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Abstract 
Neurodegenerative diseases are a group of disorders characterised by neuronal cell death 
causing a variety of physical and mental problems. While these disorders can be 
characterised by their phenotypic presentation within the nervous system, their aetiologies 
differ to varying degrees. Some disorders, such as Lewy body dementia and Parkinson’s 
disease, show overlap in the major proteins found in aggregates, and some diseases, like 
Alzheimer’s disease, amyotrophic lateral sclerosis, and Parkinson’s disease, are influenced 
by the same non-neuronal cell types (microglia), suggesting partly shared aetiologies. The 
identification of shared genetic risk factors common to many neurodegenerative diseases 
may highlight fundamental biological processes involved in neurodegeneration and provide 
promising targets for treatment and drug repurposing. The majority of genetic evidence for 
overlap between neurodegenerative diseases has been pairwise, with little genetic evidence 
for genes or biological processes found across more than two neurodegenerative diseases. 
In this study, we aimed to identify overlap between the four investigated neurodegenerative 
disorders (Alzheimer’s disease, amyotrophic lateral sclerosis, Lewy body dementia, and 
Parkinson’s disease) at the variant, gene, genomic locus, gene-set, cell, or tissue level, with 
specific interest in overlap between three or more diseases. Using local genetic correlation, 
we found that the TMEM175 locus was a shared locus between amyotrophic lateral 
sclerosis, Lewy body dementia, and Parkinson’s disease, and the HLA region was shared 
between Alzheimer’s disease, amyotrophic lateral sclerosis, and Parkinson’s disease. We 
also highlighted genes, genomic loci, gene-sets, cell types, and tissue types which may be 
important to two or more disorders by analysing the association of variants with a common 
factor estimated from the four disorders. Our study successfully highlighted genetic loci and 
tissues associated with two or more neurodegenerative diseases.  
 

Introduction 
Neurodegenerative diseases are a group of late-onset disorders characterised by 

neuronal cell death leading to movement, cognitive and/or behavioural problems1. Most 
neurodegenerative diseases can be characterised into four groups defined by the typical 
protein identified in the aggregates of affected patients; (1) Amyloidoses, like Alzheimer’s 
disease (AD), are defined by the presence of amyloid proteins, (2) Tauopathies, like chronic 
traumatic encephalopathy, are defined by tau proteins, (3) Synucleinopathies, like dementia 
with Lewy bodies (DLB), are defined by α-synuclein, and (4) TAR DNA-binding protein 43 
(TDP-43) proteinopathies, like amyotrophic lateral sclerosis (ALS), are defined by TDP-43. 
Despite this categorisation, more than one of these proteins can be a risk factor in a single 
neurodegenerative disease. Parkinson’s disease (PD) is classified as a synucleinopathy due 
to accumulations of α-synuclein, but tau is increasingly being identified as genetic risk factor 
in PD2. Similarly, AD is identified as an amyloidosis but tau is also present in the 
aggregates1. The same proteins can be risk factors for multiple neurodegenerative diseases 
which implies overlap at a subcellular level between different neurodegenerative diseases. 
The structure of protein aggregates and the cells involved with the disease process can also 
overlap between diseases. For example, both PD and DLB present with Lewy body 
aggregates2,3 and microglia are implicated in both PD, ALS and AD1,2,4

. These findings 
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suggest some degree of overlap in some neurodegenerative diseases outside of neuronal 
loss.  
 

Previous studies have looked into the genetic overlap between varying numbers of 
neurodegenerative diseases (Table 1). Arneson et al. (2018)5

 searched the GWAS catalog6 
(19 September 2017) for variants and genes that overlap between AD, ALS, and PD and 
found that no significant variants or genes overlapped between the three traits. They 
performed pathway enrichment analysis for the identified genes and found 1 gene-set, 
related to vesicle mediated transport, which was significant in all 3 traits. Despite only finding 
a single overlapping pathway between all three diseases, they did find 2 genes and 10 
pathways that overlapped between AD and PD. This suggests that AD and PD shared more 
genetic risk than ALS with either of AD or PD, but this may be partly due to the lower sample 
size of ALS GWAS available in September 2017 compared to AD or PD. Using GWAS 
summary statistics, Karch et al. (2018)7 also looked at ALS and a series of other 
neurodegenerative diseases and failed to find overlap of ALS8 risk variants (12,577 cases 
and 23,475 controls) with PD9 (5,333 cases and 12,019 controls) and AD10 (17,008 cases 
and 37,154 controls). Van Rheenen et al. (2021)11 (ALS: 27,205 cases and 110,881 
controls) found significant genetic correlations between ALS and AD12 (rg=0.31, SE=0.12, 
P=9.6x10−3) and ALS and PD13 (rg=0.16, SE=0.061, P=0.011). They also found evidence for 
shared loci (HLA and GAK/TMEM175) between ALS and PD and a shared locus between 
AD and ALS (TSPOAP1-AS1).  

 
Chia et al. (2021)14 performed a GWAS of Lewy body dementia (LBD) (2591 cases 

and 4027 controls), a wider category of dementia which includes DLB and PD with 
dementia, and found that polygenic risk models trained from AD12 and PD13 GWAS summary 
statistics were significantly associated with LBD status, suggesting shared genetic 
mechanisms. They also found loci associated with LBD at known AD (APOE and BIN1) and 
PD (GBA, TMEM175 and SNCA) loci. Guerreiro et al. (2016)15 found a significant genetic 
correlation between AD (959 cases and 1403 controls) and DLB (788 cases and 1403 
controls), and PD (804 cases and 1403 controls) and DLB, but not between AD and PD (AD-
DLB: rg=0.578, SE=0.075, P=1.1X10-12; PD-DLB: rg=0.362, SE=0.107, P=7.1x10-4; AD-PD, 
rg=0.08, SE=0.101, P=0.39). However, Stolp Andersen et al. (2022)16 found a significant 
local genetic correlation between AD17 (24,087 cases, 47,793 proxy-cases, and 383,378 
controls) and PD13 (37,688 cases, 18,618 proxy-cases, and 1,417,791 controls) at the HLA 
region. These previous studies suggest a degree of overlap between AD, ALS, LBD, and PD 
at the global or local level, with the exception of LBD and ALS where we were unable to find 
a study explicitly assessing overlap between these two traits.  
 
Table 1: The genetic overlap between Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Lewy body dementia 

(LBD)  (or dementia with Lewy bodies (DLB)), and Parkinson’s disease (PD) in previous studies
5,11,14–16

. 

Trait pairs Summary of previous findings 
AD-ALS Arneson et al. (2018) identified one shared pathway (vesicle mediated 

transport); Van Rheenen et al. (2021) found global genetic correlation of 
0.31 (0.12) and a one shared locus (TSPOAP1-AS1).  

AD-LBD/DLB Chia et al. (2021) identified the APOE and BIN1 loci as shared; 
Guerreiro et al. (2016) found a global genetic correlation of 0.578 
(0.075). 

AD-PD Arneson et al. (2018) identified 10 shared pathways, and 2 shared genes 
(HLA-DRB1 and MAPT); Guerreiro et al. (2016) found a global genetic 
correlation of 0.08 (0.101); Stolp Andersen et al. (2022) identified a 
significant local genetic correlation at the HLA locus. 

ALS-LBD/DLB NA 
ALS-PD Arneson et al. (2018) identified one shared pathway (vesicle mediated 

transport); Van Rheenen et al. (2021) found global genetic correlation of 
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0.16 (0.061) and two shared loci (HLA and GAK/TMEM175). 
LBD-PD Chia et al. (2021) identified the GBA, TMEM175, and SNCA loci as 

shared; Guerreiro et al. (2016) found a global genetic correlation of 
0.362 (0.107). 

 
In this study, we aim to quantify the degree of genetic overlap between 4 chosen 

neurodegenerative traits (AD, ALS, LBD, and PD). We chose to study AD, ALS, LBD, and 
PD because they have varying degrees of global genetic correlation, are characterised by 
different protein aggregates, and have been included in relatively large sample size GWAS. 
We assessed the degree of genetic overlap at the variant, gene, locus, gene-set, cell, and 
tissue level. We utilised summary statistics from Wightman et al. (2021)18 (AD: 39,918 cases 
and 358,140 controls), van Rheenen et al. (2021)11 (ALS: 27,205 cases and 110,881 
controls), Chia et al. (2021)14 (LBD: 2,591 cases and 4,027 controls), and Nalls et al. 
(2019)13 (PD: 15,056 cases, 12,637 controls, 18,618 proxy cases, and 436,419 proxy 
controls). All of the summary statistics were generated from individuals of European 
ancestry. We estimated a genomicSEM19 common factor model to identify the association of 
variants with a common factor derived from all four neurodegenerative traits. We then used 
the resulting variant associations with the common factor to investigate genes, loci, gene-
sets, cell types, and tissue types enriched in association signal.  We aimed to identify 
overlap between all four traits to highlight biological process and genetic risk factors 
important to neurodegeneration because common biological processes and genetic risk 
factors may be useful targets for drug development and repurposing. We also looked at the 
variant associations within each trait individually and compared the findings across the input 
traits to determine if the common factor model was able to help identify variants, loci, gene-
sets, cell types, and tissues types that were shared between one or more traits that were not 
observable by comparing the individual trait level results. We then investigated the local 
genetic correlation between the four traits at loci identified from the common factor using 
LAVA20. 

 

Results 
  
LDSC Analyses 

We first estimated the heritability on the liability scale for all four traits using LDSC 
regression21. The heritability estimates of the input datasets were relatively low: AD: 
h2liability=0.053 (SE=0.010); ALS: h2liability=0.016 (SE=0.0017); LBD: h2liability=0.10 (SE=0.044); 
PD: h2liability=0.034 (SE=0.0031) (Supplementary Table 1). These estimates were similar to 
the heritability estimates reported in the original studies (Supplementary Table 1), except 
PD where the original paper did not report the heritability estimate when including the proxy 
dataset. The heritability estimate reported in GWAS Atlas22 from the data derived from a 
preprint version of the original PD study, which did include the proxy dataset, was similar to 
the estimate we identified (h2liability=0.022). To explore the global genetic correlation between 
AD, ALS, LBD, and PD we performed pairwise LDSC regression genetic correlation analysis 
(Figure 1).  

 
The results indicated a high genetic correlation between AD and LBD (rg=0.93, 

SE=0.28, P=8.0x10-4), a moderate genetic correlation between AD and ALS (rg=0.39, 
SE=0.14, P=0.0036), LBD and ALS (rg=0.47, SE=0.19, P=0.011), and LBD and PD 
(rg=0.62, SE=0.17, P=2.0x10-4), a low genetic correlation between ALS and PD (rg=0.16, 
SE=0.063, P=0.011) and no nominally significant genetic correlation between AD and PD 
(rg=0.13, SE=0.092, P=0.15). All correlations, apart from between AD and PD, were 
nominally significant, but after Bonferroni correction for 6 tests, only the genetic correlations 
between AD and LBD, AD and ALS, and LBD and PD were significantly different from 0. The 
genetic correlation between AD and LBD was robust to the exclusion of the larger APOE 
region (GRCh37: 19-40000000-50000000) (rg=0.87, SE=0.21, P=2.34x10-5), all other 
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genetic correlations were also largely unaffected by the exclusion of the APOE region 
(Supplementary Table 1). 
 

 

Figure 1: LDSC regression genetic correlations between AD, ALS, LBD, and PD identifies a strong genetic correlation between 

AD and LBD, moderate correlations between AD and ALS, ALS and LBD, and PD and LBD, weak correlations between ALS 

and PD, and AD and PD. Significant correlations after Bonferroni correction for 6 genetic correlation tests are highlighted by 

an asterisk. The colour of each block represents the genetic correlation value (rg) and standard error estimates are included 

in brackets.  

GenomicSEM Common Factor Model 
 
Common Factor Model Results 
 To look for genetic variants important to AD, ALS, LBD, and PD, we fit a common 
factor model to all four traits using genomicSEM. Due to the low effective sample size of the 
LBD data (Neff=6,306.41), we specified in the model that LBD should load fully on the 
common factor (0 residual variance) to avoid a Heywood case where LBD would have 
negative residual variance. The model was also specified so that the variance of the 
common factor was 1. The resulting model fit the data relatively well (Chisq=8.94, df=3, 
P_chisq=0.03, CFI=0.92, SRMR=0.16) (Supplementary Table 2). The factor loadings 
(Figure 2) of each of the traits show that LBD, as specified, loads entirely onto the common 
factor (standardised estimate=1.20, standardised SE=0.16), with AD showing the second 
highest factor loading (standardised estimate=0.61, standardised SE=0.10), followed by ALS 
(standardised estimate=0.48, standardised SE=0.10), and PD (standardised estimate=0.35, 
standardised SE=0.07). We also tested a model where the LBD residual variance could 
have any value larger 0 and this did not change the model for the other traits and only 
slightly adjusted the LBD parameters. This model had a slightly worse fit (Chisq=8.94, df=3, 
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P_chisq=0.011, CFI=0.91, SRMR=0.16) so we chose to continue with the model where LBD 
was specified to have a residual variance of 0. 
 
 
 

 

Figure 2: The factor loadings of the 4 neurodegenerative traits on the common factor indicate the highest loading of LBD, 

then AD, ALS and PD. Residual variance is represented by circular arrows. Factor loadings are represented by straight 

arrows. Values are indicated next to the arrows and standard errors are contained in brackets. All factor loadings are 

significantly different from 0. 

We then used this common factor model to estimate the associations between the 
variants with the common factor. Only variants present in all 4 of the input GWAS were 
included. This resulted in association estimates for 5,951,489 genetic variants (Figure 3). 
The model was unable to obtain results from 690 variants due to computational limitations. 
The 690 failed variants were all in regions which were significant in at least one of the input 
traits (AD: CR1, MS4A6A, ABCA7, APOE; ALS: C9orf72, G2E3; LBD: APOE; PD: SNCA, 
NDUFAF2). In all of these regions, there were other variants which were significantly or 
suggestively associated with the common factor, so these regions were still highlighted even 
with the loss of these variants.  

 
We identified 2,676 variants significantly associated with the common factor (P<5x10-

8). The common factor association results had a genomic inflation factor of 1.14. When 
restricted to the same variants as the common factor, the association results in all 4 input 
traits had lower genomic inflation factors than the common factor association results (AD: 
1.09; ALS: 1.10; LBD: 1.004; PD: 1.08). The LDSC intercept for the common factor 
(assuming total sample size of 362,647.1) was 1.0041 (SE=0.013) and the ratio was 0.026 
(0.084), which suggests the majority of the inflation was due to polygenicity. There were 
more variants significantly associated with the common factor than with 3 of the input traits 
(AD: 1,591; ALS: 160; LBD: 83; PD: 2,733). There were 25 variants that were significantly 
associated with the common factor but not with any of the input traits; however, all of these 
variants were distributed across regions which already contained other significant variants in 
at least one input trait (TMEM175, HLA, TNIP1, and MAPT regions).  
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Figure 3: Manhattan plot of the variants included in the common factor model analysis identifies 2676 significant variants 

(P<5x10
-8

). 

Common Factor Loci 
We used FUMA (v1.3.8) to identify significant genomic loci from the common factor 

summary statistics and the summary statistics of the 4 input traits to identify genomic 
regions associated with AD, ALS, LBD, and PD. After merging loci less than 100Kb apart, 
there were 57 unique significant loci identified by FUMA across the common factor and the 4 
input traits (Supplementary Table 3). Of those 57 loci, 18 were significant in the common 
factor, 25 were significant in AD, 10 were significant in ALS, 7 were significant in LBD, and 
23 were significant in PD. All of the loci identified from the common factor were significant in 
1 or more input traits and all loci that were significant in two or more input traits were 
significant in the common factor. The common factor model did not identify any additional 
loci. This suggests that the common factor did not miss any loci that would have been 
identified from the separate 4 input traits but did not identify any additional loci not 
discoverable from the input traits. Seven loci were identified as significant in two or more of 
the input traits and all of these loci were significant in the common factor (Supplementary 
Table 4). The HLA locus was significantly associated with AD, ALS, PD, and the common 
factor. The BIN1 and APOE loci were significantly associated with AD, LBD, and the 
common factor. The GBA, SNCA, and TMEM175 loci were significantly associated with 
LBD, PD, and the common factor. The TNIP1 locus was significantly associated with AD, 
ALS, and the common factor (Figure 4). With the exception of the HLA locus, all the 
relationships between the input traits were pairwise.  

 
To determine the contribution of the input traits to the association of the lead variants 

identified from the common factor, we looked at the P-values of the common factor lead 
variants in the summary statistics of the input traits. The association signal distribution of the 
lead variants identified from the common factor reflects the factor loadings from the common 
factor model, with P-values of the common factor lead variants being lower in AD and LBD 
compared to ALS and PD (Supplementary Figure 1; Supplementary Table 5). We also 
explored whether there were three-way or four-way relationships at loci just below the 
significance threshold by repeating the FUMA loci definition as described above, except we 
allowed for loci to be defined around variants with suggestive P-values (P<1x10-5) 
(Supplementary Table 3; Supplementary Note). From this analysis, we still did not identify 
any loci common to all four input traits but did find that TMEM175 was suggestive in ALS as 
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well as significant in LBD, PD, and the common factor, and that SNCA was suggestive in AD 
as well as significant in LBD, PD, and the common factor (Supplementary Note; Figure 4). 
 
 

 

Figure 4: Venn diagrams showing the overlap between AD, ALS, LBD, and PD. A) The overlap of significant loci (P<5x10
-8

), 

defined by FUMA, across the 4 input traits. B) The overlap of suggestive loci (P<1x10
-5

), defined by FUMA, across the 4 input 

traits. C) The regions with significant local genetic correlation after Bonferroni correction for the number of genetic 

correlations performed in LAVA. 

Common Factor Gene Analysis 
 We performed MAGMA gene analysis implemented in FUMA to identify genes 
associated with the common factor and the 4 input traits. After Bonferroni correction for the 
number of genes tested within each trait, we identified 77 genes associated with the 
common factor, 73 associated with AD, 26 associated with ALS, 6 associated with LBD, and 
61 associated with PD (Supplementary Table 6). Seven of the genes significantly 
associated with the common factor were not significantly associated with any of the input 
traits. Four of these genes were present in loci identified as significant in one or more of the 
input traits; one gene (FGFRL1) was in the TMEM175 locus, two genes (HLA-DQB1 and 
C6orf10) were in the HLA region, 1 gene (PRR14) was on the edge of a locus identified as a 
significant locus in PD. Three genes (DOC2A, PPP4C, and ALDOA) were in a locus not 
identified as a significant locus by FUMA in any of the input traits or the common factor. 
However, the DOC2A region was significantly associated with AD in a previous GWAS23. In 
our study, there was some association signal with this gene (DOC2A) in AD and LBD 
(PCF=1.65x10-6, PAD=2.17x10-4, PALS=0.21, PLBD=2.52x10-4, PPD=0.10) suggesting that this 
gene may be present in a general dementia risk locus. There were similar association 
signals in the other two genes in this locus (Supplementary Table 6). 
 
Common Factor Gene-set Analysis 
 In order to investigate how the genetic variants associated with the common factor 
aggregate together at different levels, we used FUMA and MAGMA to perform gene-set 
analyses using gene-sets defined by tissue and cell gene expression, and genes known to 
contribute to biological processes. On the tissue level, 10 GTEx tissue gene-sets were 
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significantly associated with the common factor association signal after Bonferroni correction 
for 54 tested tissues (Figure 5; Supplementary Table 7). All 10 of these tissues were brain 
tissues and only 2 of these tissues were more significantly associated with an input dataset 
than the common factor (Brain Cerebellum in ALS, and Brain Cerebellar hemisphere in ALS 
and PD). The associations appear to be largely driven by ALS and PD genetics, with AD and 
LBD not even being nominally significant in any of these 10 tissues. Brain Putamen basal 
ganglia, brain hippocampus, brain anterior cingulate cortex BA24, and brain amygdala were 
significant in the common factor but not significant in any of the input traits. After 
conditioning on the top associated tissue (brain nucleus accumbens basal ganglia), none of 
the significantly associated tissues remained significant. This suggests that the common 
factor association signal was distributed in genes which are relevant to brain tissue in 
general rather than any specific tissue. All tissues that were significant in one of the input 
traits were significant in the common factor, except whole blood and spleen which were only 
significant in AD. These results suggest that genes differentially expressed in brain tissue 
were associated with the common factor largely due to the contribution of ALS and PD, and 
the association was with brain tissue as a whole rather than specific brain tissues.  
 

 

Figure 5: The significance values of GTEx detailed tissues that were identified as significant after Bonferroni correction for 

54 tissues shows that the brain tissue significance in the common factor was largely driven by ALS and PD. The dashed line 

represents the Bonferroni significance threshold (0.05/54=9.26x10
-4

). 

To highlight specific cell types relevant to neurodegenerative diseases, we performed 
FUMA celltype analysis to look for enrichment of common factor association signal in genes 
expressed in specific cell types. We tested all adult brain and blood tissues present in FUMA 
(v1.3.8) and identified microglia as the only cell type associated with the common factor after 
Bonferroni correction for 199 tested cell types (PsychENCODE: P=2.80x10-5). This cell type 
was significant in the AD analysis (PsychENCODE: P=2.17x10-6), but PD was the only other 
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input trait where this cell type had nominal significance (PsychENCODE: P=0.0082). The 
results suggests that the common factor captured the AD association with microglia rather 
than any shared evidence for microglia. The results from all cell type analyses are available 
in Supplementary Table 8. 
 
 We also performed MAGMA gene-set analysis using the 15,496 gene-sets from 
MSigDB v.7.0 which were included in FUMA (v1.3.8). Eleven gene-sets were significantly 
associated with the common factor after Bonferroni correction for the 15,483 gene-sets 
which contained at least one variant (Figure 6; Supplementary Table 9). All (four) of the 
gene-sets significantly associated with PD and 11 of the 19 gene-sets significantly 
associated with AD were not significantly associated with the common factor (Figure 6). 
Three gene-sets were only significantly associated with the common factor; however, two of 
these were borderline significantly associated with AD. After forward conditioning, four of the 
eleven gene-sets significantly associated with the common factor were identified as 
conditionally independent, three of which have been previously associated with AD in a 
study18 which contained all of the AD data included in this study. The remaining conditionally 
independent gene-set 
(go_immune_response_regulating_cell_surface_receptor_signaling_pathway) has not been 
previously associated with AD and was not significantly associated with AD in this study. 
This gene-set appears to be driven by AD and LBD, with not even nominal significance in 
ALS and PD (PCF=2.91x10-6, PAD=8.42x10-4, PALS=0.50, PLBD=0.0049, PPD=0.16). Of the 487 
genes that make up this gene-set (Supplementary Table 8), the AD input data had 16 
genes with a moderate P-value (P<1x10-5), where LBD only had one (PVRL2= 4.21x10-10), a 
gene located in the APOE region. The gene-sets associated with the common factor appear 
to be largely driven by AD genetics with only one gene-set suggesting any overlap. The one 
gene-set suggesting overlap had some association with AD and LBD and appears to be 
driven by the shared APOE locus. 
 

 

Figure 6: Biological process gene-set analysis results highlight the contribution of AD associated variants in the gene-sets 

associated with the common factor. The size of nodes represent gene-set size and edges represented similar pathways, 

using stringent pathway similarity scores (Jaccard and overlap combined coefficient = 0.6 as used in Paczkowska et al. 
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(2020)
46

).  The circles representing gene-sets associated with the common factor which were conditionally independent 

after forward conditioning are surrounded with bold outlines. 

 
LAVA analyses 
 We used LAVA, a tool for local genetic correlation analysis, to quantify local genetic 
correlations between the 4 input traits and test the relationships observed from the common 
factor analysis. We defined local regions using the suggestive loci (P<1x10-5) boundaries 
identified from the common factor by FUMA. We also included the 4 regions identified as 
suggestive in two input traits but not identified as suggestive in the common factor 
(Supplementary Note). This resulted in 47 loci, with 45 loci having enough variants for local 
genetic correlation testing. We only performed local genetic correlation tests between traits 
at loci where the traits had significant local genetic heritability estimates at the locus. First, 
we identified loci with significant univariate heritability after Bonferroni correction for 45 loci. 
We identified 74 heritability estimates significantly different from 0 across 40 loci across the 
4 traits (Supplementary Figure 2; Supplementary Table 10). We were then able to test 45 
local genetic correlations across 24 loci where at least two traits had significant local 
heritability estimates. We identified 6 local genetic correlations across 4 loci that were 
significantly different from 0 (Supplementary Figure 3; Supplementary Table 11) after 
Bonferroni correction for 45 tested local genetic correlations (P<0.011).  
 

 We identified significant positive genetic correlations between ALS and PD, and LBD 
and PD, at the TMEM175 locus (Figure 3). The local genetic correlation at this locus 
between ALS and LBD was also positive and nominally significant (ρ=0.62, P=0.0024). The 
AD data had a local heritability estimate significantly different from 0 at the TMEM175 locus, 
but did not have a significant genetic correlation with any other trait. We also identified 
significant positive genetic correlations between AD and ALS, and AD and PD, at the HLA 
locus. The local genetic correlation at this locus between ALS and PD was also positive and 
nominally significant (ρ=0.40, P=0.0026). LBD did not have a local heritability estimate 
significantly different from 0 at the HLA locus. We identified a significant positive genetic 
correlation between AD and LBD at the BIN1 locus, PD also had a local heritability estimate 
significantly different from 0 but did not have a significant genetic correlation with AD or LBD. 
We also identified a significant positive genetic correlation between AD and ALS at the 
TNIP1 locus, PD had a local heritability estimate significantly different from 0 but did not 
have a significant genetic correlation with AD or ALS. 

 
These analyses support the role of the TMEM175 region in ALS, LBD, and PD and 

the role of the HLA region in AD, ALS, and PD. However, no region had significant local 
genetic correlations between all 4 input traits at nominal significance, which suggests no 
region contributes to all 4 neurodegenerative diseases. Interestingly, the SNCA locus was 
identified as significant in LBD and PD and suggestive in AD, but in the LAVA analysis no 
significant local genetic correlations between any of these traits were identified for the SNCA 
region. Unexpectedly, only one nominally significant correlation was identified and this was a 
negative correlation between AD and PD (ρ=-0.35, P=0.027). This suggests the shared 
association of the SNCA locus may be through separate mechanisms or that the linkage 
disequilibrium structure of this region differed between the input traits. 
 

To further test the three-way relationships, we performed conditional analysis on the 
two regions with three-way relationships, conditioning on the third trait not included in the 
most significant local genetic correlation. The local genetic correlation between ALS and PD 
at the TMEM175 locus was no longer significant after conditioning on LBD (ALS~PD: 
ρ=0.77, P=2.18x10-7; ALS~PD+LBD: ρ=0.38, P=0.068). No other genetic correlations at the 
TMEM175 locus between two of these three traits were significant after conditioning on the 
third, suggesting that the genetic correlation between ALS, LBD, and PD at the TMEM175 
locus was shared (Supplementary Table 11). The genetic correlation between AD and ALS 
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at the HLA locus was not significant after conditioning on PD (AD~ALS: ρ=0.61, P=8.09x10-

5; AD~ALS+PD: ρ=0.26, P=0.0097).  No other genetic correlations at the HLA locus between 
two of these three traits were significant after conditioning on the third, suggesting that the 
genetic correlation between AD, ALS, and PD at the HLA locus was shared 
(Supplementary Table 11). In order to prioritise a specific gene in the TMEM175 locus, we 
performed local genetic correlation analysis between ALS and PD conditioned on eQTL data 
in that locus. However, no eQTL dataset could explain the genetic correlation between ALS 
and PD at the TMEM175 locus (Supplementary Note). 
 

Discussion 
 With the common factor model, we aimed to identify overlapping regions, genes, 
gene-sets, cell types, and tissues between the 4 neurodegenerative diseases which are 
supported by shared genetic variants. However, we were unable to identify any region, 
gene, gene-set, cell or tissue type that was shared between all 4 neurodegenerative traits. 
This suggests that any genetic risk factors shared by AD, ALS, LBD, and PD, if present, 
have small effects that our study was not powered to observe, are tagged by rare variants 
not included in our analysis of common variants, or aggregate in gene-sets, cell types, and 
tissue types not tested in our analyses. We further aimed to identify novel relationships 
between traits at these levels that could not be identified without performing the common 
factor analysis. We were able to identify four brain tissues that were associated with the 
common factor but not any of the input traits; however, after conditional analysis we 
discovered that the association was with brain tissue in general, so these findings cannot be 
interpreted as novel. We identified three gene-sets which were only associated with the 
common factor; however, after conditional analysis and investigation of the genes supporting 
the gene-set analysis results, we suggest that these results were largely driven by AD 
genetics and the shared APOE region between AD and LBD.  
 

We identified 4 loci which were suggestively associated with the common factor but 
not any of the input traits (Supplementary Note). These loci were investigated further using 
LAVA; three of these four loci did not have heritability estimates significantly different from 0 
in two or more input traits, and the other locus did not show a significant local genetic 
correlation between the two traits with significant local heritability. This suggests that these 
loci are not shared. We identified one region (DOC2A) which had four genes significantly 
associated with the common factor but was not implicated in any of the 4 input traits through 
significant (or suggestive) genes or variants. There was some (non-significant) association 
for these four genes with both AD and LBD, which suggests that this region may be a 
general dementia region. As a whole the common factor analysis was able to identify all of 
the genetic overlap between the 4 input traits that could be observed through simple 
comparisons but was not able to go beyond this to identify additional genetic overlap. 
 

Arneson et al. (2018)5 found no genes associated with AD, ALS, and PD; however, 
the  HLA locus was significantly associated with these traits in the datasets used in our 
analyses. The identification of the HLA region as a region of interest to ALS was first 
reported in the GWAS catalog in 2021 (van Rheenen et al. (2021)11), four years after the 
analysis (September 2017) of Arneson et al. (2018). We were able to identify the overlap at 
the HLA region between these three traits because the data from van Rheenen et al. 
(2021)11 was included in our study. Arneson et al. (2018)5 also identified fewer overlapping 
genes and gene-sets between ALS and the other two traits, than between AD and PD. We 
replicated that finding, with the MAPT, SNCA, and HLA regions being shared in AD and PD, 
but only the TNIP1 and HLA regions being shared in AD and ALS, and the TMEM175 and 
HLA regions being shared between ALS and PD. Arneson et al. (2018)5 highlighted vesicle 
mediated transport as a gene-set related to AD, ALS, and PD; however, none of the gene-
sets with titles containing ‘vesicle mediated transport’ had a significant association with any 
of the input traits or common factor in this analysis. We identified similar global genetic 
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correlation estimates between AD and ALS and PD and ALS as reported in van Rheenen et 
al. (2021)11. We were unable to replicate their finding of TSPOAP1-AS1 as a shared locus 
between AD and ALS but we were able to replicate their finding that the HLA and 
GAK/TMEM175 loci were shared between ALS and PD. The data used in van Rheenen et 
al. (2021) overlapped extensively with the data used in this analysis. On the global genetic 
correlation level, the results suggest that AD and ALS are more genetically correlated than 
AD and PD; however, this was not reflected as a higher number of shared associated loci.  

 
We were able to replicate the results in Guerreiro et al. (2016)15, where we also 

found a significant global genetic correlation between AD and DLB/LBD, DLB/LBD and PD, 
but not AD and PD. The genetic correlation estimates were larger in our study (AD~DLB: 
rg=0.93, SE=0.28; PD~DLB: rg=0.63, SE=0.17) compared to Guerreiro et al. (2016)15 
(AD~DLB: rg=0.58, SE=0.075; PD~DLB: rg=0.36, SE=0.11). The differences in these 
estimates may be due to larger standard errors in our study and the use of different 
phenotypes (Guerreiro et al. (2016) investigated DLB, a subtype of LBD). Interestingly, there 
were strong global genetic correlations between AD and LBD and PD and LBD, but not a 
global genetic correlation significantly different from 0 between AD and PD. Despite this lack 
of correlation on a global level, we were able to identify some local genetic correlations 
between AD and PD. We replicated the finding from Stolp Andersen et al. (2022)16, where 
we found a significant local genetic correlation between AD and PD at the HLA region. We 
were also able to replicate the overlap between LBD and AD at the APOE and BIN1 loci and 
the overlap between LBD and PD at the GBA, TMEM175, and SNCA loci identified in Chia 
et al. (2021)14. Overall, we were able to replicate previous positive findings and find 
additional overlap compared to previous studies, likely due to the increased sample size of 
the input datasets in our analyses. All of the previous studies mentioned in this section used 
datasets which were included in our analysis, so our findings cannot be considered an 
independent replication of previous findings. 
 
 Our study’s scope was to identify genetic overlap between all 4 input traits and was 
thus limited in the ability to find other relationships by the use of a common factor model. 
Further exploration of three- or two-way relationships would benefit from other model 
specifications in genomicSEM (e.g. 2 latent variables) or analysis with tools specifically 
designed for subset identification (ASSET24). Our ability to identify genetic overlap between 
the four traits was also limited by the relatively low heritability of the input traits (<0.1), the 
low genetic correlation between PD and AD and ALS, and by the relatively low sample size 
of the LBD dataset. As such, there is likely to be further genetic overlap between these traits 
than observed in this study and our study design may be useful when applied to future 
versions of these GWAS that have higher sample sizes. Similarly, we can only observe 
shared genetic overlap with the common factor when variants are present in all of the input 
GWAS, so some shared variants may be lost due to different GWAS study designs resulting 
in different sets of tested variants. Additionally, we lost 690 variants due to failed analyses of 
these variants; however, all of these variants were in loci that were significant or suggestive 
in the common factor analyses, so overlap at these loci was still examined in this study. It is 
possible that the genetic overlap between AD and LBD could be over-estimated due to 
phenotype misspecification in the original GWAS, as dementias can be difficult to 
differentially diagnose25. Using data from studies with more stringent case definitions would 
be beneficial to further investigate the relationship between LBD and AD, however, these 
studies are likely to have smaller sample size and would be less powered to identify 
overlapping loci. Despite these limitations, our study successfully quantified the global and 
local genetic overlap between four neurodegenerative diseases, AD, ALS, LBD, and PD, 
and highlighted two regions that overlapped between three of the diseases. 
 
 

Methods 
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Data Description 
 We used data from 4 studies to perform the common factor analyses and the LAVA 
analyses. The AD data was obtained from Wightman et al. (2021)18, this data consisted of 
summary statistics from an inverse-variance weighted meta-analysis of all of the cohorts in 
their analysis except the UK Biobank and 23andMe data (39,918 cases and 358,140 
controls). All individuals included in the meta-analysis were of European ancestry. The ALS 
data was obtained from van Rheenen et al. (2021)11 (27,205 cases and 110,881 controls) 
via the GWAS catalog (GCST90027164), we only used the results from the European 
ancestry meta-analysis. The LBD data was obtained from Chia et al. (2021)14 (2,591 cases 
and 4,027 controls) via the GWAS catalog (GCST90001390), the summary statistics were 
lifted over from GRCh38 to GRCh37 using the UCSC liftover tool26 to match the other data. 
The PD data was obtained from Nalls et al. (2019)13 (15,056 cases, 12,637 controls, 18,618 
proxy cases, and 436,419 proxy controls), this data did not include the Nalls et al. 2014, the 
23andMe post-Chang et al. 2017 or the Web-Based Study of Parkinson’s Disease (PDWBS) 
data. After downloading, all datasets were restricted to variants with MAF >0.01 and 
annotated with rsIDs. 
 
LDSC Analyses 

LDSC regression21 (https://github.com/bulik/ldsc) was used to estimate heritability 
and genetic correlation estimates using HapMap3 variants only. Precalculated LD scores for 
LDSC were derived from the 1KG European reference population 
(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2).  Population 
and sample prevalences were specified in the heritability and genetic correlation estimation 
analyses. The population prevalences for AD, LBD, and PD were the same as used in the 
original papers from where the data was obtained (0.05, 0.001, and 0.005 respectively). The 
prevalence of ALS was estimated as 0.0000625 by taking the median between the range 
estimated in Longinetti and Fang et al. (2019)27 (4.1-8.4 per 100�000). We used effective 
sample size (4*proportion of cases*(1-proportion of cases)*N) as the sample size in the 
munging step. Proxy cases and controls were considered the same as cases and controls 
when calculating the effective sample size for the PD data. The sample prevalences were 
set to 0.5 because effective sample size was used instead of sample size. The sample size 
specified (362647.1) to obtain the LDSC intercept for the common factor summary statistics 
was calculated by summing the effective sample sizes of the 4 input datasets. The 
heritability estimates of the input traits were compared to the estimates from the original 
studies, the PD heritability estimate was also compared to the GWAS Atlas estimate which 
was derived from a preprint version of the study, where the data included the proxy dataset 
(https://atlas.ctglab.nl/traitDB/4167).  
 
genomicSEM Common Factor Model 
 After the datasets had been restricted to common variants and annotated with rsIDs, 
we used genomicSEM19 (GitHub commit 66c1751) to munge the data. We used effective 
sample size as the sample size in the munging step. We then used genomicSEM to perform 
LD score regression on the munged data to estimate the genetic relationships between the 
traits. The population and sample prevalences were the same as described in the LDSC 
analysis. The LDSC results were then used for model estimation without variants. We 
specified a common factor model with LBD residual variance set to 0. The model was also 
specified so that the variance of the common factor was 1. We then prepped the summary 
statistics of the four input traits using the sumstats() function in genomicSEM. The resulting 
summary statistics of the four input traits were used to estimate the variant association with 
the common factor. 
 
Genomic Loci Definition 
 Genomic loci were defined at two levels, significant loci and suggestive loci, for all 4 
input traits and the results from the common factor analysis. The significant loci were defined 
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using default settings in FUMA (v1.3.8)28 whereas the suggestive loci were defined using 
default settings in FUMA except the maximum P-value of lead SNPs was set to 1x10-5. The 
loci were defined using LD information from the 1KG29 EUR data. Independent significant 
SNPs were defined as variants with a P-value less than the maximum P-value of lead SNPs 
and in low LD (r2<0.6). The locus boundaries were defined by these independent significant 
SNPs. Loci were defined in the common factor and the four input traits, any loci that 
overlapped or were within 100 Kb of each other across the traits and common factor were 
merged into a single locus and the boundaries were extended to the range of the merged 
locus. The loci were assigned genes to represent the locus based on previous 
GWAS11,13,14,18,23,30. 
 
Gene-set and Gene Analyses 
 Gene-set analyses were performed in FUMA (v1.3.8)28 using MAGMA (v1.08)31. All 
gene-set analyses were performed on the common factor analysis results and the summary 
statistics from the input traits. The tissue gene-set analysis tested 54 gene-sets for 
enrichment of association signal. The 54 gene-sets were defined by gene-expression levels 
from 54 GTEx tissues32. Significant associations were defined by a P-value lower than the 
Bonferroni correction threshold (0.05/54). The cell type gene-set analysis was performed in 
FUMA (v1.3.8)33 using single cell RNA sequencing data define gene-sets. We tested 199 
cell types across 12 datasets, selecting only datasets from adult human brain or blood cell 
types (PsychENCODE_Adult34, Allen_Human_LGN_level135, Allen_Human_LGN_level235, 
Allen_Human_MTG_level135, Allen_Human_MTG_level235, DroNc_Human_Hippocampus36,  
GSE104276_Human_Prefrontal_cortex_all_ages37, GSE67835_Human_Cortex38, 
GSE89232_Human_Blood39, Linnarsson_GSE101601_Human_Temporal_cortex40, 
Linnarsson_GSE76381_Human_Midbrain41, PBMC_10x_68k42).  Significant associations 
were defined by a P-value lower than the Bonferroni correction threshold (0.05/199). 

 
The MSigDB v.7.043 gene-set analysis tested 15,483 gene-sets for enrichment in 

association signal. Significant associations were defined by a P-value lower than the 
Bonferroni correction threshold (0.05/15483). Conditional gene-set analyses were performed 
by forward conditioning until no gene-sets were significant. Initially, the significant gene-sets 
were conditioned on the most significant gene-set, then the gene-sets were conditioned on 
the most significant gene-set from the initial analysis and the most significant gene-set from 
the first round of conditioning. This process was repeated, with further gene-sets added for 
each round of conditioning, until no gene-set was significant. The final set of gene-sets 
which were used for conditioning were the conditionally independent gene-sets. MAGMA 
gene analyses were also performed using FUMA (v1.3.8) with default settings. Significant 
associations were defined by a P-value lower than the Bonferroni correction threshold for the 
number of genes tested (CF=18248; AD=19065; ALS=18554; LBD=18657; PD=18912). All 
significant gene-sets were visualized as a graph in Cytoscape44 using EnrichmentMap45. The 
size of nodes represented gene-set size and edges represented similar pathways, using 
stringent pathway similarity scores (Jaccard and overlap combined coefficient = 0.6 as used 
in Paczkowska et al. (2020)46). 
 
LAVA Analyses 
 The LAVA20 analyses were performed to identify local genetic correlations between 
specific regions. The AD, ALS, LBD, and PD summary statistics, after restriction to common 
variants (MAF>0.01) and annotation with rsID, were used as input for the LAVA analyses. 
The LAVA (v0.0.7; GitHub commit 0dd05b6) analyses used a sample overlap estimate 
(genetic covariance intercept) from the LDSC analyses to adjust for potential sample overlap 
(Supplementary Table 12). As with the genomicSEM analyses, effective sample size was 
used instead of sample size. Local heritability estimates were calculated for all 4 of the input 
traits across the merged suggestive loci (loci suggestive in the common factor or suggestive 
in two or more input traits). The merged suggestive loci boundaries were defined previously 
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by FUMA (v1.3.8) (see Methods: Genomic Loci Definition). Local observed heritability 
estimates were converted to the liability scale using formula 23 from Lee et al. (2011)47 and 
the population prevalances from the genomicSEM analysis. Any regions with two or more 
traits with local heritability significantly different from 0 after Bonferroni correction for 45 loci 
(0.05/45) were tested for genetic correlation between the traits with significant heritability at 
that locus. Significant genetic correlations were defined by a P-value lower than the 
Bonferroni correction threshold for the number of genetic correlations tested (0.05/45).  
 
 Conditional analyses were performed using the run.pcor() function in LAVA (v0.07). 
For the conditional analyses, the pairwise significant genetic correlations at the loci with 3 
significantly correlated traits were conditioned on the remaining significantly genetically 
correlated trait. This was performed for all 3 possible conformations. To test whether the 
genetic correlation between ALS and PD at the TMEM175 locus could be explained by 
eQTL data, we performed genetic correlation analysis between the two traits at this locus 
conditioned on eQTL data. In order to find suitable eQTL data, we downloaded 19 brain or 
neuron datasets from the eQTL catalogue48. We included the following datasets: 
Braineac2_ge_putamen49, Braineac2_ge_substantia_nigra49, BrainSeq_ge_brain50, 
CommonMind_ge_DLPFC_naive51, GTEx_ge_brain_amygdala32, 
GTEx_ge_brain_anterior_cingulate_cortex32, GTEx_ge_brain_caudate32, 
GTEx_ge_brain_cerebellar_hemisphere32, GTEx_ge_brain_cerebellum32, 
GTEx_ge_brain_cortex32, GTEx_ge_brain_frontal_cortex32, GTEx_ge_brain_hippocampus32, 
GTEx_ge_brain_hypothalamus32, GTEx_ge_brain_nucleus_accumbens32, 
GTEx_ge_brain_putamen32, GTEx_ge_brain_spinal_cord32, 
GTEx_ge_brain_substantia_nigra32, ROSMAP_ge_brain_naive52, 
Schwartzentruber_2018_ge_sensory_neuron53. We trimmed the data to the TMEM175 
region (GRCh38: chr4:822968-1036991) then lifted over the data to GRCh37, and annotated 
it with rsIDs. We split the data so that each dataset contained eQTLs for a single gene and 
then identified eQTL-gene pairs with significant local heritability after Bonferroni correction 
for 978 eQTL-gene pairs (0.05/978). We then estimated the local genetic correlation 
between the significant eQTL-gene pairs with ALS, LBD, and PD, assuming no sample 
overlap between the eQTL data and the input traits. After Bonferroni correction for 246 
genetic correlation tests, there was a single eQTL-gene pair that was significantly correlated 
with 2 of the traits (ALS and PD). We then conditioned the local genetic correlation between 
ALS and PD on the significant eQTL-gene pair to test whether the eQTL-gene pair dataset 
could explain the association between ALS and PD at the TMEM175 locus. 
 
Data Availability 
The summary statistics from the common factor model analysis and AD summary statistics 
will be made available at https://ctg.cncr.nl/software/summary_statistics after publication. 
The summary statistics for the ALS11, LBD14, and PD13 can be obtained from their original 
publications. 
 
Code Availability 
The code used in these analyses will be made available at 
https://github.com/dwightman/Neurodegeneration after publication. 
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