. Consistently, 

the improvement in the reclassification ability of the model predicting 

cardiovascular mortality was the greatest among models predicting mortality 

with the inclusion of GCIPLT signatures. While HDL-associated metabolites 

reduce the risk of cardiovascular diseases, our analysis concluded that it was 

also associated with future cancer mortality, which is currently a debated 

topic.32 A possible explanation is that apoA1 and HDL components in tumors 

promote cholesterol efflux and inhibit the growth and proliferation of tumor 

cells with high cholesterol demands.33 On analysis of other mortality types, it 

was puzzling that HDL was deemed a risk factor for unspecified mortality, 

while apoB/apoA1 were protective. We hypothesize that these unexpected 

associations are likely due to heterogeneity within mortality types, where 

metabolites played no significant role in death (for e.g., death by accidents). 

These populations may not necessarily have any systemic metabolic 

alterations, which partly explains this confusion. 

 

T2DM is a metabolic disease characterized by insulin insensitivity, which 

causes impaired glucose uptake and systemic fat mobilization.34 This study 

implicates decreased HDL cholesterol, and changes in its phospholipids, FAs, 
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and other related metabolites as factors that confer an increased risk of 

T2DM. Our findings likely reflect the complex shifts in lipid metabolism that 

occur in T2DM. Precisely, the synthesis and release of TG-rich very low-

density lipoprotein (VLDL) in the liver drives the exchange of TG and 

cholesterol esters between VLDL and HDL, leading to a decrease in HDL 

cholesterol in T2DM.35 In addition, unstable TG-rich HDL particles are 

considered more susceptible to clearance,36 explaining the negative 

association between HDL and apoA1 levels and the risk of developing T2DM 

in this study. Meanwhile, such component modifications have been reported 

to alter the functional domains of apoA1 structures, also preventing 

interactions with HDL that limit their physiological function.37 Since HDL 

particles are primarily responsible for reverse transport of cellular cholesterol, 

their reduction or inactivity can cause lipid accumulation in pancreatic β-cells, 

causing inflammation and impaired β-cell function.37-40 This cholesterol 

transport activity and antioxidant capacity of HDL were also reported to 

depend on its surface lipid components, which determines the protein’s 

mobility41-43; hence, decreased ratios of unsaturated FAs to saturated FAs, 

phospholipids, and free cholesterol observed in the present study impair 

antioxidant capacity, which predispose an individual to T2DM. Notably, the 

predictive value of this group of metabolites for diabetes exceeded that of BMI 

and WHR, suggesting their exceptional importance in T2DM risk. 

 

OSAHS is a common sleep disorder and airway disease characterized by 

sleep apnea, causing subsequent chronic hypoxia.44 Elevated levels of free 

FAs (FFAs) are common in mice exposed to intermittent hypoxia (IH) and in 

OSAHS patients,45-49 likely from IH-associated activation of the sympathetic 

system that triggers the release of FFAs from adipose tissue.50 Similar to 

T2DM, FFAs are sent to the liver to synthesize TG-rich VLDL, which ultimately 

decreases HDL cholesterol and clearance of unstable HDL particles,36 as 

supported by our results where similar lipid metabolite profiles were implicated 
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in OSAHS. IH is also thought to impair the sensitivity of adipose tissue to 

insulin, which further leads to increased FFAs release and decreased HDL 

cholesterol and HDL particles.51 In addition, patients with OSAHS have been 

reported to undergo lipid peroxidation more frequently,52 hence higher levels 

of HDL particles with higher phospholipid and free cholesterol content that are 

associated with good antioxidant capacity were deemed protective against 

OSAHS in the present study.42-43 

 

The present study found that apoA1, HDL particle concentration and multiple 

components within HDL were independently associated with decreased risk of 

dementia, a neurodegenerative disease affecting over 50 million people 

worldwide.53 Debate about the prospective relationship between plasma HDL 

levels and dementia is ongoing,54 and although it was believed that apoE-

based HDL in the brain differs from apoA1-based HDL in plasma, it was 

recently demonstrated that plasma apoA1-HDL crossed the blood–brain 

barrier through scavenger receptors, inferring it could participate in brain lipid 

metabolism.55 Extracellular deposition of amyloid β (Aβ) is thought to be the 

initiating event for dementia,56 and in vitro studies show that apoA1 binds to 

Aβ to interfere with Aβ monomer assembly, preventing neurotoxicity.57-58 In 

addition, Aβ-bound HDL was reported to promote in situ degradation of Aβ by 

binding to scavenger receptors on glial cells,59 explaining why plasma apoA1 

and HDL were protective against dementia in this study. In addition, apoA1 or 

apoA1-HDL has been observed to promote non-amyloidogenic cleavage of 

the Aβ protein rather than amyloidogenic cleavage, thereby promoting cellular 

cholesterol efflux and increasing cell membrane fluidity.60 Considering 

phospholipids and cholesterol in HDL were associated with reduced dementia 

risk in the present study, these consolidate the current literature and provide 

further insight into the pathophysiology of dementia. 

 

Previous studies have identified low plasma HDL concentrations are 
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independent risk factors for cardiovascular diseases, since HDL mediates 

reverse transport of cholesterol in atherosclerotic plaques61-62. In the present 

study, we observed that apoA1, HDL particle concentration, cholesteryl esters, 

free cholesterol, and phospholipids in HDL particles protect against heart 

failure, MI, and stroke. An increase in these components contributes to the 

efflux of cellular cholesterol via HDL and prevents the deposition of oxidized 

lipids, which otherwise leads to vascular inflammation.41-42 In addition, linoleic 

and omega-6 FAs in total FAs were also protective against MI and stroke, 

which is important considering that the role of omega-6 FAs in cardiovascular 

disease remains uncertain. Some studies suggest that linoleic acid, a major 

omega-6 FA in the Western diet, may reduce the risk of cardiovascular 

disease, while others have concerns that it can elongate to form arachidonic 

acid, which has potential pro-inflammatory and thrombogenic properties that 

may be harmful to the heart.63-64 Recent randomized controlled trials show 

that elevated dietary linoleic acid has no significant effect on inflammation, 

immune activation, or platelet function, presumably due to its limited 

conversion to arachidonic acid in humans.65 These results alongside the 

present findings suggest that linoleic acid is protective against cardiovascular 

diseases, and considering it was also protective for T2DM, OSAHS, dementia, 

and all-and specific-cause mortality in our results, its benefits should be 

considered in dietary recommendations. 

 

Despite the breadth of new information, this study had certain limitations. 

First, some patients did not have diagnostic data in their initial hospital 

records; therefore, their ages at diagnosis were based on self-reported 

questionnaires. As self-reported data are corruptible to memory, this may 

have introduced a bias for some associations. Second, participants with 

retinal OCT measurements in this study were younger, male, more educated, 

earned a higher income, had lower BMIs, and were non-smokers compared to 

other participants (Table 1). Therefore, caution should be exercised before 
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generalizing the metabolomic signatures to the general population. Finally, 

although a comprehensive range of confounders was adjusted for in this 

analysis, potential residual confounders that could not be excluded may still 

exist. 

 

Conclusion 

In summary, this study identified GCIPLT metabolomic signatures that had 

higher predictive power than traditional risk factors for major systemic 

diseases and causes of mortality. GCIPLT-associated plasma metabolites 

have the potential to capture the residual risk of systemic diseases and 

mortality not quantified by traditional risk factors. This study contributes new 

knowledge that deepens our understanding of the retina as a window to 

systemic health, and paves the way for developing strategies targeting 

metabolites that may reverse or interrupt health outcomes. 
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Figure 1. Schematic diagram summarizing the study design. (A) demonstrates the quantification of metabolic biomarkers and macula GCIPLT. 

(B) summarizes the study design and population. (C) shows the study endpoints. SD-OCT =spectral-domain optical coherence tomography; 

NMR =nuclear magnetic resonance; GCIPLT =ganglion cell-inner plexiform layer thickness; OSAHS =obstructive sleep apnea/hypopnea 

syndrome. 
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Figure 2. Metabolic metrics that reached the Bonferroni-corrected significance threshold for multiple comparisons in phase I analysis. GCIPLT 

=ganglion cell-inner plexiform layer thickness; HDL =high-density lipoprotein. 
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Figure 3. Associations of GCIPLT metabolomic signature and risk of type 2 diabetes, dementia, OSAHS, heat failure, myocardial infarction, and 

ischemic stroke. GCIPLT =ganglion cell-inner plexiform layer thickness; OSAHS =obstructive sleep apnea/hypopnea syndrome; HDL =high-

density lipoprotein. 
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Figure 4. Associations of GCIPLT metabolomic signature and risk of all-cause mortality, cardiovascular mortality, cancer mortality, and other 

mortality. GCIPLT =ganglion cell-inner plexiform layer thickness; HDL =high-density lipoprotein. 
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Figure 5. Receiver operating characteristic curves of established risk factors and meta-GCIPLT score for predicting (A) type 2 diabetes, (B) 

OSAHS, (C) dementia, (D) heat failure, (E) myocardial infarction, and (F) ischemic stroke. GCIPLT =ganglion cell-inner plexiform layer thickness; 

OSAHS =obstructive sleep apnea/hypopnea syndrome; BMI =body mass index; WHR =waist-to-hip ratio; BP =blood pressure; apoE = 

apolipoprotein E; ACR =microalbumin/creatinine ratio; HbA1c =glycosylated hemoglobin A1c; CVD =cardiovascular disease; LDL-c =low-density 

lipoprotein cholesterol. 
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Figure 6. Receiver operating characteristic curves of established risk factors and meta-GCIPLT score for predicting (A) all-cause mortality, (B) 

CVD mortality, (C) cancer mortality, and (D) other mortality types. GCIPLT =ganglion cell-inner plexiform layer thickness; CVD =cardiovascular 

disease; BMI =body mass index; MVPA =moderate to vigorous physical activity. 
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 Table 1. Baseline characteristics of the study population. 

Characteristic Total Population I Population II P value † § P value ‡ § Training set Validation set 
Number of subjects 93838 7824 43007 43007 - - 
Age at recruitment 
≤49 21438 (22.8) 2248 (28.7) 9626 (22.4) 9564 (22.2) <0.001 0.776 
50-54 13843 (14.8) 1191 (15.2) 6334 (14.7) 6318 (14.7)   
55-59 16856 (18.0) 1319 (16.9) 7694 (17.9) 7843 (18.2)   
60-64 23246 (24.8) 1800 (23.0) 10742 (25.0) 10704 (24.9)   
≥65 18455 (19.7) 1266 (16.2) 8611 (20.0) 8578 (19.9)   

Gender 
Female 51182 (54.5) 4122 (52.7) 23596 (54.9) 23464 (54.6) 0.002 0.370 
Male 42656 (45.5) 3702 (47.3) 19411 (45.1) 19543 (45.4)   

Race 
White 88754 (94.6) 7188 (91.9) 40771 (94.8) 40795 (94.9) <0.001 0.900 
Others 4652 (5.0) 589 (7.5) 2045 (4.8) 2018 (4.7)   
Missing 432 (0.5) 47 (0.6) 191 (0.4) 194 (0.5)   

Townsend Deprivation Index 
Quantile 1 23598 (25.1) 1749 (22.4) 10871 (25.3) 10978 (25.5) <0.001 0.567 
Quantile 2 23394 (24.9) 1861 (23.8) 10713 (24.9) 10820 (25.2)   
Quantile 3 23324 (24.9) 2145 (27.4) 10689 (24.9) 10490 (24.4)   
Quantile 4 23397 (24.9) 2059 (26.3) 10676 (24.8) 10662 (24.8)   
Missing 125 (0.1) 10 (0.1) 58 (0.1) 57 (0.1)   

Average total household income before tax (£) 
< 18k 18820 (20.1) 1214 (15.5) 8742 (20.3) 8864 (20.6) <0.001 0.714 
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18k~30k 20770 (22.1) 1627 (20.8) 9593 (22.3) 9550 (22.2)   
31k~51k 20594 (21.9) 1846 (23.6) 9425 (21.9) 9323 (21.7)   
52k~100k 15728 (16.8) 1610 (20.6) 7058 (16.4) 7060 (16.4)   
> 100k 3982 (4.2) 516 (6.6) 1700 (4.0) 1766 (4.1)   
Missing 13944 (14.9) 1011 (12.9) 6489 (15.1) 6444 (15.0)   

Education achievement 
Level O 32411 (34.5) 2316 (29.6) 14983 (34.8) 15112 (35.1) <0.001 0.517 
Level A 4934 (5.3) 499 (6.4) 2186 (5.1) 2249 (5.2)   
University 55406 (59.0) 5009 (64.0) 25287 (58.8) 25110 (58.4)   
Missing 1087 (1.2) 0 (0.0) 551 (1.3) 536 (1.2)   

Body mass index, kg/m2 
Normal 30120 (32.1) 2650 (33.9) 13751 (32.0) 13719 (31.9) 0.002 0.518 
Overweight 39832 (42.4) 3311 (42.3) 18290 (42.5) 18231 (42.4)   
Obesity 23514 (25.1) 1839 (23.5) 10805 (25.1) 10870 (25.3)   
Missing 372 (0.4) 24 (0.3) 161 (0.4) 187 (0.4)   

Smoking 
Never 32963 (35.1) 2711 (34.6) 15085 (35.1) 15167 (35.3) 0.029 0.793 
Ever/Current 10110 (10.8) 771 (9.9) 4661 (10.8) 4678 (10.9)   
Missing 50765 (54.1) 4342 (55.5) 23261 (54.1) 23162 (53.9)   

Drinking 
Never 3510 (3.7) 261 (3.3) 1615 (3.8) 1634 (3.8) 0.077 0.846 
Ever/Current 85974 (91.6) 7235 (92.5) 39393 (91.6) 39346 (91.5)   
Missing 4354 (4.6) 328 (4.2) 1999 (4.6) 2027 (4.7)   

Spherical equivalent, diopter -0.05 ± 1.88 -0.05 ± 1.88 - - - - 
Intraocular pressure, mmHg 15.21 ± 2.90 15.21 ± 2.90 - - - - 
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Lipid-lowering medication 
No 76961 (82.0) 6525 (83.4) 35231 (81.9) 35205 (81.9) 0.004 0.825 
Yes 16877 (18.0) 1299 (16.6) 7776 (18.1) 7802 (18.1)   

Antihypertensive medication 
No 73674 (78.5) 6424 (82.1) 33630 (78.2) 33620 (78.2) <0.001 0.941 
Yes 20164 (21.5) 1400 (17.9) 9377 (21.8) 9387 (21.8)   

Insulin 
No 93056 (99.2) 7772 (99.3) 42631 (99.1) 42653 (99.2) 0.164 0.435 
Yes 782 (0.8) 52 (0.7) 376 (0.9) 354 (0.8)   

§ Bold indicates statistically significant. 
† Comparison of characteristics between population I and population II. 
‡ Comparison of characteristics between training set and validation set in population II. 
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Table 2. Discriminative power of traditional factors and meta-GCIPLT score for 
predicting mortality and major systemic diseases. 

Endpoints C-statistic (95%CI) 
Model 1* Model 2† Model 3‡ 

Training set    
Morbidity    

T2DM 0.812 (0.805-
0.820) 

0.780 (0.771-
0.788) 

0.826 (0.818-
0.833) 

OSAHS 0.766 (0.748-
0.783) 

0.725 (0.707-
0.743) 

0.774 (0.756-
0.792) 

MI 0.757 (0.743-
0.771) 

0.711 (0.695-
0.726) 

0.764 (0.751-
0.777) 

Stroke 0.726 (0.709-
0.744) 

0.614 (0.593-
0.634) 

0.731 (0.713-
0.748) 

Dementia 0.809 (0.793-
0.825) 

0.620 (0.598-
0.643) 

0.814 (0.798-
0.829) 

HF 0.776 (0.762-
0.790) 

0.657 (0.640-
0.674) 

0.778 (0.764-
0.792) 

Mortality    

All-cause 0.724 (0.714-
0.734) 

0.630 (0.618-
0.642) 

0.730 (0.720-
0.740) 

CVD 0.776 (0.758-
0.794) 

0.685 (0.662-
0.707) 

0.780 (0.763-
0.798) 

Cancer 0.685 (0.671-
0.700) 

0.601 (0.585-
0.617) 

0.692 (0.678-
0.706) 

Other 0.740 (0.721-
0.758) 

0.638 (0.636-
0.660) 

0.752 (0.733-
0.770) 

Validating set    
Morbidity    

T2DM 0.807 (0.799-
0.814) 

0.773 (0.764-
0.782) 0.818 (0.811-0.825) 

OSAHS 0.745 (0.726-
0.764) 

0.708 (0.689-
0.727) 

0.756 (0.737-
0.775) 

MI 0.749 (0.735-
0.762) 0.706 (0.69-0.722) 0.755 (0.741-

0.768) 

Stroke 0.721 (0.702-
0.739) 

0.613 (0.592-
0.634) 

0.725 (0.707-
0.743) 

Dementia 0.801 (0.785-
0.818) 

0.618 (0.595-
0.641) 

0.804 (0.787-
0.821) 

Heart failure 0.768 (0.754-
0.783) 

0.649 (0.632-
0.667) 

0.772 (0.758-
0.786) 

Mortality    
All-cause 0.713 (0.703- 0.622 (0.611- 0.719 (0.709-
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0.724) 0.634) 0.729) 

CVD 0.761 (0.743-
0.779) 

0.662 (0.640-
0.683) 

0.764 (0.747-
0.782) 

Cancer 0.681 (0.666-
0.695) 

0.594 (0.578-
0.616) 

0.686 (0.671-
0.700) 

Other 0.735 (0.716-
0.753) 

0.636 (0.614-
0.659) 0.741 (0.723-0.76) 

*Convention model for predicting T2DM includes age, sex, Townsend 
deprivation index, smoking, ethnicity, BMI, WHR, blood pressure-lowering 
medication, and family history of diabetes. Convention model for predicting 
OSAHS includes age, sex, smoking, drinking, ethnicity, BMI, WHR, 
hypertension, and diabetes. Convention model for predicting MI includes age, 
sex, ethnicity, smoking, drinking, BMI, hypertension, diabetes, total cholesterol, 
and LDL-c. Convention model for predicting stroke includes age, sex, ethnicity, 
smoking, drinking, BMI, hypertension, family history of stroke, and total 
cholesterol. Convention model for predicting dementia includes age, sex, 
ethnicity, smoking, drinking, education, BMI, stroke, family history of dementia, 
and ApoE4 allele. Convention model for predicting heart failure includes age, 
sex, ethnicity, smoking, drinking, BMI, ACR, HbA1c, hemoglobin, 
cardiovascular diseases, and family history of cardiovascular diseases. 
Convention model for predicting mortality includes age, sex, Townsend 
deprivation index, smoking, drinking, BMI, MVPA, lipid-lowering medication, 
SBP, diabetes, and total cholesterol.  
†Meta-GCIPLT score models based on metabolomic signature of GCIPLT. 
‡Combined models based on traditional risk factors and meta-GCIPLT score. 
T2DM = type 2 diabetes mellites; OSAHS = obstructive sleep apnea-hypopnea 
syndrome; MI = myocardial infarction; CVD = cardiovascular disease; BMI = 
body mass index; WHR = waist-to-hip ratio; SBP = systolic blood pressure; ACR 
= microalbumin/creatinine ratio; HbA1c = glycosylated hemoglobin A1c, MVPA 
= moderate to vigorous physical activity. 
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