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Abstract: 

Diabetic retinopathy (DR) is a late microvascular complication of Diabetes Mellitus (DM) that 

could lead to permanent blindness in patients, without early detection. Although adequate 

management of DM via regular eye examination can preserve vision in in 98% of the DR cases,  

DR screening and diagnoses based on clinical lesion features devised by expert clinicians; are 

costly, time-consuming and not sufficiently accurate. This raises the requirements for Artificial 

Intelligent (AI) systems which can accurately detect DR automatically and thus preventing DR 

before affecting vision. Hence, such systems can help clinician experts in certain cases and aid 

ophthalmologists in rapid diagnoses. To address such requirements, several approaches have 

been proposed in the literature that use Machine Learning (ML) and Deep Learning (DL) 

techniques to develop such systems. However, these approaches ignore the highly valuable 

clinical lesion features that could contribute significantly to the accurate detection of DR. 

Therefore, in this study we introduce a framework called DR-detector that employs the Extreme 

Gradient Boosting (XGBoost) ML model trained via the combination of the features extracted by 

the pretrained convolutional neural networks commonly known as transfer learning (TL) models 

and the clinical retinal lesion features for accurate detection of DR. The retinal lesion features are 

extracted via image segmentation technique using the UNET DL model and captures exudates 

(EXs), microaneurysms (MAs), and hemorrhages (HEMs) that are relevant lesions for DR 

detection. The feature combination approach implemented in DR-detector has been applied to 

two common TL models in the literature namely VGG-16 and ResNet-50. We trained the DR-

detector model using  a training dataset comprising of 1840 color fundus images collected from 

e-ophtha, retinal lesions and APTOS 2019 Kaggle datasets of which 920 images are healthy. To 

validate the DR-detector model, we test the model on external dataset that consists of 81 healthy 

images collected from High-Resolution Fundus (HRF) dataset and MESSIDOR-2 datasets and 

81 images with DR signs collected from Indian Diabetic Retinopathy Image Dataset (IDRID) 

dataset annotated for DR by expert. The experimental results show that the DR-detector model 

achieves a testing accuracy of 100% in detecting DR after training it with the combination of 

ResNet-50 and lesion features and 99.38% accuracy after training it with the combination of 

VGG-16 and lesion features. More importantly, the results also show a higher contribution of 

specific lesion features toward the performance of the DR-detector model. For instance, using 

only the hemorrhages feature to train the model, our model achieves an accuracy of 99.38 in 

detecting DR, which is higher than the accuracy when training the model with the combination 

of all lesion features (89%) and equal to the accuracy when training the model with the 

combination of all lesions and VGG-16 features together. This highlights the possibility of using 

only the clinical features, such as lesions that are clinically interpretable, to build the next 

generation of robust artificial intelligence (AI) systems with great clinical interpretability for DR 

detection. The code of the DR-detector framework is available on GitHub at 

https://github.com/Janga-Lab/DR-detector and can be readily employed for detecting DR from 

retinal image datasets.  
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1.Introduction  

Diabetic Retinopathy (DR) is a microvascular disorder associated with long-term diabetes 

mellitus and is one of the leading causes of preventable vision loss across the worldwide [1]. DR 

manifests in individuals diagnosed with Type 1 Diabetes (T1D) or Type 2 Diabetes (T2D). 

Roughly one-third of diabetic patients are affected by DR [2,3], and the likelihood of developing 

DR scales with the length of diabetes duration [4]. 

The progression of DR in T1D and T2D is characterized by damage to the retina. The retina is a 

multilayered network of rod and cone photoreceptor cells integrated with bipolar and ganglion 

cells that enable vision by encoding information gained from light as nerve impulses [5]. The 

retina is supplied with oxygen and nutrients by an extensive vascular system. In T1D and T2D, 

high blood glucose levels contribute to pro-inflammatory changes that increase the permeability 

of the blood-retina barrier, leading to leakage of fluids and blood into the retina [6]. High blood 

glucose can also block small retinal capillaries, impeding the delivery of nutrients and 

contributing to further damage [7].  

Although adequate management of DM via regular eye examination can preserve vision in DR in 

many cases, DR screening and diagnoses currently involve highly trained and qualified medical 

professionals at a high cost. Thus, there is a continuous need for the development of automatic 

approaches for DR detection as a cheaper alternative to the time-consuming manual DR 

diagnosis by trained clinicians. A promising application of these approaches is Computer 

Assisted Diagnosis (CAD) support for detection of DR. An advantage of such CAD applications 

is that they offset the burden on medical professionals like expert ophthalmologists and fill their 

absence in addition to preventing DR before affecting vision. This consideration is critical, 

considering that the global burden of DR is expected to expand to 700 million cases by the 2040s 

[8]. Many DR detection techniques suitable for CAD utilize Machine Learning (ML), Deep 

Learning (DL) algorithms and various previously pretrained DL models commonly known as 

Transfer Learning (TL) models.  

The TL models have been successfully used for automated binary and multi-class classification 

of color fundus retinal images for DR detection [9-12].  These algorithms have shown a great 

performance in the automatic detection of DR in non-clinical setups when the dataset is very 

small and might cause chances for underfitting or high generalization error. In such cases, TL is 

preferred over standard DL techniques. Recently, the focus has been shifted to TL feature-based 

models, where common TL algorithms are used for extracting many important local (textural) 

features from retinal images for detection of DR and predicting its severity level through 

convolving with a sliding window and forming a filter. For example, features extracted from 

AlexNet TL model [13] were passed to the Support Vector Machine (SVM) ML model to 

enhance the efficiency of the DR classification system, where SVM model achieved accuracies 

of 97.93% and 95.26% in five-class DR classification with linear discriminant analysis (LDA) 

feature selection and principle component analysis (PCA) dimensional reduction respectively 

[14], when training the model and testing on Kaggle dataset1 . As an extension to the same 

 
1 https://www.kaggle.com/c/aptos2019-blindness-detection/data 
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direction, features from the final layers of VGG-19 TL model [15] were collected and aggregated 

to get a deeper representation of retinal images, and these dense features were reduced by PCA 

and singular value decomposition (SVD) [16], where it was fed to a deep Neural network (DNN) 

model that achieved accuracies of 97.96%, and 98. 34% in DR severity classification with PCA 

and SVD respectively when training the model and testing on Kaggle dataset. M.K.Yaqoob et 

al.[17] introduced a feature representation extracted by ResNet-50 TL model [18] that was fed to 

Random Forest (RF) classifier for binary and multiclassification of DR. This approach aheived 

an accuracy of 96% when it was applied on a dataset comprised of two DR categories for 

detecting DR and accuracy of  75.09% when it was applied as on five DR category dataset for 

predicting the severity of DR.  

Bodapati JD et al. [19] introduced a DR classification model that aggregates features extracted 

from multiple convolution blocks of TL models to enhance feature representation and hence 

improve DR detection. The model has compared various methodologies of pooling and feature 

aggregation and it was concluded that averaging pooling with simple fusion approaches using 

Deep Neural Networks (DNN) led to an improved performance. The authors of this work 

claimed that their approach for blending features from the convolution layers of the same TL 

model is simpler and better than the simple concatenation of features extracted from various TL 

models at a different scale that was presented early in [20]. The latter approach introduced a 

multi-modal blended TL feature representation for extracting deep features from penultimate 

layers of multiple TL models and blending them using different pooling approaches to obtain the 

final DR image representation.  

However, besides the local features presented by various TL models or the fusion of those 

features, the global image features have been playing an important role in DR detection. Those 

features are represented by the contour and structural features that describe retinal lesions like 

exudates (EXs), microaneurysms (MAs), and hemorrhages (HEMs), where the presence of DR 

disease is characterized by detecting one or more of these lesions. Thus, those global features 

(lesion features) are considered as good signs of retinal image lesions and hence can be 

successfully applied to improve the final accuracy of a TL-feature based DR screening system.  

Therefore, there were some attempts that used image segmentation techniques for 

extracting/detecting retinal lesion features that can be used for DR detection and staging [21,22].  

In such image segmentation- based methods, a label is assigned to every pixel of an image based 

on pixel characteristics [23]. The labels are encoded in a segmentation mask with equal 

dimensions to the image. In binary segmentation tasks, each mask pixel represents either the 

foreground (corresponds to an area-of-interest in the image; value = 1) or the background 

(corresponds to all non-area-of-interest; value = 0). Thus, binary segmentation tasks are useful 

for extracting notable areas from biomedical images. 

With the introduction of deep learning (DL), especially convolutional neural network (CNN), the 

DL based methods have resulted in an outstanding performance in medical image segmentation 

[24]. UNET-architecture CNN models are one of DL models that achieve remarkable 

performance in medical image segmentation tasks [25].  For the task of retinal image 

segmentation for DR detection, there were multiple research reports that demonstrate the use of 
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UNET for segmentation of leakage-prone blood vessels [26,27]. UNET models have also been 

successfully developed for the segmentation of MAs [28-31], EXs [32-35] and HEMs [36].   

Although TL and segmentation features provide robust information for DR detection, they were 

not used together in the literature for a two-class (binary) DR-detection. Only a few existing 

research attempts utilized the fusion of both types of features for improving the performance of 

predicting the severity levels of DR [37,38].  For example, B. Harangi  et al. proposed a 

framework that combines AlexNet TL-based features with image-level features that reflect the 

intensity, shape, and texture of the structures of the image and lesion-specific features associated 

with MAs and EXs. This combination of features was passed through an additional fully 

connected layer followed by a softmax function that achieved an accuracy of 90.07% in 

predicting the class probabilities corresponding to 5 classes for DR that express its severity 

levels.  In [38], the same idea was extended to several commonly used TL models for local 

image feature extraction other than AlexNet. Next, the results of concatenating the TL features of 

those models with the hand-crafted features (image level and lesion features) were objectively 

compared to demonstrate the best concatenation framework that improves the accuracy of 

predicting DR grades.  Next, the best concatenation was passed through an additional fully 

connected layer then a softmax function to predict the five  class probabilities of DR severty. 

However, both approaches in [37,38] were not tested for binary classification of DR to report the 

presence of the disease. Also, the performance of the lesion feature extraction was not explicitly 

investigated as well as the impact of those features on DR detection. Moreover, both approaches 

combined the image level features with TL and lesion features for training the DR severity levels 

predictors, increasing the curse of dimensionality. 

Therefore, in this study we propose a framework called DR-detector (Figure 1) that employs the 

XGboost ML model [39] for an accurate detection of DR. The model is trained with a 

combination of the TL features, and three clinical lesion features that capture EXs, MAs, and 

HEMs. Such a combination is used to get a better representation of retinal image features that 

can be used to decide about the presence of DR disease. Thus, we seek the power of TL model to 

extract features that accurately capture the local textural retinal images while simultaneously 

taking advantage of the power of lesion features to represent the global features of the retinal 

images that would result in improving the performance of the DR-detector model and its 

interpretability for clinical use. We tested the DR-detector model on an external dataset of retinal 

images for detection of DR. We have applied our proposed framework to two common TL 

models in the literature namely VGG-16 and ResNet-50 models (Figure 1A). The experimental 

results show that the DR-detector model achieves an accuracy of 100% in detecting DR when 

testing it on an external dataset after training it with the combination of Resnt-50 and lesion 

features and 99.38% accuracy after training it with the combination of VGG-16 and lesion 

features. The results also show a higher contribution of some lesion features towards the 

performance of the model over other lesion features. For instance, using the hemorrhages feature 

to train the model, our model achieves an accuracy of 99.38 in detecting DR which is higher than 

the accuracy of the model when training it with the combination of all lesion features (89%) and 

equal to the accuracy when training it with the combination of all lesions and VGG-16 features 

together.  Thus, we arrived at two major conclusions. First, the extracted relevant lesion features 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.09.23.22280273doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.23.22280273
http://creativecommons.org/licenses/by-nc/4.0/


can complement the textural features extracted by the TL model to improve the performance of 

DR-detector model and its interpretability for clinical use in detecting the presence of DR 

disease. Second, the contribution of lesion features to the performance of DR-detector model 

varies from one lesion feature to another. This highlights the possibility of using only the lesion 

features for training the next generation of robust and accurate AI models with clinical 

interpretability for DR detection. 

 

2.Material and Methods 

2.1 Approach pipeline  

The main objective of this work is to develop a robust and efficient framework called DR-

detector for automatic detection of DR. Thus, we employed ML model namely the XGBoost in 

this framework to achieve this objective. This model is trained with a combination of two types 

of extracted features. The first type is deep convolutional features extracted using a TL model 

(VGG16-model or Resnet50) pre-trained previously on ImageNet dataset [40] (Figure 1A). 

Those deep features were known as the most descriptive and discriminate features that ultimately 

improve the performance of DR recognition [16]. The second type of features are three clinical 

lesion features that capture the EXs, MAs, and HEMs and are extracted using image 

segmentation via U-Net DL model (Figure 1B). Those lesion features were found to be the most 

common pathological signs of DR in the literature [41].  Next the performance of DR-detector 

model is tested on external dataset of fundus retinal images after training it with the combination 

of TL and lesion features (Figure 1C) . In summary, the proposed pipeline of the DR-detector 

framework (Figure 1) has five different modules including TL feature extraction (Figure 1A), 

lesion feature extraction (Figure 1B), and feature combination, model training and model 

evaluation (Figure 1C).  

2.2 Datasets 

2.2.1 Training dataset 

We conduct our experiments on 1840 color fundus images. 920 images of them have DR signs, 

and the remaining are healthy images. Those images were used for training the DR-detector 

model. The images with DR signs were collected from two public-available datasets, namely the 

e-ophtha [42], and retinal lesions [43,44] with binary masks for extracting and quantifying the 

EXs,  MAs and  HEMs lesion features. The healthy images were collected from APTOS 2019 

Blindness Detection Kaggle competition training dataset [45]. The Binary masks for healthy eye 

images are generated by creating all-black images with identical dimensions.    

The images in the training dataset have various levels of DR on a scale of 0 to 4 (0 - No DR 

(healthy), 1-Mild, 2-Moderate, 3-Severe, 4-Proliferative DR) to indicate different DR severity 

levels.  However, the data is imbalanced as it consists of 920 healthy images of DR-level 0, 120 

images of DR-level 1, 681 images of DR-level 2, 64 images of DR level 3, 55 images of DR 

level 4. Since we found that there is not enough data from DR classes of DR-levels (1-4) that we 

can include in the training dataset to balance it, we decided to go with the binary classification of 
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DR for automatic detection of this disease. Therefore, we adopt the training data set for binary 

classification problem by merging all images of DR signs of 1-4 into a single positive class of 

920 images labeled as DR and the remaining 920 images are labeled as healthy and assigned to 

the negative class as shown in Table 1. 

2.2.2 Testing dataset 

For testing the DR-detector model, we have used a dataset of 162 color fundus images, where 81 

of them are annotated as DR affected, and the remaining are from healthy individuals. Those 

images were collected from three publicly available datasets, namely High-Resolution Fundus 

(HRF) dataset [46], Indian Diabetic Retinopathy Image Dataset (IDRID) dataset [47], and 

MESSIDOR-2 datasets [48]. The IDRID contained 81 color fundus images (4288 x 2848) with 

binary masks representing DR-affected eyes needed to extract and quantify the EXs,  MAs and  

HEMs lesion features. However,  IDRID  dataset does not contain any healthy eye images, so the 

healthy eye images in the testing dataset were randomly selected from HRF and MESSIDOR-2 

datasets. Binary masks for healthy eye images are generated by creating all-black images with 

identical dimensions.    

Similar to the training data, the images in the testing dataset have 0-4 levels of DR to indicate 

different DR severity levels.  However, the dataset is imbalanced as it consists of 81 healthy 

images of DR-level 0 and 81 images of DR affected images with 2 images of DR-level 1, 34 

images of DR-level 2, 22 images of DR level 3, and 23 images of DR level 4. Since there is not 

enough data from DR classes of DR-levels (1-4) that we can include in the testing dataset to 

balance it, it has been more convenient to use such data for binary classification of DR for 

detection of the disease. To achieve this, we adopt the testing data set for binary classification 

problem by merging all images of DR levels of 1-4 into a single positive class of 81 images 

labeled as DR and the remaining 81 images are labeled as healthy and assigned to the negative 

class as shown in Table 2. 

2.3 Image feature extraction with Transfer Learning 

In this approach, local representations of the retinal image’s features are obtained from the TL 

model (either the VGG16 or the Resent50 pretrained models) by extracting deep features from 

the final layers of the pre-trained models. When performing feature extraction with TL models, 

we treat the pre-trained network as an arbitrary feature extractor, allowing the input image to 

propagate forward, stopping at pre-specified layer, and taking the outputs of that layer as our 

features. 

As for extracting deep features using VGG-16 pretrained model, the original VGG-16 model 

[15] is adopted first to address the automatic detection of DR (top subfigure of Figure 1A). For 

this task, the model expects input images of 224*224*3. Thus, images are reshaped to 

224*224*3 before feeding them to this model. Next the soft-max layer and fully connected (FC) 

layers are removed from VGG-16 model (area after the solid vertical blue line in top subfigure of 

Figure 1A and the model utilizes the VGG-16 network [15] for feature extraction via the final 

layer prior to the FC layers — that outputs volume of size 7 x 7 x 512 dim (area with dashed 

border in top subfigure of Figure 1A). This output will serve as VGG-16 extracted features 
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which will be flattened later into a feature vector of 25,088-dim combined with the lesion 

features, as described later in section 2.5. 

As for extracting deep features using the ResNet-50 pretrained model, the original ResNet-50 

model [17] is adopted first to address the detection of DR task (bottom subfigure of Figure 1A). 

For this task, the model expects input images of 224*224*3. Thus, images are reshaped to 

224*224*3 before feeding them to this model. Next, the soft-max layer and fully connected (FC) 

layers are removed from ResNet-50 model (area after the solid vertical blue line in the bottom 

subfigure of Figure 1A) and the model utilizes the ResNet-50 network [18] for feature extraction 

via the final layer before the fully connected (FC) layers — that outputs volume of size 7 x 7 x 

2048 dim (area with dash border in bottom subfigure of Figure 1A). This output will serve as 

ResNet-50 extracted features which will be flattened later into a feature vector of 100,352-dim 

combined with lesion features as described later in section 2.5.   

2.4 lesion feature extraction with image segmentation.  

2.4.1 Retinal image lesions associated with DR 

Retinal lesions that develop early over the course of DR, including  MAs, EXs, and HEMs 

(Supplementary Figure 1), are clinically important markers used to distinguish between healthy 

and DR-affected eyes. Below, we elaborate about each of these three lesions: 

Microaneurysms   

MA are the earliest symptoms of DR. These lesions are widened protrusions extending from 

capillary walls and are associated with abnormal fluid leakage through breakdown of the blood-

retina barrier. MA can rupture to create hemorrhages, leading to greater leakage of capillary 

fluids and damage to surrounding retinal tissues. The number of microaneurysms can be used to 

gauge the progression of DR [49].  

 

Exudates  

EXs are lipids and proteins (fibrinogen, albumin) carried by exfiltrating fluids past the blood-

retina barrier into the retinal tissue [50]  

 

Hemorrhages  

HEMs occur when MA burst, and leak blood and serum into the retina. Intraretinal bleeding is a 

sign of worsening DR. Blood can impair DR patient vision and increased intraretinal pressure 

can contribute to retinal damage. [51] 

 

2.4.2 Framework for UNET- model-based Lesion Detection & Quantification 

We have developed a framework to extract MAs, EXs, and HEMs lesions from retinal fundus 

images using U-Net semantic segmentation models (Figure 1B) and deployed it in DR-detector 

framework for extracting lesion features.  The steps for the UNET-based retinal lesion detection 

and quantification workflow are described below: 

 

Preprocessing 
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Binary thresholding is applied to set all pixels corresponding to the image background (the non-

eye margins) equal to zero. Multiple studies demonstrate the green channel encodes the greatest 

contrast between retinal structures [32-34]. Input RGB retinal fundus images are split by channel 

and the green channel is extracted. Contrast Limited Adaptive Histogram Equalization (CLAHE) 

(8x8 tile size) [52] is applied to the green channel to correct the contrast over-amplification. A 

gamma correction is utilized to adjust luminescence of the CLAHE output (γ = 0.8). The contrast 

enhancement stages are shown in Supplementary Figure 2. After contrast enhancement, images 

are divided into patches.  

Each preprocessed retinal image and its corresponding ground truth mask is divided into 

overlapping square (n x n) patches. n is set to 128 pixels (px) for MAs (due to small lesion size) 

and is set to 256 px for EXs and HEMs. Created patches are randomly selected for augmentation 

operations.  

Augmentation for image and corresponding binary mask patches involves creating new training 

instances from existing ones by applying a spatial or color operation to represent them in a new 

orientation or perspective. The random flip (horizontal, vertical) and random rotation (360°) 

techniques from Keras ImageDataGenerator [53] are used to augment training patches. Any 

augmentation technique applied to a fundus image patch is likewise applied to its ground truth 

patch. 

   

Segmentation  

 

The input retinal fundus images are preprocessed and divided into augmented patches as 

described above. K-fold cross-validation (k = 5) is applied to the patches. The batch size for each 

fold is set to 32 and the number of epochs is set to 3. Epoch training and validation steps are set 

as the number of training or validation patches per fold divided by batch size, respectively.   

 

Patch probability maps output by the UNET DL model are merged to construct a probability map 

with equal dimensions to the input image. A threshold of 0.5 is applied to convert the 

reconstructed probability map into a binary image mask.  

 

 

Feature Counts  

 

Canny edge detection [54] is applied to find the edges around mask foreground regions (white). 

Contour detection [55] is used to fill Canny edge gaps and fully close the foreground shapes. The 

number of lesions within the segmentation mask is defined as the number of distinct objects 

described by contours.  

 

2.4.3 U-Net model implementation  

Keras [56], the free python deep learning API with TensorFlow [57] back end was used to 

construct a base UNET model for binary semantic segmentation. Input patches are supplied to 

the input layer as tensors with shape (32, n, n, 1). The UNET contracting path used for 

downsampling is defined by 5 convolution blocks, each with 2 (3 x 3) convolution layers 

(activation = “ReLU”, padding = “same”) and a (2 x 2) pooling layer. The UNET expansive path 
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used for upsampling is defined by 5 convolution blocks, each with a (2 x 2) transpose 

convolution layer (activation = “ReLU”, padding = “same”), concatenation layer, and 2 (3 x 3) 

convolution layers (activation = “ReLU”, padding = “same”). A (1 x 1) output layer using a 

sigmoidal activation function returns the model output. Binary focal entropy is selected as the 

loss function due to large class imbalance between foreground and background pixels.   

The model output is a pixelwise probability map for each input patch. The probability map 

values range from 0 to 1; values closer to 0 represent pixels more likely to belong to the negative 

class and pixels closer to 1 represent pixels more likely to belong to the positive class.   

 

2.4.4 Metrics for performance evaluation of U-Net model 

 

We evaluate the performance of U-Net DL model in extracting each of the three lesions in terms 

of accuracy, recall, precision, F1-score, IoU and Dice score. The mathematical equations that 

describe each of these metrics are shown below:  
 

 

Accuracy= (TP + TN) / (TP+FP+TN+FP)    (1) 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
                    (2) 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (3) 

F1-score= 2 ∗
Precision∗Recall

Precision+Recall
                   (4) 

Intersection over union (IoU) = 
A∩ A'

A ∪ A'
                                      (5)                               

  

Where: 

 

TP= True Positives (the sum of positive (foreground) pixels classified by the model) 

TN= True Negatives (sum of correctly classified negative pixels)   

FP=  False Positives (the sum of negative (background) pixels misclassified by the model) 

FN= False Negatives (the sum of misclassified positive pixels) 

A = Area of ground truth pixels and A′ = Area of predicted pixels   

 

High recall values indicate that most of pixels belonging to the positive class (lesions) are 

predicted correctly by U-Net segmentation models. High precision values across the three lesion 

types also demonstrate the U-Net models successfully differentiate between lesion foreground 

and non-lesion background regions. High accuracy and F1 scores values reflect the excellent 

model performance and robustness. IoU is a useful metric for image segmentation by measuring 

the overlap between predicted and ground truth segmentation masks. This can be done for a class 

by dividing the intersection (overlap) of ground truth and predicted pixels belonging to the class 

by the total number of pixels in both masks belonging to the class. IoU score ranges from [0 – 1], 

where scores closer to 1 indicate greater agreement between predicted and ground truth masks.  
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2.5 Combination of TL and lesion features 

The DR-detector framework performs a fusion of the TL features with lesion features to get a 

better representation of the features used for detection of DR. This is achieved by concatenating 

the flat representation of the features obtained by TL model (either VGG-16 or ResNet-50) with 

three lesion features that captures EXs, MAs and HEMs via image segmentation technique 

(Figure1C). 

By combining the TL features and the lesion features, the resulting feature vector for each image 

in the training dataset that will be used for training the XGboost DR-detector model would be of 

size=25,088+3 =25,091 dim for VGG-16 and 100,352+3=100,355 dim for ResNet-50. 

2.6 Metrics for performance evaluation of DR detection 

The accuracy, precision, recall, F1-score and the area under the ROC curve (AUC) [58] have 

been used to evaluate the Xgboost model's performance deployed in the DR detector framework. 

The mathematical equations that define each of the first four metrics were previously defined in 

equations [1-4] for evaluating the performance of U-Net segmentation models for lesion types. 

However, TP,FP,FN and TN  terms for DR-detection task have a different indication from their 

previous annotation for evaluting the image segmentation task using U-Net model and hence are 

described below: 

• TP refers to the number of correctly classified DR images. 

• FP refers to the number of healthy images misclassified as DR images 

• FN refers to the number of DR images misclassified as healthy images 

• TN refers to the number of correctly classifed healthy images. 

As for the AUC metric, it measures the entire two-dimensional area under the ROC curve [59] 

which measures how accurately the model can distinguish between DR and healthy images. 

2.7 Experimental setup and model development  

All experiments in this study were executed on Ubuntu Linux server with 128GB of RAM, 16 

Intel Xeon E5-2609 1.7GHZ CPU cores, and 8 GPU cards. The optimized distributed gradient 

boosting python library [60] has been used for implementing the XGBoost model.  The scikit-

learn toolkit [61], the free machine learning python library has been used for implementing other 

ML models that were developed as a proof of concept to show that XGBoost was chosen because 

it outperforms other ML models (see Table 4 and 5). The Keras free python library [56] with 

tensorflow back end [57] was used to implement the TL models  as well as the deep neural 

network (DNN) models to compare the performances in DR detection to the XGboost as an 

evidence to show the outperformance of later model.  

 

3.Results 
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3.1 U-Net model performance evaluation  

  

U-Net model performance evaluation results are shown in Table 3. The table shows an 

outperformance of the U-Net model for predicting MAs  and EXs lesions over HEMs lesions. In 

other words, the general trend we observed was that the performance evaluation results for the 

HEMs segmentation model were consistently lower than those for the MAs and EXs models. We 

attribute this to the variation in the appearance of retinal hemorrhages, which can range from 

small, concentrated regions (dot hemorrhages) to larger and more irregular shapes.    Examples of 

U-Net model predictions are shown in Supplementary Figure 3.   

 

3.2 DR detection using VGG-16 and lesion features 

As a proof of concept, we developed different ML models and trained them on the combination 

of VGG-16 and lesion features including the support vector machine (SVM), K-Nearest 

Neighbors (KNN), Xgboost, Logistic Regression (LR), Multi-Layered Perceptron (MLP), 

Decision Tree (DT), and Random Forest (RF) with default settings in addition to a DNN model 

with different structures including one input layer with 128 nodes, one input layer with 256 

nodes and one hidden layer with 128 nodes, and one input layer with 512 nodes and 2 hidden 

layers with 256 and 128 nodes respectively. As shown in Table 4, XGBoost outperformed all 

other ML and DNN models achieving 99.38% accuracy in detecting DR. 

3.3 DR detection using ResNet-50 and lesion features 

Table 5 shows the performance evaluation results of all DR detection models using the 

combination of ResNet-50 and lesion features. As can be observed from the table, XGBoost  

continued to outperform all other ML and DNN models achieving 100% accuracy for detection 

of DR. 

3.4 Performance of DR-detector with a single type of feature to understand feature 

importance and contribution 

We decided to deploy XGBoost model in DR-detector framework for automatic detection of DR 

since it outperforms all other ML and DNN models as highlighted in the previous sections and 

documented in Tables 4 and 5. For deep analysis of the features that highly contribute to the 

performance of XGBoost model in the detection of DR, we have analyzed the importance of 

each feature by evaluating the XGBoost model performance with each type of extracted features 

including the TL and lesion features. This has been achieved by building three versions of the 

XGBoost model, where each version of the model is trained with one type of feature. Figure 2 

shows a bar chart that represents the performance of XGBoost with VGG-16, ResNet-50 and 

lesions features (Supplementary Table 1). Clearly, we see a significant outperformance of the 

lesion features over the TL features that have been either extracted by VGG-16 or Resnt-50 

models. This highlights the importance of the clinically manifested symptoms reflected in the 

form of lesion features in the detection of DR and how they can complement the textural features 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.09.23.22280273doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.23.22280273
http://creativecommons.org/licenses/by-nc/4.0/


extracted by the TL model to improve the XGBoost performance and its interpretability for 

clinical use in detecting the presence of DR disease. 

3.5 Performance of DR-detector with all possible feature combinations 

Figure 3 shows a bar chart that represents the performance of XGBoost (DR-detector model) on 

the testing dataset with all possible combinations of TL and lesion features (Supplementary 

Table 2). Clearly, the figure shows that (Resent-50 and lesion) feature combination leads to the 

best performance of XGBoost model among all combinations and is slightly better than the 

performance of the model using (VGG-16 and lesions), and (VGG-16, ResNet-50, and lesions) 

combinations that lead to equal model performances. The figure also shows poor performance of 

XGBoost with VGG-16 and ResNet-50 combination (i.e., when the lesion features are 

specifically excluded) which also highlights the importance of lesion features in the detection of 

DR. 

3.6 Lesion feature importance and their effect on XGBoost performance   

For deep analysis of the contribution of each lesion feature to the performance of DR-detector  

model in DR detection, we have reported the importance of each lesion feature through training 

and testing the XGBoost model with each type of lesion feature individually. This has been 

achieved by building three versions of the XGBoost model, where each version of the model is 

trained with one lesion feature. Figure 4 shows the performance of XGBoost with EXs, MAs and 

HEMs lesion features as well as with their combinations (Supplementary Table 3). Clearly, the 

table shows a significant outperformance of XGBoost model using HEMs lesion feature over its 

performance using either the MAs or EXs lesion features which equally contribute to the 

performance of the model. More importantly, the model also achieves better performance using 

HEMs alone than its performance using the combination of the three lesion features altogether.  

Thus, our results highlight the importance of HEMs as a feature in the detection of DR and how 

it can be used to allow the interpretability of the model for clinical use in DR detection. 

4. Discussion  

There are several observations that can be summarized from our experimental results. First, 

using our proposed approach we found that the integration of lesion features with the TL features 

significantly improves the performance of the DR-detector model and adds a clear importance to 

its clinical interpretability. However, currently it is not possible to only work with the lesion 

features for training the DR-detector model as there are few retinal imaging datasets in the 

literature that provide the image masks corresponding to the retinal images in the dataset that are 

needed to extract and quantify the lesion features using the U-Net segmentation models and 

obtaining those masks need the involvement of trained ophthalmologists which is costly and 

time-consuming.   

It was also observed that deploying the XGBoost model as an ensemble of ML classifiers in the 

DR-detector framework led to a better binary classification of DR and error detection than 

deploying dense classifiers of DL models as introduced in few previous studies [20, 37,38]. This 

motivated us to use the flat combination of TL and lesion features (Figure 1C) which is simpler, 
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straight forward and more convenient to be applied to the XGBoost ML model than combining 

both types of features using different pooling approaches [20], or by extending the last fully 

connected (FC) layer of TL model with additional number of neurons equal to the number of 

lesion features and using softmax function to obtain the predictive DR class probabilities [37]. 

Regarding the contribution of lesion features to the DR-detector (XGBoost) model performance, 

our approach shows that lesion features have different contributions to the model performance. 

Particularly, it shows a significant contribution of the hemorrhages over the other two lesion 

features for binary identification of DR (Supplementary Table 3). This is likely because 

hemorrhages may arise early during the progression of DR and are associated with the worsening 

of vision and the development of other vision-threatening lesions. Our observations highlight the 

importance of such a feature to train the binary classifier of DR-detector framework and adds 

value for its clinical usage in DR diagnosis. However, it remains to be seen how our presented 

results will hold when testing our lesion feature-based models on different fundus retinal testing 

datasets with more complex demographics and varying quality. 

It is also noteworthy to mention that although we have applied the DR-detector framework to a 

relatively small training and testing datasets in comparison with the large datasets that have been 

used in the literature for DR detection (e.g.,[17],) our datasets are from heterogenous sources i.e., 

have different variety of retinal images that were imported from multiple publicly available 

datasets with different settings of capturing the fundus retinal images. This, of course, highlights 

the efficiency of our proposed framework in detecting the initial signs of DR, even when applied 

to a set of retinal fundus images that were not imported from the same resource. Thus, we expect 

a better performance of DR-detector framework with larger training and testing datasets in the 

future.  

5. Conclusions and Future work 

In this study, we have proposed a framework called DR-detector that combines the features 

extracted from fundus retinal image by transfer learning model and the lesion features extracted 

using semantic image segmentation via U-Net DL model for accurate detection of DR using the 

XGboost ML model deployed in this framework. The model was trained using the combination 

of both features on a training dataset collected from various publicly available datasets and was 

tested on an external dataset that consists of DR images from IDRID dataset and healthy images 

from HRF and Messior-2 dataset. Our experimental results show that our proposed framework 

for DR detection achieves a testing accuracy of 100% in detecting DR using the combination of 

Resnt-50 and lesion features and 99% testing accuracy using the combination of VGG-16 and 

lesion features. Based on these results, we arrived at the conclusion that the extracted clinically 

relevant lesion features have a significant impact on the performance of the DR-detector model 

and would be an excellent complement to the textural features extracted by the TL model to 

improve the performance of DR-detector model and its interpretability for clinical use for 

detecting the presence of DR disease.  

We anticipate a natural extension of our current work is to first extend to other TL models that 

are commonly used in the literature to study how they perform for DR classification task and 

then expand our general framework to be applied for the prediction of different severity levels of 
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DR. Finally, we are looking forward to applying our approach to combine TL features with other 

types of DR lesion features such as cotton wool spots, foveal avascular zone, optic disc, and 

retinal blood vessels since these features were known in the literature to be associated with 

greater severity of DR [62]. This might lead to better performance of the DR-detector model and 

its interpretability for clinical use on much larger and clinically diverse datasets, especially if it 

will be extended to predict the various grades of DR.  
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Figure Legends 

 

Figure 1. The workflow of DR-detector framework for detection of DR using a combination of 

TL and lesion features 

Figure 2. The performance of XGBoost with VGG-16, ResNet-50 and lesions features. 

Figure 3. The performance of XGBoost with all possible combinations of TL and lesion 

features. 

Figure 4.  The performance of XGBoost with each type of lesion features as well as their 

combinations. 
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Tables  

Table  1: Number of Healthy and DR images in the training dataset 

DR severity level Number of healthy and DR images  

0 920 (Healthy)  

1 920 (DR)  

2 

3 

4 

Total  1840 

 

Table  2:  Number of Healthy and DR images in the testing dataset  

 

 

 

 

 

 

Table 3. performance evaluation results of UNET model on extracting each type of lesions 

feature. 

 

  

  

  

Lesion Type  Recall  Precision  F1- Score  Accuracy  IoU   

MAs   0.94  0.93  0.98  0.98  0.84    

EXs  0.94  0.95  0.98  0.98  0.83    

HEMs  0.84  0.86  0.85  0.95  0.81    

 

 

Table 4. The performance of all Ml models and DNN for detection of DR using a combination 

of VGG-16 and retinal lesion features 

Classifier Accuracy % Precision  Recall  F1-score AUC 

Xgboost 99.38 1 0.99 0.99 0.994 

KNN 47.53 0.45 0.25 0.32 0.475 

LR 51.85 0.52 0.57 0.54 0.519 

SVM 43.21 0.45 0.62 0.52 0.432 

MLP 53.09 0.52 0.93 0.66 0.531 

DT 88.27 1.00 0.77 0.87 0.883 

RF 68.52 0.71 0.63 0.67 0.685 

DR severity level Number of healthy and DR images 

0 81 (healthy) 

1 81 (DR)  

2 

3 

4 

Total  162 
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DNN (1 layer) 48 0.48                   
 

 0.58               
                       

0.53                    
 

0.481              
 

DNN (2 layers) 
 

50 0.5 0.38 0.43 0.5 

DNN (3 layers)         52 0.52 0.56 0.54 0.519 

 

Table 5. The performance of all Ml models and DNN for detection of DR using a combination 

of ResNet-50 and retinal lesion features 

Classifier Accuracy % Precision  Recall  F1-score AUC 

Xgboost 100 1.00 1.00 1.00 1.0 

KNN 42.59 0.37 0.21 0.27 0.426 

LR 53.09 0.52 0.68 0.59 0.531 

SVM 45.68 0.48 0.84 0.61 0.457 

MLP 47.53 0.49 0.95 0.64 0.475 

DT 96.30 1 0.93 0.96 0.963 

RF 56.79 0.55 0.70 0.62 0.568 

1 layer-DNN 43.8  0.42 
              

 0.33  
         

0.37 
                      

0.44             
 

2 layer-DNN 
 

48 0.49 0.75 0.59 0.481 

3 layer-DNN 
 

49 0.49 0.46 0.47 0.488 
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