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Abstract  

 

OBJECTIVE: Contouring Collaborative for Consensus in Radiation Oncology (C3RO) is a 

crowdsourced challenge engaging radiation oncologists across various expertise levels in 

segmentation. A challenge in artificial intelligence (AI) development is the paucity of multi-expert 

datasets; consequently, we sought to characterize whether aggregate segmentations generated 

from multiple non-experts could meet or exceed recognized expert agreement. 

 

MATERIALS AND METHODS: Participants who contoured ≥1 region of interest (ROI) for the 

breast, sarcoma, head and neck (H&N), gynecologic (GYN), or gastrointestinal (GI) challenge 

were identified as a non-expert or recognized expert. Cohort-specific ROIs were combined into 

single simultaneous truth and performance level estimation (STAPLE) consensus 

segmentations. STAPLEnon-expert ROIs were evaluated against STAPLEexpert contours using Dice 

Similarity Coefficient (DSC). The expert interobserver DSC (IODSCexpert) was calculated as an 

acceptability threshold between STAPLEnon-expert and STAPLEexpert. To determine the number of 

non-experts required to match the IODSCexpert for each ROI, a single consensus contour was 

generated using variable numbers of non-experts and then compared to the IODSCexpert.  

 

RESULTS: For all cases, the DSC for STAPLEnon-expert versus STAPLEexpert were higher than 

comparator expert IODSCexpert for most ROIs. The minimum number of non-expert 

segmentations needed for a consensus ROI to achieve IODSCexpert acceptability criteria ranged 

between 2-4 for breast, 3-5 for sarcoma, 3-5 for H&N, 3-5 for GYN ROIs, and 3 for GI ROIs.  

 

DISCUSSION AND CONCLUSION: Multiple non-expert-generated consensus ROIs met or 

exceeded expert-derived acceptability thresholds. 5 non-experts could potentially generate 

consensus segmentations for most ROIs with performance approximating experts, suggesting 

non-expert segmentations as feasible cost-effective AI inputs.  
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Background and Significance 

Contouring, also referred to as delineation or segmentation, of regions of interest (ROIs) on 

medical imaging is a crucial aspect of radiation treatment planning, and has been reported as 

the largest single source of system uncertainty in radiotherapy [1], especially in the sense that, 

intrinsically, there is often no “ground truth” for absolute determination of patient-specific 

segmentation accuracy [2]. Manual definition and annotation of target volumes and organs-at-

risk (OARs) is subject to considerable interobserver variability, even among experts [3,4], 

leading to inconsistent contour quality [5,6], which have been correlated with disease control 

decrement and increased toxicity [7–9]. Efforts to reduce manual segmentation variation have 

included consensus guidelines [10,11], which generally include a benchmark “gold standard” 

contour curated by one expert for clinical use or through a single simultaneous truth and 

performance level estimation (STAPLE)-consensus derived by an interdisciplinary expert panel 

[2]. Several studies have demonstrated that the use of contouring atlases can reduce variation 

in contouring[12–16], but use is limited in routine practice. More recently, Zhang et al. have 

shown the addition of a radiation anatomist could also reduce contour variation [17], but these 

efforts are still exploratory.   

  

Auto-segmentation, broadly defined as the automated generation of contours on a digital image 

by a computer algorithm, has emerged as an avenue to decrease contour variability and thereby 

improve standardization. While automated contouring methods evolve, a significant challenge in 

the development of auto-segmentation algorithms is the relative paucity of curated multi-expert 

observer datasets sufficiently large to train machine learning models, e.g., deep learning 

approaches [18]. This is particularly true for disease sites such as the head and neck (H&N), 

which have demonstrated high interobserver segmentation variability [19,20]. 

  

As such, our team developed the Contouring Collaborative for Consensus in Radiation 

Oncology (C3RO), the first public crowdsourced challenge to engage radiation oncologists 

across various expertise levels in cloud-based image-segmentation in multiple disease sites. 

We sought to: 1) characterize the variability in radiation oncology segmentation performance 

across multiple levels of expertise compared to aggregated expert performance as “gold 

standard”, 2) determine whether aggregate or “composite” segmentations generated from non-

experts could meet or exceed individual expert performance acceptability, and 3) examine the 

performance dynamics of consensus segmentation generation using a variable number of non-

experts required to generate acceptable segmentation priors. An overview of our study is shown 

in Figure 1.  
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Figure 1. Study workflow overview. Radiotherapy planning cases across a variety of disease 

sites were used to crowdsource non-expert and expert region of interest (ROI) contours. These 

contours were then investigated to determine interobserver variability and used in consensus 

segmentation experiments. Abbreviations: H&N = head and neck, GYN = gynecology, GI = 

gastrointestinal, STAPLE = simultaneous truth and performance level estimation algorithm.  

 

 

Methods 

Study Design: 

C3RO, initially launched in August 2021, is an online crowdsourced challenge inviting radiation 

oncologists around the world to contour a new case every two months. At the end of each case, 

participants who have completed at least one contour are eligible to win a gift card and have 

access to: (1) the contours of recognized disease site experts for the case and (2) a live video 

podcast hosted by two to three select experts, reviewing common contouring errors and their 

decision-making rationale. A week after the live podcast, the recording of the expert discussion 

is posted on YouTube for public access (current address: 

https://www.youtube.com/channel/UC43Mxi5uRARSXEmSdfm6wqw, permanent archived 

address: 

https://web.archive.org/web/20220906231217/https://www.youtube.com/channel/UC43Mxi5uRA

RSXEmSdfm6wqw). 

 

Participant Recruitment: 

Participants were recruited through Twitter, word of mouth, the annual symposium at the 

Radiation Oncology Education Collaborative Study Group (ROECSG), and via eContour’s 

userbase. eContour is an interactive web-based platform our team developed to collect and 

disseminate consensus guidelines; it is now used by over 33,000 radiation oncologists from 128 

countries, 12,650 of whom have been identified as practicing radiation oncologists (attending or 

resident) [21]. Participants were categorized as recognized experts or non-experts. Recognized 

experts were identified by our C3RO team (EFG, CDF, DL) based on participation in the 

development of national guidelines or other extensive scholarly activities and recognized 

expertise within the specific disease site.  
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Data Collection: 

To register for the challenge, participants completed a baseline questionnaire that included their 

name, email address, affiliated institution, country, specialization, years in practice, number of 

disease sites treated, volume of patients treated per month for the designated tumor site, how 

they learned about this challenge, and reasons for participation (see Appendix A). Once the 

participant registered, they were granted access to the C3RO workspace on ProKnow (Elekta 

AB, Stockholm, Sweden), a cloud-based contouring platform that stores and manages the data. 

Completion of the baseline questionnaire served as informed consent, and the study was 

approved as exempt by the institutional review board at Memorial Sloan Kettering (IRB#: X19-

040 A(1); approval date: May 26, 2021). 

 

Imaging Data:  

Five cases are utilized from the C3RO challenge: breast, sarcoma, H&N, gynecology (GYN), 

and gastrointestinal (GI). Each case contains 1 computed tomography image of a representative 

patient in Digital Imaging and Communications in Medicine (DICOM) format. Anonymized data 

for all cases were received from study collaborators. Imaging details of the cases are shown in 

Appendix B. Participants (experts and non-experts) were instructed to contour a set of 

representative ROIs for each case. A table of ROIs used for each case is shown in Table 1; ROI 

naming conformed to the American Association of Physicists in Medicine Task Group 263 

standard [22]. Each participant generated one radiotherapy structure (RT-STRUCT) file for each 

ROI structure set.  

 

Table 1. Regions of interest (ROI)s and definitions used for each case. Abbreviations: H&N = 

head and neck, GYN = gynecology, OARs = organs-at-risk. 

Case Type of ROI ROI Definition(s) 

 
 
 
 
 
 

Breast 

 
 
 
 

Target Volumes 

BrachialPlex_L Brachial plexus left 

CTV_Ax Clinical target volume of axillary region 

CTV_Chestwall Clinical target volume of chest wall 

CTV_IMN Clinical target volume of internal mammary nodes 

CTV_Sclav_LN Clinical target volume of supraclavicular lymph nodes 

 
OARs 

Heart Heart 

A_LAD_L Left anterior descending artery 

 
 

 
Target Volumes 

GTV Gross tumor volume 
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Sarcoma CTV Clinical tumor volume 

OARs Genitals Genitalia 

 
 
 
 
 
 
 
 
 

H&N 

 
 
 
 

Target Volumes 

GTVp Gross tumor volume primary - right tonsillar fossa 

 
GTVn 

Gross tumor volume of nodes - nodal spread to level II/III on 
ipsilateral side (with sternocleidomastoid muscle invaded) and no 
contralateral nodal involvement 

CTV1 Clinical target volume (high-risk) 

CTV2 Clinical target volume (low to intermediate risk) 

 
 
 
 
 

OARs 

Brainstem Brainstem 

Glnd_Submand_L Submandibular gland left 

Glnd_Submand_R Submandibular gland right 

Larynx Larynx 

Musc_Constrict All pharyngeal constrictor muscles (superior, middle, and inferior) 

Partoid_L Parotid left  

Parotid_R Parotid right  

 
 
 

GYN 

 
 
 

Target Volumes 

GTVn Gross tumor volume of the involved right common iliac lymph node 

CTVn_4500 Clinical target volume for the elective nodal volumes at risk that will 
receive 45 Gy 

CTVp_4500 Clinical target volume primary will receive 45 Gy. This is the 
combination of “CTV1” and “CTV2” used in many RTOG protocols 

OARs Bowel_Small Small bowel 

 
 

GI 

 
Target Volumes 

CTV_4500 Clinical target volume that will receive 45 Gy 

CTV_5400 Clinical target volume that will receive 54 Gy 

OARs Bag_Bowel Small and large bowel 
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Data Processing: 

Images and segmentation masks were analyzed in Python v. 3.9.0. All DICOM images and 

DICOM RT-STRUCT files were converted to Neuroimaging Informatics Technology Initiative 

format using the DICOMRTTool v. 3.2.0 Python package [23].  

 

Consensus Methods:  

The simultaneous truth and performance level estimation (STAPLE) algorithm [2], a well-

validated and widely implemented consensus segmentation method based on weighted 

probabilistic estimation, was utilized to generate consensus multi-observer ROIs for this 

analysis. We utilized the SimpleITK [24] STAPLE implementation with a threshold value of 0.95. 

An example of a consensus segmentation generated from a set of expert segmentations in 

Figure 2.  

 

 
Figure 2. Expert segmentations of the left parotid gland in the head and neck case (left) and 

corresponding simultaneous truth and performance level estimation (STAPLE) consensus 

segmentation (right).  

 

Similarity Metric Computations:  

To compare ROI segmentation quality, we implemented various metrics of geometric similarity. 

For our analysis, we focused on the Dice similarity coefficient (DSC), a well-established volume-

based metric for segmentation studies, and the surface DSC (SDSC), a newer surface distance 

metric that has been shown to be germane to potentially improving radiation oncology 

workflows, particularly for time savings [25,26]. Metrics were calculated using the surface-

distances Python package [27] and in-house Python code. SDSC was calculated based on ROI-

specific thresholds determined by measuring the median pairwise mean surface distance of all 

expert segmentations for that ROI as suggested in literature [27]; tolerance values, required 

parameters for SDSC calculation, used for each ROI are shown in Appendix C. Additional 

segmentation similarity metrics, including the 95% Hausdorff distance and added path length 

were also investigated in supplementary analyses (Appendix D). Pairwise metric calculations 

within a group (non-expert, expert) were used to determine interobserver metric values for DSC 

and SDSC. The median interobserver value for experts was considered as a theoretical 
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threshold of clinical acceptability. Metric values were also computed between the expert 

STAPLE segmentations and the non-expert STAPLE segmentations. ROI volumetric 

comparisons between non-experts and experts were also investigated in Appendix E. 

 

Non-Expert STAPLE bootstrap experiments:  

To determine the number of non-experts required to cross the mean interobserver metric value, 

we performed a bootstrap resampling experiment where random subsets of non-experts were 

selected with replacement to generate a STAPLE consensus segmentation and compared 

against the expert STAPLE segmentation. Experiments were conducted for 2, 3, 4, 5, 6, 7, 8, 9, 

10, 15, 20, and 25 non-expert subsets. 100 bootstrap iterations were conducted for each ROI to 

construct 95% confidence intervals. Bootstrap iterations took between 10-12 hours for each ROI 

on a standard central processing unit (Intel® Core™ i7-8700 Processor). Bootstrap results were 

displayed as line plots.  

 

Statistical Analysis: 

Pairwise metrics were compared between non-experts and experts using Mann Whitney U tests 

using the Python statannotations package; Mann Whitney U tests were selected due to the non-

normal distribution of data and imbalance of sample sizes between experts and non-experts 

[28]. 

 

Code and Data Sharing: 

All analysis code is available online in the form of Jupyter Notebooks through GitHub 

repositories: https://github.com/kwahid/C3RO_analysis (private until manuscript acceptance). 

Anonymised data used in our analysis are made publicly available on Figshare, doi: 

10.6084/m9.figshare.21074182 (private until manuscript acceptance). 

 

Results 

As of August 2022, C3RO had 1,026 unique registrants, 221 of whom contoured at least one 

case. Among the participants who contoured, 127 (57%) identify as male and 93 (42%) identify 

as female. Participant race and ethnic backgrounds are as follows: 96 (43%) White; 80 (36%) 

Asian or Pacific Islander; and 22 (10%) Hispanic, Latino, or Spanish origin; 7 (3%) Black. Only 

52 (24%) of participants are from the United States, while 169 (76%) of the participants are 

international. Most, 169 (76%), participants are practicing radiation oncologists, while 40 (18%) 

are resident physicians, 7 (3%) are radiation therapists, and 1 (<1%) is a medical physicist. The 

median (IQR) years of experience is 5 (3, 10) for attending physicians after residency and is 3 

(2, 4) for resident physician year in residency. Most, 146 (66%), participants work in an 

academic setting or are affiliated with a University, 50 (23%) work in a non-academic hospital, 

and 21 (10%) are part of private practice. Participant characteristics can be found in Table 2.  

 

Table 2. Participant Characteristics. 
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* indicates that participants could select multiple options 

 

Interobserver variability:  

Interobserver variability of non-experts and experts based on pairwise segmentation 

comparisons are shown in Figure 3. For the breast case, the interobserver DSC of 3/7 ROIs 

(CTV_Ax, CTV_IMN, and CTV_Sclav_LN) and interobserver SDSC of 2/7 ROIs (CTV_Ax and 

CTV_IMN) were significantly higher for experts vs. non-experts. For the sarcoma case, the 

interobserver DSC and SDSC of 1/3 ROIs (GTV) was significantly higher for experts vs. non-

experts. For the H&N case, the interobserver DSC and SDSC of 10/11 ROIs (GTVp, GTVn, 

CTV1, CTV2, Brainstem, Glnd_Submand_L, Glnd_Submand_R, Musc_Constrict, parotid_l, 

parotid_r) were significantly higher for experts vs. non-experts. For the GYN case, the 

interobserver DSC and SDSC of 2/4 ROIs (CTVn_4500, Bowel_Small) were significantly higher 

for experts vs. non-experts. For the GI case, the interobserver DSC of 2/3 ROIs (CTV_4500, 

CTV_5400) was significantly higher for experts vs. non-experts. The remaining ROIs for all 

cases were non-significantly different between experts and non-experts. Volumetric 

comparisons for ROIs between non-experts and experts are shown in Appendix E; only 3 ROIs 

were significantly different between non-experts and experts, namely, the breast case 

CTV_IMN, the sarcoma case GTV, and the H&N case Parotid_L.  
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Figure 3. Interobserver variability based on pairwise segmentation comparisons for radiation 

oncologists of varying expertise (non-expert, expert). Breast, sarcoma, H&N, GYN, and GI 

cases are shown in the 1st, 2nd, 3rd, 4th, and 5th rows, respectively. DSC and surface DSC 

metrics shown in left and right panels, respectively. Stars above plot indicate Mann Whitney U 

test level of significance: ns: p > 0.05; *: 0.01 < p <= 0.05;  **: 0.001 < p <= 0.01; ***: 0.0001 < p 

<= 0.001; ****: p <= 0.0001. Abbreviations: H&N = head and neck, GYN = gynecology, _l = left, 

_r = right, gtv = gross tumor volume, ctv = clinical target volume.  
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STAPLE comparisons:  

Comparisons of consensus segmentations for all non-expert segmentations vs. consensus 

segmentations for all expert segmentations are shown in Figure 4. For the breast case, non-

expert consensus segmentations for all 7 ROIs crossed the expert interobserver values for both 

DSC and SDSC. For the sarcoma case, non-expert consensus segmentations for 2 out of 3 

ROIs (GTV, CTV) crossed the expert interobserver values for both DSC and SDSC. For the 

H&N case, non-expert consensus segmentations for 9 out of 11 ROIs (GTVp, GTVn, CTV2, 

Glnd_Submand_L, Glnd_Submand_R, Larynx, Musc_Constrict, parotid_l, parotid_r) crossed the 

expert interobserver DSC, while 7 out of 11 ROIs (GTVn, CTV2, Glnd_Submand_L, Larynx, 

Musc_Constrict, parotid_l, parotid_r) crossed the expert interobserver SDSC. For the GYN 

case, non-expert consensus segmentations for all 4 ROIs crossed the expert interobserver 

values for both DSC and SDSC. For the GI case, non-expert consensus segmentations for 2 out 

of 3 ROIs (CTV_4500, Bag_Bowel) crossed the interobserver DSC, while 2 out of 3 ROIs 

(CTV_4500, CTV_5400) crossed the expert interobserver SDSC.  
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Figure 4. Dice similarity coefficient (DSC) and surface DSC (SDSC) values comparing non-

expert STAPLE using maximum number of available cases to expert STAPLE. Breast, sarcoma, 

H&N, GYN, and GI cases are shown in the 1st, 2nd, 3rd, 4th, and 5th rows, respectively. DSC 

and SDSC metrics shown in left and right panels, respectively. Black dotted lines indicate 
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median expert interobserver value for that metric. Abbreviations: H&N = head and neck, GYN = 

gynecology, _l = left, _r = right, gtv = gross tumor volume, ctv = clinical target volume.  

 

 

STAPLE visual comparisons:  

We visually investigated 1 ROI in the H&N case which exhibited outlier behavior, namely CTV1. 

For both DSC and SDSC, the non-expert STAPLE of CTV1 was unable to cross the 

corresponding expert interobserver values. As shown in Figure 5, the expert STAPLE generally 

led to a more conservative estimate of the ROI, compared to the non-expert STAPLE which 

covered a greater area. For completeness, we also show CTV2 for both experts and non-

experts, which also showed more conservative estimates for experts vs. non-experts.  

 

 
Figure 5. Expert STAPLE (green) and non-expert STAPLE (red) for CTV1 (left) and CTV2 

(right) for head and neck case.  

 

 

Non-expert STAPLE bootstrap Experiments:  

Non-expert STAPLE bootstrap experiments for the breast, sarcoma, H&N, GYN, and GI cases 

are shown in Figure 6. For the breast case, expert interobserver DSC was crossed between a 

minimum 2-4 observers across the various ROIs; the smallest minimum number of observers 

(2) was achieved for BrachialPlex_L and Heart, while the largest minimum number of observers 

(4) was achieved for CTV_Ax and CTV_IMN. For the sarcoma case, expert interobserver DSC 

was crossed between a minimum 3-5 observers across the various ROIs; the smallest minimum 

number of observers (3) was achieved for genitals, while the largest minimum number of 

observers (5) was achieved for CTV. For the H&N case, expert interobserver DSC was crossed 

between a minimum 3-5 observers across the various ROIs; the smallest minimum number of 
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observers (3) was achieved for GTVn, Brainstem, Glnd_Submand_L, Glnd_Submand_R, and 

Larynx, while the largest minimum number of observers (5) was achieved for musc_constric_all 

and parotid_l. For the GYN case, expert interobserver DSC was crossed between a minimum 3-

5 observers across the various ROIs; the smallest minimum number of observers (3) was 

achieved for GTVn, while the largest minimum number of observers (5) was achieved for 

CTVn_4500. For the GI case, expert interobserver DSC was crossed using a minimum 3 

observers for all ROIs. Heatmap representations of bootstrap experiments can be found in 

Appendix D, Figure D18. Of note, the following ROIs showed non-saturating performance with 

an increasing number of non-experts used in the consensus segmentation: breast 

(BrachialPlex_L: highest non-expert DSC = 0.63, non-expert DSC using all observers = 0.42), 

sarcoma (genitals: highest non-expert DSC = 0.83, non-expert DSC using all observers = 0.60), 

H&N (GTVp: highest non-expert DSC = 0.87, non-expert DSC using all observers = 0.80; CTV1: 

highest non-expert DSC = 0.86, non-expert DSC using all observers = 0.64), GYN (GTVn: 

highest non-expert DSC = 0.90, non-expert DSC using all observers = 0.88), GI (CTV_5400: 

highest non-expert DSC = 0.78, non-expert DSC using all observers = 0.58; Bag_Bowel: 

highest non-expert DSC = 0.85, non-expert DSC using all observers = 0.74). Bootstrap 

experiments for additional metrics in line plot format can be found in Appendix D.  
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Figure 6. Consensus segmentation bootstrap experiments. Pink, red, blue, purple, and green 

plots correspond to breast, sarcoma, head and neck, gynecologic, and gastrointestinal regions 

of interest, respectively. Black dotted lines indicate median expert interobserver dice similarity 

coefficient (DSC) for a corresponding region of interest. Gray dotted lines indicate DSC 

performance using the maximum number of non-experts in the consensus segmentation.  
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Discussion 

 

In this study, we have systematically investigated the difference between non-experts and 

experts in contouring ROIs for several disease sites using various evaluation metrics. We have 

probed the inherent interobserver variability within non-experts and experts and determined 

several ROIs have better agreement when contoured by experts. Consensus segmentation 

experiments reveal that most consensus expert ROI contours can be roughly approximated 

using non-expert segmentations, which cross expert interobserver group variability performance 

thresholds. Our results provide justification towards using large-scale non-expert contours for 

“gold-standard” segmentation data in the absence of multiple expert “ground-truth” data 

availability, and glean insight into the behavior of consensus contours across a large number of 

observer inputs. While crowdsourcing is common in medical image analysis [29], there have 

been few studies evaluating the use of crowdsourcing for contour quality. To our knowledge, 

this is the largest study characterizing segmentation performance across multiple physician 

observers, and the first study to investigate crowdsourced contour performance in the context of 

radiation oncology workflows. 

 

Our interobserver variability experiments demonstrate that several ROIs across the various 

cases have higher interobserver agreement for experts compared to those of non-experts for 

both volumetric and surface distance metrics. Generally, the interobserver variability did not 

vary significantly among the OAR structures for most cases. Key outliers to these trends were 

the majority of H&N case OAR ROIs and the Bowel_Small ROI of the GYN case. Analogously, 

target volumes tended to be among the ROIs that were significantly different between non-

expert and expert interobserver variability. It is well known that tumor-related tissues are 

inherently more heterogeneous than healthy tissues. As such, our results may be explained by 

the potential higher subjectivity of target volume contours compared to those of OARs. A 

previous study by Cardenas et al. investigating large-scale multi-observer segmentation in H&N 

cancer using magnetic resonance imaging supports our results, whereby target volumes 

demonstrated particularly low agreement between observers compared to OARs [30]. 

Nonetheless, it warrants highlighting that certain cases exhibited a greater predilection for 

improved contour consistency in experts compared to those of non-experts. This is most 

apparent in the H&N case, where the vast majority of ROIs (10/11) showed higher agreement 

for experts compared to those of non-experts. These findings are congruent with previous 

literature indicating that H&N is a particularly challenging disease site for physician-based 

contouring [9,19,31].  

 

Our initial investigations comparing STAPLE consensus segmentations using all non-expert 

observers against the STAPLE consensus segmentation using all expert observers revealed 

that non-expert STAPLE contours could cross expert interobserver variability for most ROIs; 

generally, there was strong agreement between results for volumetric and surface distance 

metrics. However, a few key outliers were unable to cross interobserver variability, namely, the 

genitals ROI (DSC and SDSC) for the sarcoma case, the GTVp (SDSC only), CTV1 (DSC and 

SDSC), Brainstem (SDSC only), and Glnd_Submand_L (SDSC only) ROIs for the H&N case, 

and the CTV_5400 (DSC only) and Bag_Bowel (SDSC only) ROIs for the GI case. Interestingly, 
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unlike the interobserver variability analysis, where target volumes tended to have greater 

variability among non-experts, this trend did not necessarily translate when considering 

consensus segmentations of all the non-expert observers. Importantly, one particular ROI that 

had a large degree of difference between non-expert and expert STAPLE consensus contours 

was CTV1 of the H&N case. Upon visual investigation, the difference between non-expert and 

expert STAPLE segmentations was likely due to considerable non-expert uncertainty stemming 

from the inclusion of two individual subregions (GTVn and GTVp) in addition to areas of 

microscopic tumor spread, thereby leading to a larger consensus segmentation for the non-

experts. These differences became less apparent when asking non-experts to contour CTV2, as 

the incorporation of non-ambiguous tissue (lymph node levels) seemingly increased the 

conformity between observers. It is worthy to note that in Cardenas et al. individual differences 

between GTV and CTV ROIs were minimal and are likely attributed to separate CTVs generated 

for primary and nodal tumors [30], as opposed to our study where a single CTV was generated 

combining both primary and nodal volumes.  

 

Having confirmed that non-expert consensus segmentations could approximate expert 

consensus segmentations to a reasonable degree by crossing expert interobserver variability 

cutoffs, we sought to determine how the dynamics of segmentation performance were affected 

by the number of non-experts used in the STAPLE algorithm. For most ROIs, there was a 

general trend that on the order of 2-5 non-experts were needed to cross expert interobserver 

variability. Our results are congruent with previous literature on crowdsourcing labels for 

pathological patterns in lung imaging, where a limited number of observers could be combined 

through consensus methods to match reference repeatability [32]. Consistent with trends 

observed in our interobserver variability experiments, the ROIs that required the greatest 

number of non-experts to cross expert interobserver variability cutoffs were often target 

volumes, while the ROIs that required the least number of non-experts were OARs. The majority 

of ROIs exhibited a maximum DSC value, i.e., performance saturation, at a certain optimal 

number of non-experts used in the STAPLE algorithm, which then plateaued and maintained 

this high performance up to the maximum number of observers used. However, a small number 

of ROIs exhibited non-saturating performance effects, where after maximum performance was 

achieved the addition of a greater number of observers in the STAPLE algorithm decreased 

performance, often precipitously. As before, these tended to be target volumes where a large 

degree of heterogeneity between the non-experts was expected, but also included a few OARs 

that would be considered particularly challenging because of heterogeneity in visual 

interpretation, e.g., brachial plexus (breast case) and genitals (sarcoma case).  

 

In the medical image segmentation space, several studies have been conducted on the use of 

“noisy” labels for model training, with mixed results. Within radiation oncology, one study in 

particular has shown that for at least OAR contours, deep learning may be robust to noisy 

segmentations [33]. A similar study investigating cardiac segmentation on ultrasound found that 

the training of deep learning models with novice data was not significantly different from deep 

learning models trained with expert data [34]. Additionally, the authors show average DSC for 

expert-expert and novice-expert segmentations show that no statistical difference is found 

between the variability of annotators in several of the annotations of interest, results which are 
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echoed in a recent study investigating crowdsourcing for liver tumor segmentation where the 

quality of annotations was not statistically significantly different four distinct groups [35]. 

Contrary to the previous studies, Wesemeyer et al. demonstrate a tradeoff between quality and 

quantity for deep learning segmentation performance [36]. As we demonstrate in our study, 

expert consistency may be better than non-expert consistency for some radiotherapy-related 

ROIs, particularly for H&N imaging. Therefore, there is still likely a need to generate “expert-

level” gold-standard contours in training radiotherapy-related deep learning models, at least for 

select cases or structures. Our study demonstrates that the use of consensus contours using 

non-experts may be a reasonable approximation to gold-standard expert contours using a 

relatively small number of observers, and may exhibit particular utility in scenarios where auto-

segmentation models require large amounts of data but only a limited number of experts are 

available to provide segmentations.  

 

Our study has several limitations. Firstly, we have only investigated one case per disease site in 

a single imaging modality (computed tomography). Therefore, our results may not necessarily 

generalize to arbitrary cases in different imaging modalities (e.g., magnetic resonance imaging, 

positron emission tomography, etc.), particularly for target volumes which can exhibit significant 

heterogeneity between cases and modalities. However, given that computed tomography is the 

current gold-standard for radiotherapy planning, we believe our results are of significant interest 

to the radiation oncology community. There was no contouring protocol provided to the 

participants for reference in this challenge, which may have reduced optimal performance. To 

evaluate contours, we utilized geometric indices, which are not well correlated with clinically 

meaningful endpoints; rather, a multi-domain approach including dosimetric indices and clinical 

input has been shown to be the best method to evaluate auto-segmentation [25]. An additional 

limitation of our study is that we have stratified physician expertise based on subjective criteria. 

Herein, we have defined an expert as an individual who is recognized in their field and/or 

contributed to consensus guideline generation. While there may be additional methodology to 

stratify expertise, we have chosen this method as it separates physicians based on perceived 

familiarity with standardized guidelines. Nonetheless, despite this limitation, we show a 

difference between this stratification of experts and non-experts. More studies are needed to 

determine objective criteria for expertise. We fully acknowledge this may mischaracterize some 

individuals into “non-expert” categories erroneously, even if they have significant familiarity with 

guidelines, but plan to investigate alternative stratifications based on additional objective criteria 

in future studies. Moreover, our current analysis only investigates radiation oncologists who 

have at some level completed formal training. We have not investigated novice observers, 

where observers may have no formal education in medical anatomy or segmentation. Future 

studies should investigate novice observers as these labels would potentially be the most cost 

effective to obtain and may also be able to approximate the current gold-standard. 

 

Importantly, our study provides a large high-quality curated dataset that can act as a reference 

for future studies on interobserver contour variability and auto-segmentation in radiation 

oncology workflows. Moreover, we publicly distribute our raw imaging data and open-source our 

analysis pipelines so the community can investigate these claims further. Finally, our results 
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highlight the differences in non-expert and expert contours, which can be further leveraged to 

create educational tools for trainee segmentation quality control.  

 

 

Conclusions  

 

In summary, using five distinct disease sites (breast, sarcoma, H&N, GYN, and GI), we have 

systematically investigated differences in contour quality between non-expert and expert 

radiation oncologist observers in target volumes and OARs. Overall, there was a general trend 

towards experts providing more consistent segmentations in terms of pairwise DSC and SDSC 

for a variety of ROIs. Moreover, we showed that using the STAPLE algorithm, consensus 

contours could be generated from non-experts that approximate gold-standard expert 

segmentations to a reasonable degree (crossing expert interobserver variability) for most ROIs; 

some target volumes were unable to be approximated readily. Finally, we experimented with a 

variable number of non-experts in generating consensus contours and demonstrated for most 

ROIs 2-5 non-experts is sufficient to cross expert interobserver variability, though specific 

attention should be paid to ROIs such as target volumes and complex OARs which exhibit 

decreased performance as more observers are added to the consensus segmentation. Our 

study acts as a potential reference for the characterization of interobserver variability and use of 

consensus contours in future AI-related radiotherapy applications. Future work will include the 

investigation of a greater number of disease sites, cases, imaging modalities, and levels of 

expertise.  
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