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Abstract 

 

Background: Involvement of many variables, uncertainty in treatment response, and inter-

patient heterogeneity challenge objective decision-making in dynamic treatment regime (DTR) 

in oncology. Advanced machine learning analytics in conjunction with information-rich dense 

multi-omics data have the ability to overcome such challenges. We have developed a 

comprehensive artificial intelligence (AI)-based optimal decision-making framework for assisting 

oncologists in DTR. In this work, we demonstrate the proposed framework to Knowledge Based 

Response-Adaptive Radiotherapy (KBR-ART) applications by developing an interactive software 

tool entitled Adaptive Radiotherapy Clinical Decision Support (ARCliDS). 

Methods:  ARCliDS is composed of two main components: Artificial RT Environment (ARTE) and 

Optimal Decision Maker (ODM). ARTE is designed as a Markov decision process and modeled 

via supervised learning. Given a patient’s pre- and during-treatment information, ARTE can 

estimate treatment outcomes for a selected daily dosage value (radiation fraction size). ODM is 

formulated using reinforcement learning and is trained on ARTE. ODM can recommend optimal 

daily dosage adjustments to maximize the tumor local control probability and minimize the side 

effects. Graph Neural Network (GNN) is applied to exploit the inter-feature relationships for 

improved modeling performance and a novel double GNN architecture is designed to avoid 

unphysical treatment response. Datasets of size 117 and 292 were available from two clinical 

trials on adaptive RT in non-small cell lung cancer (NSCLC) patients and adaptive stereotactic 

body RT (SBRT) in hepatocellular carcinoma (HCC) patients, respectively. For training and 

validation, dense data with 297 features were available for 67 NSCLC patients and 110 features 

for 71 HCC patients. To increase the sample size for ODM training, we applied Generative 

Adversarial Network to generate 10,000 synthetic patients. The ODM was trained on the 

synthetic patients and validated on the original dataset. 

Results:  Double GNN architecture was able to correct the unphysical dose-response trend and 

improve ARCliDS recommendation. The average root mean squared difference (RMSD) between 

ARCliDS recommendation and reported clinical decisions using double GNNs were 0.61 ± 0.03 

Gy/frac (mean±sem) for adaptive RT in NSCLC patients and 2.96 ± 0.42 Gy/frac for adaptive 

SBRT HCC compared to the single GNN’s RMSDs of 0.97 ± 0.12 Gy/frac and 4.75 ± 0.16 Gy/frac, 

respectively. Overall, For NSCLC and HCC, ARCliDS with double GNNs was able to reproduce 

36% and 50% of the good clinical decisions (local control and no side effects) and improve 74% 

and 30% of the bad clinical decisions, respectively. 

Conclusion: ARCliDS is the first web-based software dedicated to assist KBR-ART with multi-

omics data. ARCliDS can learn from the reported clinical decisions and facilitate AI-assisted 

clinical decision-making for improving the outcomes in DTR. 
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Introduction 
Optimal decision-making in Knowledge Based Response-Adaptive Radiotherapy (KBR-ART) is a 

difficult task1. The difficulties arise from a slew of factors, such as, involvement of many variables, 

uncertainty in treatment response, and inter-patient heterogeneity 2. In the absence of a 

quantitative framework, clinical decisions are primarily influenced by physician’s professional 

experiences, which may result in inter-physician variability. Thus, there is a need for a robust and 

user-friendly clinical decision-support tool for objective decision-making in KBR-ART that is 

data-driven and consistent3.  

Adaptive Radiotherapy Clinical Decision Support (ARCliDS) is a web-based software tool for AI-

assisted optimal decision-making in KBR-ART4–6 and potentially other oncology applications 

involving dynamic treatment regime (DTR)7,8. ARCliDS provides a quantitative approach to 

overcome the decision-making difficulties via a set of data analytics algorithms, which include 

feature selection of important variables, statistical ensemble for representing uncertainties of 

treatment response, and, most importantly, integration of information-rich dense multi-omics 

datasets for capturing inter-patient heterogeneity9–11. ARCliDS combines all the above data 

analytics capabilities and presents a user-friendly interface for evaluating relevant clinical use 

cases. Moreover, it is complementary to the current treatment planning system; the integration 

may facilitate an introduction of multi-omics information into the treatment planning workflow.  

 

Figure 1: Knowledge Based Response-Adaptive Radiotherapy (KBR-ART). In KBR-ART, a pre-

treatment assessment is conducted in phase 0 and appropriate treatment plan is tailored. Then patients’ 

treatment response is evaluated in Phase 1, and an optimal treatment adaptation is planned and executed 

in Phase 2. 
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DTR including adaptive RT (ART)12 are designed for treatment personalization. A popular ART 

paradigm and implementation is to adapt treatment plans to accommodate during-treatment 

anatomical changes due to weight loss, tumor regression and/or diminution of the volume of 

surrounding normal tissue and organ at risk (OAR). A complementary ART paradigm is KBR-ART 

which provides a response-based adaptive framework for personalizing RT as shown in Figure 1, 

where the response assessment is not limited to observing anatomical changes. It is divided into 

three phases: Pre-Treatment Assessment, Treatment Response Evaluation (evaluation phase) and 

Treatment Adaptation (adaptation phase). In the pre-treatment phase, a patient’s disease and 

condition is assessed and a treatment plan is tailored. In the evaluation phase, a patient’s 

treatment response is evaluated by comparing pre and mid treatment multi-omics information 

changes. Based on the treatment responses, the patient’s associated outcome probabilities are 

estimated. In the adaptation phase, treatment planning is adapted for a personalized and an 

optimal outcome. Two endpoints are considered: tumor control and normal tissue complication. 

The goal of KBR-ART is to maximize tumor control probability (TCP) and minimize normal tissue 

complication probability (NTCP).  

To demonstrate the potential of ARCliDS, two clinical use cases are presented. In both studies, 

the evaluation time was around 1 month. The first use case is based on the UMCC (University of 

Michigan Cancer Center) 2007-123 phase II dose escalation clinical trial NCT01190527 13, where 

inoperable or unresectable non-small cell lung cancer (NSCLC) patients were administered with 

30 daily dose fractions. The patients received roughly 50 Gy [Gray = J/Kg] equivalent dose in 2 

Gy fractions (EQD2) in the evaluation phase and up to a total dose of 92 Gy EQD2 in the 

adaptation phase. The evaluation phase lasted for roughly two-thirds of the 6-week treatment 

period. In the second clinical use case, patients with hepatocellular carcinoma (HCC) received 

adaptive SBRT in clinical trials NCT01519219, NCT01522937, and NCT0246083514. In the 

evaluation phase, patients received 3 daily dose fractions followed by 1 month break, and in the 

adaptation phase, a suitable sub-population of the patients received 2 additional daily doses. 

A large sample size that is representative of the true population is preferred for all data driven 

and statistical modeling. However, due to financial, feasibility, and ethical reasons, obtaining a 

large dataset in medical field is often impractical. In our case, a dataset of size 117 and 292 were 

available for NSCLC patients and HCC patients, respectively. Dense multi-omics data with 297 

features were available for only 67 NSCLC patients and 110 features for 71 HCC patients. These 

datasets, albeit on the smaller size, are unique as KBR-ART is still in its clinical trial phase and 

hence the largest multi-omics datasets for KBR-ART. So, although the sample size looks small, 

the information-rich dense multi-omics dataset is the largest of its kind. 

Under the current United States Food and Drug Administration (FDA) definition and guidelines, 

ARCliDS is categorized as a Software as a Medical Device (SaMD)6. SaMD is defined as software 

intended to be used for medical purposes independently in contrast to software intended to 

drive a hardware medical device (software in a medical device). This definition was recently 

adopted by FDA to include AI software15,16 which can automatically learn from user cases and 
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continuously update after deployment, as opposed to traditional software, which stays fixed 

after deployment (excluding version update). Therefore, ARCliDS also has two modes of 

operation: Operation Mode and Learning Mode as shown in Figure 2. After the initial training, 

both modes can run simultaneously (online learning) in the clinic.  

Figure 2: ARCliDS Blueprint. ARCliDS is composed of two AI components: (1) Artificial Radiotherapy 

Environment (ARTE) and (2) Optimal Decision-Maker (ODM). ARCLiDS learns ARTE via supervised learning. 

ARTE is then utilized in planning and teaching ODM via reinforcement learning. In the operation mode, 

ARTE outputs State Dynamics and RT Outcome estimates while ODM outputs the optimal dose 

adaptation recommendation. Both ARTE and ODM present uncertainty estimates. 
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ARCliDS is composed of two main AI components. The first component is the Artificial 

Radiotherapy Environment (ARTE) for estimating the predicted outcome and the second 

component is the Optimal Decision-Maker (ODM) for decision-making. In Operation Mode, 

ARCliDS asks for a patient’s pre and mid treatment multi-omics information, and current 

treatment plan. It feeds that information into ARTE and ODM, and obtains outcome estimates, 

state dynamics, and the optimal dose adaptation value. All of the estimated results come with 

associated uncertainty.  The results are presented in two main plots: outcome space spanned by 

TCP and NTCP, and population distribution plots as further explained in the Graphical User 

Interface (GUI). During the Learning Mode, ARTE is trained first on the available data, and then 

ODM is trained on the ARTE. The details of the training are presented in the Methods section 

and SM. 

ARCliDS presents a significant improvement to Tseng et al.’s 17 and Niraula et al.’s 5 methods. 

The improvement comes from the graphical representation of patients’ features.  Convolution 

neural networks (CNNs) are known to perform well because they exploit the feature locality of 

images18. In other words, pixels at neighboring areas of an image are correlated, and CNN 

architectures can capture those correlations. Graph Neural Networks (GNNs) are similar except 

they exploit the non-local relationship between feature values19. Computationally, GNNs use 

fewer network connections compared to fully connected NNs, which help in learning by 

reducing redundancies.  From another perspective, information from one feature only goes to its 

neighboring features. In this work, we have borrowed the feature graph from Luo et al.’s work 

on multi-objective Bayesian Network20  which identified the most important features related to 

RT outcome of interest by finding the Markov Blanket of the outcomes. Details of feature 

selection procedure are presented in Supplementary Materials (SM) section S1. For NSCLC and 

HCC, we were able to (coincidentally) select 13 important features. 

The materials in this manuscript are arranged as follows.  We begin by introducing ARCliDS’ GUI. 

We then present the details of ARTE and ODM in the Methods section. ARTE is further divided 

into the descriptions of patient state, transition function (TF), and RT outcome estimator (RTOE). 

We have proposed a linear-quadratic-linear (LQL) type TF. This is an improvement from Niraula 

et al.’s5 work which employed a linear-quadratic (LQ) type function. LQL model is a 

generalization of LQ model that covers both RT and SBRT. Furthermore, for the RTOE, we 

applied GNN to general logistic function guided double NN architecture, which was developed 

by Niraula et al.5 To improve the robustness of ODM, we have replaced the online learning 

approach with the Planning and Learning approach21. We trained and validated ARCliDS in two 

different cancer sites and different treatment types to show its versatility. We conclude the 

manuscript with a discussion and future steps. 
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Methods 

 

I. Graphical User Interface 

We have designed ARCliDS as a Web Application (app) using R Shiny as shown in Figure 3. The 

app consists of 4 main panels: Data Input Panel, Outcome Space, Population Distribution Plot 

and Report Print. Beside these, there are accessibility tools such as help information, user guide, 

documentation, zooming, and printing option.  

1. Data Input Panel 

Patient Data can be input manually or via a data file. Multiple patients’ states can be input for 

visual comparison. The inputs can be saved or printed if necessary. There is a dedicated space 

for Physician notes. 

2. Outcome Space 

We present the AI recommendations in the Output Space. The Output Space is spanned by TCP 

in the x-axis and NTCP in the y-axis. We contoured and colored it with the Reward Function, 

providing additional insight on the AI’s Decision Making. Given a patient’s information, it shows 

treatment outcome for a range of daily dose fractions and marks the treatment outcome for the 

optimal dose recommendation. It provides uncertainty assessment for both the outcome 

estimate and AI recommendation. 

3. Population Distribution Plot 

Knowing the patient’s state value and its relative position to the population, provides 

information on patient’s “whereabouts”. To accommodate a comparison on the feature level, we 

have included histograms for each feature and patient’s state value atop.    

4. Report Print 

We have designed a report printing in html format. The interactive nature of the report, even 

outside the app, makes it much easier to communicate with other users. 
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Figure 3: ARCliDS graphical user interface (GUI). The GUI consists of the Data Input Panel, Outcome 

Space spanned by TCP and NTCP, historic Population Distribution Plots, and Report Print.  
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II. Artificial RT Environment (ARTE) 

Radiation damages both cancer cells and normal tissue cells. To quantify the relationship 

between the applied radiation and the treatment response, we consider the radiation absorbed 

by tumor and surrounding normal tissue, and the probabilities of tumor control (TCP) and 

normal tissue complication (NTCP).  

Figure 4: Transition Function for gEUD. Here, the KBR-ART regimen is divided into three time points, 

pre, mid, and post treatment, denoted by the daily dose fraction, 𝑑, number 𝑁0, 𝑁𝑒𝑣𝑎𝑙 , and 𝑁𝑎𝑑𝑎𝑝𝑡 , 

respectively. The treatment period between 𝑁0 and 𝑁𝑒𝑣𝑎𝑙 is the Evaluation Phase and between 𝑁𝑒𝑣𝑎𝑙 and 

𝑁𝑎𝑑𝑎𝑝𝑡 is the Adaptation Phase. 

The absorbed radiation is spatially non-uniform, so it is generally converted to a homogenous 

dose value by weighted-averaging of the treatment sites from treatment planning. Generalized 

equivalent uniform dose (gEUD) is one such metric22. It is expected that for a fixed radiation site, 

gEUD must increase with increasing applied radiation as shown in Figure 4. We have assumed a 

linear-quadratic-linear (LQL)23 type monotonic proportionality relationship (S1) as presented in 

the SM, which further results in the following two relationships for KBR-ART, i.e., 

𝑔𝑎𝑑𝑎𝑝𝑡 − 𝑔𝑒𝑣𝑎𝑙

𝑁𝑎𝑑𝑎𝑝𝑡 − 𝑁𝑒𝑣𝑎𝑙
∝

{
  
 

  
 

𝑑𝑎𝑑𝑎𝑝𝑡 (1 +
𝑑𝑎𝑑𝑎𝑝𝑡
𝛼
𝛽

)     for   𝑑𝑎𝑑𝑎𝑝𝑡 < 𝐷𝑇

𝐷𝑇 +
𝐷𝑇
2

𝛼
𝛽

+ (1 +
2𝐷𝑇
𝛼
𝛽

) (𝑑𝑎𝑑𝑎𝑝𝑡 − 𝐷𝑇)    for  𝑑𝑎𝑑𝑎𝑝𝑡 ≥ 𝐷𝑇

(1) 

And, 
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Figure 5: Workflow of Artificial Radiotherapy Environment (ARTE). ARTE is composed of three 

functions: Transition Function (TF), RT Outcome Estimator (RTOE), and Reward Function. For patients in 

state 𝑠𝑡 that have been administered dose 𝑑𝑡 , TF predicts the resulting state 𝑠𝑡+1. RTOE estimates 𝑡𝑐𝑝 and 

𝑛𝑡𝑐𝑝 for a patient in state 𝑠𝑡+1 and covariate 𝑐. The reward function 𝑅 assigns a reward 𝑟𝑡+1 to the tuple 

(𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝), so that optimal reward corresponds to maximal 𝑡𝑐𝑝 and minimal 𝑛𝑡𝑐𝑝. Overall, given 𝑠𝑡 , 𝑐, and 

𝑑𝑡 , ARTE yields 𝑠𝑡+1, 𝑟𝑡+1, 𝑡𝑐𝑝 and 𝑛𝑡𝑐𝑝. 

𝑔𝑒𝑣𝑎𝑙 − 𝑔0
𝑁𝑒𝑣𝑎𝑙 − 𝑁0

∝

{
  
 

  
 

𝑑𝑒𝑣𝑎𝑙 (1 +
𝑑𝑒𝑣𝑎𝑙
𝛼
𝛽

)    for  𝑑𝑒𝑣𝑎𝑙 < 𝐷𝑇

𝐷𝑇 +
𝐷𝑇
2

𝛼
𝛽

+ (1 +
2𝐷𝑇
𝛼
𝛽

) (𝑑𝑒𝑣𝑎𝑙 − 𝐷𝑇)    for  𝑑𝑒𝑣𝑎𝑙 ≥ 𝐷𝑇

 (2) 

where, 𝑔 stands for gEUD, 𝑁 for 𝑛th daily dose fractions, 𝑑 for dose fractions, 𝐷𝑇  for threshold 

doses, and 𝛼/𝛽 ratio is a tissue-specific parameter. The subscript 0, eval, and adapt of 𝑁 and 𝑔 

corresponds to pre-, mid-, and after-treatment, respectively while 𝑑𝑒𝑣𝑎𝑙 and 𝑑𝑎𝑑𝑎𝑝𝑡 corresponds 

to applied daily dose fractionations during the evaluation phase and adaptive phase, 

respectively. Dividing the relationships (1) and (2) yields four equations for 𝑔𝑎𝑑𝑎𝑝𝑡 as listed in SM 

Table S1. 

 With the assumption that the increment of radiation increases both TCP and NTCP, we have 

applied a sigmoid shape generalized logistic function to represent the outcome probability as 

follows, 

𝑝 =
1

1 + exp (
𝑔 − 𝜇(𝑠)
𝑇(𝑠)

)
,       (3)  

where the patient-specific parameters 𝜇 and 𝑇 are functions of their multi-omics state. By 

applying patient’s pre and mid treatment multi-omics information, the above dose-response 

relationship captures inter-patient heterogeneity.  

Applying the equations from Table S1 and Eq. (3), ARTE is built as a Markov Decision Process 

(MDP) as shown in Figure 5. ARTE takes in patient’s state (𝑠, 𝑐) and daily dose fractionation (𝑑) 

as the input and returns patient’s next state (𝑠’) and outcome (𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝) as the output. The 

state dynamics is modeled by the TF and the associated outcome by the RTOE. 
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A. Patient States 

Patient State, 𝑆 ⊂ ℝ𝑘, represents a patient’s information at a given time. It consists of patient’s 

features such as dosimetric, clinical, radiomics, genomics, and imaging information as listed in 

Tables S3 and S10. MDP assumes that patient’s state at time t+1 only depends on patient’s state 

and dose, 𝐷 ⊂ ℝ,  at time t. In KBR-ART, three time points are relevant as shown in Figure 4: (i) 

pretreatment (t=0), (ii) mid treatment (t = eval), and (iii) post treatment (t = adapt).  

Previously, deep regression models5,17 were applied to learn state transitions for all the patient 

features. In this work, however, to reduce modeling error, we consider the non-dosimetric 

variables at any time points as predictors for the treatment outcome and directly use the 

clinically measured values. We only estimate the state transition for dosimetric variables since 

the treatment outcome largely depends on the radiation.  Hence, we have divided the patients 

states into time-varying dosimetric variables, 𝑆 ⊂ ℝ𝑚, and a set of other fixed multi-omics 

covariates, 𝐶 ⊂ ℝ𝑘−𝑚. A complete patient’s state is given by (𝑠, 𝑐) ∈ 𝑆 × 𝐶. 

B. Transition Function (TF) 

𝑇𝐹: 𝑆 × 𝐷 →  𝑆, predicts the next state, 𝑠𝑡+1 for patients in state, 𝑠𝑡, under given dose, 𝑑𝑡+1. We 

have used two TFs for the dosimetric variables, tumor gEUD and normal tissue gEUD. We 

empirically found that deep model-based TF for gEUDs does not always maintain the causal 

monotonic relationship. Thus, we applied the well-known LQL based relationship from Eq. (S1) 

to guarantee an increasing monotone relationship between the dose applied and dose 

absorbed as presented in Eq. (1) and Eq. (2).   
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Figure 6: Two GNN based RT Outcome Estimator Architectures. A Single Graph Neural Network 

(GNN) has an input layer for graph input, graph convolution layers for graph embedding, a global mean 

pool layer, and a fully connected classifier layer. Generalized logistic function guided double GNN 

(GLoGD-GNN) has two Single GNNs fed into a 2-parameter logistic function. GLoGD-GNN takes in gEUD 

as the argument. 

C. RT Outcome Estimator (RTOE) 

RTOEs, 𝑇𝐶𝑃: 𝑆 × 𝐶 → [0,1] and 𝑁𝑇𝐶𝑃: 𝑆 × 𝐶 → [0,1], estimate 𝑡𝑐𝑝 and 𝑛𝑡𝑐𝑝 for the patient’s state, 

(𝑠𝑡+1, 𝑐). In this work, we have applied GNN as the RTOE as shown in Figure 6. Each patient is 

assigned with a graph of features and then a binary classification is learned on the graph level. 

We first applied a single GNN for RTOE. While the performance is improved drastically 

compared to a fully connected classifier, the single GNN was found to not respect the 

monotonicity between the dose value and the outcome probability. To meet the monotonic 

relationship, we applied a double GNN architecture with a generalized logistic function named 

as generalized logistic function guided double GNN (GloGD-GNN).  
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Figure 7: Reward Function 3D Contour Plot. The reward function, 𝑟 = 𝑡𝑐𝑝(1 − 𝑛𝑡𝑐𝑝), smoothly raises 

toward its maximum value at (𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝) = (1, 0). AI’s goal is to find doses that will result in the maximum 

reward. 

D. Reward Function 

Reward function, 𝑅: [0,1] × [0,1] → ℝ, assigns a value to the (𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝) pair. The reward function 

is selected such that its optimization results in maximal 𝑡𝑐𝑝 and minimal 𝑛𝑡𝑐𝑝. We have adopted, 

𝑅 = 𝑡𝑐𝑝(1 − 𝑛𝑡𝑐𝑝), reward function for ARCliDS. As seen from Figure 7, it is smallest at the 

negative outcomes, {(𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝)} = {(0, 0), (0, 1), (1, 1)}, and largest at the positive outcome, 

(𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝) =  (1, 0). 

Additionally, a goal is defined. By default, the goal can be defined as 𝑡𝑐𝑝 > 50% and 𝑛𝑡𝑐𝑝 < 

50%, which rounds to positive outcome. Furthermore, goal based on population endpoints can 

be added. For NSCLC, a goal of 𝑡𝑐𝑝 > 70% and 𝑛𝑡𝑐𝑝 < 17.2 %, 17 and for HCC, 𝑡𝑐𝑝 > 90% and 

𝑛𝑡𝑐𝑝 < 25 % is added. 

Combining the reward and goal, the reward scheme for NSCLC and HCC is defined as following, 

𝑟𝑁𝑆𝐶𝐿𝐶 = {
𝑅 + 2,      if 𝑡𝑐𝑝 > 0.70 and 𝑛𝑡𝑐𝑝 < 0.172
𝑅 + 1,      if 𝑡𝑐𝑝 > 0.50 and 𝑛𝑡𝑐𝑝 < 0.50

𝑅,                                       otherwise
   

𝑟𝐻𝐶𝐶 = {
𝑅 + 2, if 𝑡𝑐𝑝 > 0.90  and 𝑛𝑡𝑐𝑝 < 0.25
𝑅 + 1,   if 𝑡𝑐𝑝 > 0.50  and 𝑛𝑡𝑐𝑝 < 0.50

𝑅,                                     otherwise
   

Note that goals might be unattainable for some patients. 
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Figure 8: Workflow of Optimal Decision-Maker (ODM). ODM is composed of a deep Q-network (DQN) 

and decision selector. Given a state (𝑠𝑡 , c), DQN yields a q (quality) value for the range of adaptive dose. 

The selector greedily selects the dose with the highest q-value. The ODM is trained by following the 

model-based reinforcement learning paradigm. In the Planning Phase, the ODM saves next states {𝑠𝑡+1} 

and associated rewards {𝑟𝑡+1} for all patient’s state {(𝑠𝑡 , 𝑐)} and the range of adaptive dose {𝑑𝑡}. In the 

Learning phase, a double DQN algorithm is applied on the memory.  

III. Optimal Decision Maker (ODM) 

We utilized a deep reinforcement learning algorithm for training the ODM. ODM is composed of 

a Q (quality) function, 𝐷𝑄𝑁: 𝑆 × 𝐶 → ℝ𝑑, and a selector. Given a patient's state 𝑠𝑡, deep Q-net 

generates a set of q-values, 𝑄 ⊂ ℝ𝑑, for a range of dose. Q-Net maps k-dimensional state space 

to d-dimensional action (dose-decision) space. During operation mode, it simply follows greedy 

policy and selects the dose 𝑑𝑡
∗ having the maximum q-value. For training, we have adopted a 

model-based RL paradigm that is divided into two phases: Planning and Learning, as shown in 

Figure 8. During Planning, an exhaustive search is carried out where all patient's states (𝑠𝑡  , 𝑐) 

and the range of adaptive dose 𝑑𝑡 are fed into the ARTE and the resulting states 𝑠𝑡+1, and 

rewards 𝑟𝑡+1 are saved into the Memory. During Learning, the DQN is trained via double DQN 

algorithms24 using the Memory as a one-step optimization problem. 
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Figure 9: Model Uncertainty via Statistical Ensemble. We trained 𝑛 identical models. The mean and 

covariance (or standard deviation) of the output distribution captures the model output and model 

uncertainty. For RTOE’s probability outputs, we present the uncertainty estimates as the covariance and 

for ODM dose recommendations, we present the uncertainty estimates as the standard error of mean. 

IV. Uncertainty Estimate via Statistical Ensemble 

Model uncertainty is estimated using Statistical Ensembling. The statistical ensemble technique 

trains several identical models and finds averages and deviations of the prediction. This method 

estimates uncertainty purely based on the trained model. Additionally, this also helps with 

desensitizing ARCliDS to the noise associated with the stochastic optimization algorithm used 

by NNs. NNs utilize a large number of randomly initiated weights and as a result, learned 

weights are different from model to model25. ARCliDS presents the average prediction 𝜇 as an 

expected value, and the covariance 𝑐𝑜𝑣 as an uncertainty estimation as shown in Figure 9. For 

ODM, standard deviation 𝜎 is used as the uncertainty estimate. 

V. Analysis 

ARCliDS was trained and validated on two different use cases from two different types of RT 

treatments. The first use case is an adaptive RT clinical trial of NSCLC patients, and the second 

use case is an adaptive SBRT clinical trial. After feature selections, we first built five ARTEs for 

each disease using the dataset. We then generated 10,000 synthetic patients using a generative 

adversarial network (GAN)26. Five ODMs were trained using the five ARTEs and 4,000 randomly 

chosen patients from the pool of the 10,000 synthetic patients. The trained ODM models were 

then validated on the original dataset. 

Since there is no ground truth of what an optimal radiation dosage for a certain outcome would 

be, our evaluations are based on two metrics. The first metric is root mean square difference 

(RMSD) value between the ODM recommendation and the retrospective clinical decision used in 

treatment planning. However, since RMSD is a symmetric metric, i.e., it cannot differentiate a 

higher dose from a lower dose recommendation compared to the clinical decision, we separated 

the positive and negative clinical outcomes for additional insight. For the positive clinical 

outcome, a lower RMSD indicates agreement with the good clinical decisions. For the bad 

clinical outcome, additional comparison is needed. For this purpose, we have adopted a second 
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metric for self-evaluation as presented in Table 1. The self-evaluation scheme is also based on 

the assumption that increasing radiation results in a higher value for both TCP and NTCP. Using 

this assumption, we can further evaluate the recommendations for patients with negative clinical 

outcome. 

 

Self-Evaluation Scheme  

Positive Clinical Outcome Negative Clinical Outcome  

TC NTC Relation Remark TC NTC Relation Remark   

1 0 |𝐴𝐼 − 𝐶𝑙| ≤ 10% 𝑜𝑓𝐷𝑚𝑎𝑥 Good 0 0 𝐴𝐼 ≤ 𝐶𝑙 Bad   

1 0 |𝐴𝐼 = 𝐶𝑙| > 10% 𝑜𝑓𝐷𝑚𝑎𝑥 Not Sure 0 0 𝐴𝐼 > 𝐶𝑙 Good   

0: no event, 1: event 

Abbreviations: Al, ARCliDS recommendation; Cl, 

Clinical decision; TC, Tumor control; NTC, 

radiation-induced normal tissue complication; 

𝐷𝑚𝑎𝑥 : Maximum Dose Value used in modeling 

0 1 𝐴𝐼 < 𝐶𝑙 Good   

0 1 𝐴𝐼 ≥ 𝐶𝑙 Bad   

1 1 𝐴𝐼 < 𝐶𝑙 Good   

1 1 𝐴𝐼 ≥ 𝐶𝑙 Bad   

 

Table 1. Self-Evaluation Scheme.  

Evaluation scheme for AI recommendation is based on the positive relation between radiation dose and 

treatment outcomes, i.e., both TCP and NTCP increases with an increase in radiation dose. Here TC and 

NTC are clinical treatment outcome. TC= 1 and NTC = 0 are the only clinically positive outcome. For a 

patient with known treatment outcome, we can evaluate an AI recommendation by comparing it with the 

retrospective clinical decision. For instance, for a patient with TC = 0 and NTC = 0, a higher dose 

recommendation is good, while for a patient with TC = 1 and NTC = 1, a lower dose recommendation is 

good, and for a patient with TC=0, NTC=1, a lower dose recommendation is good. For the clinically 

positive cases, we cannot judge for sure if a recommendation is good unless it is within a window of the 

clinical dose decision. We have set the window to be 10% of the maximum dose used in the modeling. 

 

Additionally, we present a comparison for two different ARCliDS models. The first is built with 

Single GNN as RTOE and fully connected double deep Q-network as ODM (Single GNN RTOE+ 

DDQN ODM) and the second with GloGD GNN as RTOE and fully connected double deep Q- 

network as ODM (GLoGD GNN RTOE + DDQN ODM). 
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Results  

The main results are summarized and presented in Figures 10 and 11 and in SM sections S7.5 

and S8.5. For the NSCLC patients, the overall RMSDs between the two ARCliDS models’ average 

recommendation and reported clinical decisions, ordered as GLoGD GNN RTOE + DDQN ODM 

and Single GNN ROTE +DDQN ODM, were 0.61 ± 0.03  Gray/fraction [Gy/frac] (mean±sem) vs 

0.97 ± 0.12 Gy/frac, respectively. The overall Self-Evaluation results were Good: 55% vs 39%, Bad: 

13% vs 21%, and Not Sure: 13% vs 40%, respectively.  The RMSDs for patients with positive 

clinical outcomes were 0.66 ± 0.02 Gy/frac vs 0.96 ± 0.11 Gy/frac respectively, and the Self-

Evaluation results were Good: 36% vs 18%, and Not Sure: 82% vs 64%, respectively. The RMSDs 

for patients with negative clinical outcomes were 0.55 ± 0.05 Gy/frac vs 0.97 ± 0.12 Gy/frac, 

respectively, and the Self-Evaluation results were Good: 74% vs 59%, and Bad: 26% vs 41%, 

respectively. 

For the HCC patients, the overall RMSDs were 2.96 ± 0.42 Gy/frac vs 4.75 ± 0.16 Gy/Frac, 

respectively. The overall Self-Evaluation results were Good: 46% vs 23%, Bad: 11% vs 14%, and 

Not Sure: 42% vs 62%, respectively.  The RMSD for patients with positive clinical outcomes were 

2.79 ± 0.50 Gy/frac vs 4.25 ± 0.26 Gy/frac, respectively, and the Self-Evaluation results were 

Good: 50% vs 26%, and Not Sure: 50% vs 74%, respectively. The RMSD for patients with negative 

clinical outcomes were 4.02 ± 0.23 Gy/frac vs 6.78 ± 0.35 Gy/frac, respectively, and the Self-

Evaluation results were Good: 30% vs 10%, and Bad: 70% vs 90%, respectively. 
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Figure 10. Comparison and analysis of 2 ARCliDS models trained and validated on Adaptive RT 

NSCLC patients. The top bar diagram presents RMSD, the middle bar diagram presents  

Self-Evaluation, and the bottom plot presents a visual comparison between the ARCliDS recommendation 

and clinical decision. The clinical decisions are color coded with the outcomes and the ARCliDS 

recommendations are color coded with the respective q-value. Qualitatively, the q-value can be 

considered as the AI confidence in its recommendations.  
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Figure 11. Comparison and analysis of 2 ARCliDS models trained and validated on Adaptive RT 

NSCLC patients. The top bar diagram presents RMSD, the middle bar diagram presents Self-Evaluation, 

and the bottom plot presents a visual comparison between the ARCliDS recommendation and clinical 

decision. The clinical decisions are color coded with the outcomes and the ARCliDS recommendations are 

color coded with the respective q-value. Qualitatively, the q-value can be considered as the AI confidence 

in its recommendations.  
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Discussion 
To our knowledge, there are software for ART27,28 but ARCliDS is the first interactive software 

dedicated to KBR-ART that will be available through a web portal. In this work, we have shown 

its applicability to adaptive RT and SBRT. However, ARCliD’s underlying technology can be 

generalized to any other DTR to optimize sequential decision-making with multi-omics data for 

deciding the order of treatments, including multi-modality treatment, given that an artificial 

treatment environment can be sufficiently modeled.  

We have implemented tools such as GAN and GNN and invented novel techniques such as 

GloGD-GNN to overcome data-related issues for developing ARCliDS. We applied GAN to learn 

the underlying patient’s feature distribution and generated 10,000 synthetic patients for training 

the ODM. We adopted GNN for modeling RTOE as exploiting the inter-relationship between the 

features can improve model prediction. Mathematically, the inter-relationship can be 

represented by a directed graph 𝐺(𝑉, 𝐸) where the nodes 𝑉 represent patient features and 

edges 𝐸 represent the relationships. Analyzing the inter-feature relationships before feeding it 

to the NN reduces the number of connections and hence simplify the learning process. As a 

novel approach, we applied GNN on the feature space as opposed to the sample space. As 

shown in the SM, every patient is represented by a directed graph of features, set by the 

treatment and disease type. RTOE is then designed as a graph classification problem where the 

node value differs from patient to patient.  

As seen from Figures 10 and 11, the models in descending order according to the RMSD and 

Self-Evaluation measures, for both NSCLC and HCC, are GLoGD GNN RTOE + DDQN ODM, and 

Single GNN RTOE +DDQN ODM. As expected, correction of RTOE with GLoGD architecture 

helps to maintain the monotonic relationship between the outcome probability and daily dose 

fractionation. An example is provided in Figures S7, S8, S20, and S21 and a detailed AUROCC 

analysis is presented in the SM. 

Our framework has some limitations. Clinically, RT dose adaptation can be performed in 

different ways: (1) change dose per fractions, and (2) change the number of fractions. For SBRT, 

the former is suitable, however for some diseases and modalities the latter may be more 

appropriate. For instance, when RT is combined with chemotherapy, increasing the number of 

fractions is preferred. Our framework only covers the former. ARCliDS uses several biomarkers 

such as cytokines as predictors. Due to the lack of standardization, biomarker levels of the same 

blood sample measured in two labs can be quite different also known as batch effect. So, 

biomarker levels of external dataset must be carefully examined before applying ARCliDS. For 

dosimetric predictor, we have used gEUD, however, for lung and liver, mean dose could also be 

applied. Another limitation is the number of NTCP’s considered in ARCliDS. In practice there may 

be more than 1 normal tissues of interest. For NSCLC, heart and lungs are the dose-limiting 

organs at risk (OAR). For HCC, although liver is usually the main OAR, in some patient, who has 

tumors near the intestine, intestine is also considered during designing the treatment plan. 

Finally, beside data-related shortcomings, ARCliDS prediction and recommendation uncertainty, 
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which is based on statistical ensembles, can be improved by training more models; however, this 

will require more computational power and time.  

Although we have the largest dataset of its kind, a larger sample size and balanced dataset will 

improve ARCliDS performance. We dedicate subsequent paragraphs to discuss data-related 

limitations, methods we implemented to overcome those limitations, and other possible 

solutions. 

The learning of an environment model is the bottle neck of ARCliDS. For learning a good ARTE, a 

sufficient sample size and a balanced dataset are necessary. In the adaptive HCC patient’s 

cohort, only 1 patient did not achieve local control. As a result, RTOE for TCP had an unusually 

high AUROCC uncertainty. Although we applied class-imbalance correction techniques such as 

SMOTE and weighted loss function, we witnessed that such techniques fall short in correcting a 

highly imbalanced dataset. In addition, the toxicity count was also low -- there were only 7 

patients that showed toxicity. While this is a clinically desirable result, it hinders the learning 

process and hampers model generalizability. To make the matter worse, patients with highest 

liver gEUD didn’t show toxicity as shown in Figure S19. This reflects inter-patient heterogeneity, 

where some patients have poor pre-treatment liver function, who at a higher risk of toxicity for 

lower dose. Nevertheless, we performed a hyperparameter search for maximizing the 

generalizability of ARTE. 

High noise-to-signal ratio due to inter-patient heterogeneity becomes even more pronounced 

with a small sample size. The medical field is especially doomed with a small sample size 

primarily due to the privacy issue29. Such issues make it difficult to learn correct trends in purely 

data-driven learning. We found that Single-GNN RTOE predicted unphysical trends between 

daily dose fractionation and TCP/NTCP. For correction, we applied a GLoGD-GNN architecture to 

infuse prior knowledge into the data-driven technique. We found that it corrects the trend and 

can also increase the model predictability.  Alternatively, distributive learning features such as 

federated learning can be added to ARCliDS to overcome the small sample size issue. In 

federated learning approach only the model parameters are shared and data stays within the 

firewall of individual institutions30. 

Sample size issue in training ODM can also be overcome by using synthetic patients. Since ODM 

of ARCliDS learns via model-based reinforcement learning, computationally the task of ODM is 

to learn ARTE. This can be considered as an interpolation problem in a continuous feature space. 

This problem can be tackled using brute-force by exhaustively selecting patient’s state. However, 

this assumes a uniform distribution which is generally not true. Therefore, we applied generative 

adversarial network (GAN) to learn the underlying patient’s feature distribution, as shown in SM 

and generated synthetic patient states for training the ODM. In principle, a conditional GAN31 

can be applied to generate patients states distribution along with the outcome, however, a low 

sample size coupled with severe class-imbalance makes it impossible to correctly learn the 

underlying conditional probability distribution.  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.23.22280215doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.23.22280215


22 
 

We found that the RMSD values for adaptive SBRT in HCC was higher than adaptive RT in 

NSCLC. There are three reasons for the higher RMSD value: (1) A larger range of adaptive dose 

values was explored for SBRT, i.e., 1 to 15 Gy/frac compared to 1.5 to 4 Gy/frac; given that the 

sample sizes are comparable, the datapoints for HCC are much sparser resulting in higher 

interpolation error; (2) most of the patients with a clinically negative outcome for SBRT received 

a lower adaptive dose than the positive case; this can confuse the RTOE, which assumes higher 

doses results in higher TCP and NTCP; (3) due to class-imbalance, the corrected GLoGD-GNN 

RTOE yielded a flatter monotonic relation than expected that did not spanned the whole 

probability space; we observed that the AI agent failed to satisfy the population-based goal of 

TCP > 90% and NTCP < 25%. So, we could set the computation goal of TCP >50% and NTCP < 

50%. A smaller RMSD value can be achieved with a large sample size and well-balanced dataset. 

In conclusion, we have built a user-friendly software for AI-assisted clinical decision-making and 

demonstrated its performance in adaptive RT. The underlying technology behind the software is 

generalizable to other sequential decision-making tasks in oncology. We employed GNNs to 

exploit the inter-feature relationship. We trained and validated our software in two different 

treatment types for two different diseases. We repeated the training and validation for 2 

different models to test our hypothesis of improved model performance. The results confirmed 

our hypothesis. Statistical Ensemble was adopted to assess the model uncertainty. 
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S1. Feature Selection and Graph Building via Markov Blanket Approach 

In this work, we adopted the feature graph from Yi et al.’s work on multi-objective Bayesian 

networks for radiotherapy outcome prediction1. The steps of building an appropriate multi-

objective Bayesian network (MO-BN) for joint prediction of TCP and NTCP include large-scale 

feature selection and network structure learning. The first step intends to identify important 

features from a high-dimensional dataset by exploring extended Markov blankets (MBs) of TCP 

and NTCP. An MB is an inner family found by constraint-based algorithms such as incremental 

association Markov blanket (IAMB) and Hiton approaches. The MB contains all variables carrying 

information about TCP and NTCP that cannot be obtained from any other variables. For each 

member in the MB of TCP and NTCP, a next-of-kin MB for this member can also be derived, 

which is combinedly known as extended MB. 

The second step is to combine the important features from the extended MBs and search for the 

best stable MO-BN for joint prediction. After accommodating radiobiologically plausible 

relationships based on reported literature, Tabu Search is employed to generate a stable MO-BN 

structure from 300 randomly generated bootstrap samples. Bayesian Dirichlet equivalent (BDe) 

that provides an inherent penalty for model complexity is used as a scoring function to obtain the 

stable MO-BN. However, an initial stable network may not be the best model for joint TCP and 

NTCP prediction due to unimportant or redundant features in it. So, a leaf node is found out by 

increasing the arc threshold in the MO-BN generation. After removing the leaf node, a stable MO-

BN can be generated again from Tabu Search. The process continues until the resulting MO-BN 

reaches its maximal prediction performance based on cross-validation. The network structure 

found for NSCLC and HCC are presented in Figures S5 and S18. 
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S2. ARCliDS Training Sequence 

1. Train Artificial Radiotherapy Environment (ARTE) via supervised learning using patient's 

feature and dose plan as the input, and corresponding clinical outcomes as the label.  

a. Model Transition Function (TF) to take in mid-treatment feature (𝑠𝑒𝑣𝑎𝑙) and 

predict after-treatment feature (𝑠𝑎𝑑𝑎𝑝𝑡) for the adaptation daily dose 

fractionation (𝑑𝑎𝑑𝑎𝑝𝑡) 

𝑇𝐹(𝑠𝑒𝑣𝑎𝑙 , 𝑑𝑎𝑑𝑎𝑝𝑡) → 𝑠𝑎𝑑𝑎𝑝𝑡 

 

More details are presented in Section S4. 

 

b. Train RT Outcome Estimators (RTOE) to estimate treatment outcome (𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝) 

for the predicted 𝑠𝑎𝑑𝑎𝑝𝑡 and covariate 𝑐 as a binary classifier as shown in Figure 

S1. 

𝑇𝐶𝑃(𝑠𝑎𝑑𝑎𝑝𝑡, 𝑐𝑒𝑣𝑎𝑙) → 𝑡𝑐𝑝, 𝑁𝑇𝐶𝑃(𝑠𝑎𝑑𝑎𝑝𝑡, 𝑐𝑒𝑣𝑎𝑙) → 𝑛𝑡𝑐𝑝 

 

More details are presented in Section S5. 

 

c. Design Reward Function that yields reward 𝑟 which increases with increasing 𝑡𝑐𝑝 

and decreases with increasing 𝑛𝑡𝑐𝑝. For instance:  

𝑟 = 𝑡𝑐𝑝(1 − 𝑛𝑡𝑐𝑝) 

 

2. Train Optimal Decision Maker (ODM) via deep reinforcement learning on a trained ARTE 

from step 1. 

a. Inputs 𝑠𝑒𝑣𝑎𝑙 , 𝑐, 𝑎𝑛𝑑  𝑑𝑎𝑑𝑎𝑝𝑡 to the ARTE and store 𝑠𝑎𝑑𝑎𝑝𝑡, 𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝 and 𝑟 for all 

GAN-generated synthetic patients 

ARTE({𝑠𝑒𝑣𝑎𝑙 , 𝑐, 𝑑𝑎𝑑𝑎𝑝𝑡}) → {𝑠𝑎𝑑𝑎𝑝𝑡, 𝑡𝑐𝑝, 𝑛𝑡𝑐𝑝, 𝑟}  

 

More details on GAN are presented in Section S6. 

 

b. Train ODM via Deep Q-learning as a one-step optimization process, i.e., one 

training episode for all patients representing the adaptive phase. 

argmax
𝜃

𝑄𝜃(𝑠𝑒𝑣𝑎𝑙 , 𝑄𝜃′(𝑠𝑒𝑣𝑎𝑙))  

 

More details are presented in Section S7. 
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Figure S1: Training RTOE as a binary classification. Here 𝜃 represent tunable weights, which is learned by 

minimizing the binary cross entropy loss function. In the case of graph neural networks, the features are 

input as a directed graph 𝐺(𝑉, 𝐸), where the nodes, 𝑉, represents the features, 𝑋 ⊂ ℝ𝑘×1 and edges, 𝐸, 

represents the inter-feature connections. Edges, 𝐸, are mathematically represented by adjacency matrix, 

𝐴 ⊂ ℝ𝑘×𝑘. During feedforward, the signal propagation is multiplied by the adjacency matrix given by 𝐻𝑖 =

𝜎(𝐴𝐻𝑖−1𝜃𝑖) for zero bias, where 𝜎 is the activation function, 𝜃𝑖 , is the weight of the ith hidden layer, and 

𝐻𝑖−1 is the matrix containing i-1st layer embeddings. Notice that multiplying by 𝐴 preserves the only 

important inter-feature connections and eliminates computational redundancies; each node embedding is 

computed only once in contrast to fully connected neural network. For our case, features 𝑋 is a 

concatenation of dosimetric variable, 𝑠, and other multi-omics covariate, 𝑐. Note, each patient is 

represented by a graph in the feature space and the binary classification is performed in the sample space 

as a graph classification problem2.  
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S3. Transition Function for generalized equivalent uniform dose (gEUD)  

GEUD absorbed by a patient must increase monotonically with increasing daily dose 

fractionation based on known principles of radiation biology3. To enforce this monotonic 

relation, we use a function of the form, 

𝑔(𝑁𝑖) − 𝑔(𝑁𝑖−1)

𝑁𝑖 −𝑁𝑖−1
∝

{
  
 

  
 

𝑑𝑖 (1 +
𝑑𝑖
𝛼
𝛽

)    for 𝑑𝑖 < 𝐷𝑇

𝐷𝑇 +
𝐷𝑇
2

𝛼
𝛽

+ (1 +
2𝐷𝑇
𝛼
𝛽

)(𝑑𝑖 − 𝐷𝑇)    for 𝑑𝑖 ≥ 𝐷𝑇

(𝑆1) 

where, 𝑖 is the ith daily dose fractionation, 𝑔 stands for gEUD, N stands for number of daily dose 

fractions, 𝑑 stands for amount of dose fractions, 𝐷𝑇 stands for threshold dose related to the 

linear-quadratic-linear (LQL) model, and 𝛼/𝛽 ratio is a parameter that differentiates tissue type. 

Figure S2: Transition Function for gEUD. Eval stands for the Evaluation Phase and adapt stands for the 

Adaptation Phase. Repeated from Figure 4 from the main text for clarity. 

As shown in Figure S2, for our case, two relations arise from relation (S1), as follows: 

𝑔𝑎𝑑𝑎𝑝𝑡 − 𝑔𝑒𝑣𝑎𝑙

𝑁𝑎𝑑𝑎𝑝𝑡 − 𝑁𝑒𝑣𝑎𝑙
∝

{
  
 

  
 

𝑑𝑎𝑑𝑎𝑝𝑡 (1 +
𝑑𝑎𝑑𝑎𝑝𝑡
𝛼
𝛽

)    for 𝑑𝑎𝑑𝑎𝑝𝑡 < 𝐷𝑇

𝐷𝑇 +
𝐷𝑇
2

𝛼
𝛽

+ (1 +
2𝐷𝑇
𝛼
𝛽

) (𝑑𝑎𝑑𝑎𝑝𝑡 − 𝐷𝑇)    for 𝑑𝑎𝑑𝑎𝑝𝑡 ≥ 𝐷𝑇

, (𝑆2) 
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And, 

𝑔𝑒𝑣𝑎𝑙 − 𝑔0
𝑁𝑒𝑣𝑎𝑙 − 𝑁0

∝

{
  
 

  
 

𝑑𝑒𝑣𝑎𝑙 (1 +
𝑑𝑒𝑣𝑎𝑙
𝛼
𝛽

)    for 𝑑𝑒𝑣𝑎𝑙 < 𝐷𝑇

𝐷𝑇 +
𝐷𝑇
2

𝛼
𝛽

+ (1 +
2𝐷𝑇
𝛼
𝛽

)(𝑑𝑒𝑣𝑎𝑙 − 𝐷𝑇)    for 𝑑𝑒𝑣𝑎𝑙 ≥ 𝐷𝑇

.  (𝑆3) 

where, 𝑔 stands for gEUD, 𝑁 for 𝑛th daily dose fractions, 𝑑 for dose fractions, 𝐷𝑇  for threshold 

doses, and 𝛼/𝛽 ratio is a tissue-specific parameter. The subscript 0, eval, and adapt of 𝑁 and 𝑔 

corresponds to pre-, mid-, and after-treatment, respectively while 𝑑𝑒𝑣𝑎𝑙 and 𝑑𝑎𝑑𝑎𝑝𝑡 corresponds 

to applied daily dose fractionations during the evaluation phase and adaptive phase, 

respectively.  

Furthermore, four scenarios can arise. The four different gEUD transition functions can be 

derived by taking the ratios of relations (S2) and (S3) as presented in Table S1.  

Table S1: Transition Function for final gEUD (i.e., 𝑔𝑎𝑑𝑎𝑝𝑡) 

𝒈𝒂𝒅𝒂𝒑𝒕= 𝑑𝑎𝑑𝑝𝑎𝑡 < 𝐷𝑇 𝑑𝑎𝑑𝑎𝑝𝑡 ≥ 𝐷𝑇 

𝑑𝑒𝑣𝑎𝑙
< 𝐷𝑇 

𝑔𝑒𝑣𝑎𝑙 (1+ (
𝑛𝑎𝑑𝑎𝑝𝑡

𝑛𝑒𝑣𝑎𝑙
)(
𝑑𝑎𝑑𝑎𝑝𝑡 

𝑑𝑒𝑣𝑎𝑙
)(

𝑑𝑎𝑑𝑎𝑝𝑡 +
𝛼
𝛽

𝑑𝑒𝑣𝑎𝑙 +
𝛼
𝛽

)) 

 

𝑔𝑒𝑣𝑎𝑙

(

 
 
1 + (

𝑛𝑎𝑑𝑎𝑝𝑡

𝑛𝑒𝑣𝑎𝑙
)(

𝛾𝑑𝑎𝑑𝑎𝑝𝑡 − 𝐷𝑇
2

𝑑𝑒𝑣𝑎𝑙 (𝑑𝑒𝑣𝑎𝑙 +
𝛼
𝛽
)
)

)

 
 

 

 

𝑑𝑒𝑣𝑎𝑙
≥ 𝐷𝑇 

𝑔𝑒𝑣𝑎𝑙

(

 
 
1 + (

𝑛𝑎𝑑𝑎𝑝𝑡

𝑛𝑒𝑣𝑎𝑙
)(

𝑑𝑎𝑑𝑎𝑝𝑡 (𝑑𝑎𝑑𝑎𝑝𝑡 +
𝛼
𝛽
)

𝛾𝑑𝑒𝑣𝑎𝑙 − 𝐷𝑇
2 )

)

 
 

 𝑔𝑒𝑣𝑎𝑙 (1 + (
𝑛𝑎𝑑𝑎𝑝𝑡

𝑛𝑒𝑣𝑎𝑙
)(
𝛾𝑑𝑎𝑑𝑎𝑝𝑡 − 𝐷𝑇

2

𝛾𝑑𝑒𝑣𝑎𝑙 − 𝐷𝑇
2 )) 

𝑛𝑎𝑑𝑎𝑝𝑡 ≡ 𝑁𝑎𝑑𝑎𝑝𝑡 − 𝑁𝑒𝑣𝑎𝑙 , 𝑛𝑒𝑣𝑎𝑙 ≡ 𝑁𝑒𝑣𝑎𝑙 −𝑁0, 𝛾 ≡
𝛼

𝛽
+ 2𝐷𝑇 , 𝑔0 = 0, 𝑁0 = 0 

 

Note: For traditional RT, only the first scenario is relevant. However, for SBRT, all four scenarios 

come into play.
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S4. RT Outcome Estimator (RTOE) 

S4.1 Generalized Logistic Function Guided Double GNN (GLoGD-GNN) for Monotonic TCP/NTCP  

Likewise, both TCP and NTCP must increase monotonically with increasing radiation dose. Due 

to the patient heterogeneity related noise in the data, RTOE composed of a single GNN classifier 

could not adequately represent the monotonic relationship. Thus, we developed a guided dual 

GNN architecture named GLoGD-GNN, which comprises of two GNNs, 𝜇𝐺𝑁𝑁 and 𝑇𝐺𝑁𝑁 that is fed 

into a generalized logistic function along with the 𝑔𝑎𝑑𝑎𝑝𝑡. GloGD-GNN can be summarized as 

follows, 

𝑡𝑐𝑝/𝑛𝑡𝑐𝑝 =
1

1 + exp (
𝑔𝑎𝑑𝑎𝑝𝑡 − 𝜇𝐺𝑁𝑁(𝑠𝑎𝑑𝑎𝑝𝑡)

𝑇𝐺𝑁𝑁(𝑠𝑎𝑑𝑎𝑝𝑡)
)

 

where, 𝜇𝐺𝑁𝑁 and 𝑇𝐺𝑁𝑁 are GNN’s with sigmoid output layer and takes in 𝑠𝑎𝑑𝑎𝑝𝑡 as input. GEUD 

𝑔𝑎𝑑𝑎𝑝𝑡 is min-max normalized before feeding it to the logistic function. During training, the 

weights of the GNN’s are updated alternately; when one is training, the other is kept frozen. 

S4.2 RTOE Hyper Parameter (HP) Tuning and Validation 

We performed a grid search for HP tuning. We used Adam optimizer for the optimization and 

Area Under the Receiver Operating Characteristic Curve (AUROCC) as the performance metric. 

We applied 10-fold stratified shuffle 80-20 split on the imbalanced dataset, where the data sets 

were stratified according to the binary outcome so that each test sets contained the same ratios 

of the outcome class. In addition, we randomly oversampled the minority class of each training 

split. Both training and validation dataset were batched and randomly sampled during model 

training. 

For the Single GNN architecture, we searched the following HP space:  

Optimizer learning rate = [0.0001, 0.0005, 0.001, 0.005],  

Number of nodes = [256, 128, 64], Training Epoch = [50, 100, 200, 300]  

For the GloGD GNN architecture, the HP search space was as follows:  

Optimizer learning rate for mu GNN = [0.0001, 0.0005, 0.001],  

Optimizer learning rate for T GNN = [0.0001, 0.0005, 0.001],  

Number of nodes = [256, 128, 64], Training Epoch = [100, 200, 300, 400] 
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After selecting the best HP that corresponded to the best average test AUROCC score, we reran 

validation using the best HP to test the reproducibility. The best HP and all of the original 

datasets were then used to train five RTOE models. The results from validation on the NSCLC 

and HCC datasets are summarized in Figure S3.  

 

Figure S3: RTOE model performance for NSCLC and HCC data in Area Under the Receiver Operating 

Characteristic Curve (AUROCC). The mean AUROCC value is the area under the mean true positive rate 

curve, while the standard deviation is calculated from the AUROCC of 10 individual model output. 

S5. Synthetic Patients via Generative Adversarial Network (GAN) 

To extend the sample size of our dataset, we generated 10,000 synthetic patients via 

Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP)4,5. We compared 

the distribution of synthetic patient with the original patient population data using the Jensen 

Shannon Divergence (JSD) metric as shown in the subsequent sections. JSD value of 0 means 

complete overlap and 1 means complete separation. We did not perform any statistical 

hypothesis test on the learned distribution as it is not necessary for the training of ODM. In 

principle, a uniform distribution works just as fine, however, with increase in computational 

complexity. Nevertheless, we ascertained the similarity by visual inspection and JSD. A 

comparison between the original and generated datasets are presented in Figures S13 and S26.  

We applied a four-layer deep neural network with 256 nodes for both the discriminator and 

generator. We designed the generator to take in a 64-dimension normally distributed random 

numbers. We applied ADAM optimizer for the training with the learning rate of 1E-4, 𝛽1 of 0.5, 

and 𝛽2 of 0.9 and trained the GAN for 500 epochs. To maintain the stability by keeping 

discriminator ahead, we trained the discriminator 5 times for generator’s every training epoch. 

As in the original work, we used a Gradient Penalty weight of 10 for our training. 
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S6. Double Deep Q-Learning for Optimal Decision Maker (ODM) 

ODM was trained using Double deep Q-learning (DDQN) algorithm. DDQN uses two neural 

networks, namely policy Q-net and target Q-net. This approach helps in correcting the 

overestimation of the q-values. We used a 5 layer deep 256 node wide architecture. For training 

parameters, batch size was set to 128, gamma (discount factor) to 0.8, Polyak factor to 0.99 

(used for updating the target net’s parameter) and Adam optimizer’s learning rate to 0.0005. 

For robustness, a planning and learning scheme were applied. Since in clinical setting, the 

physicians only get to select one action, we treated the problem as a one-step optimization 

problem, i.e., all episodes were terminated after one step. So, we performed an exhaustive 

search (i.e., explored all actions), before training the q-network. Note that this results in a greedy 

algorithm. 

In the planning phase, 4000 out of 10,000 synthetic patients were randomly selected and their 

next states for all possible actions were exhaustively found using ARTE and stored. Additionally, 

the reward values and binary information on where they met the goal outcome were also stored. 

Then the DDQN was trained for 300 epochs. Huber loss was used as the loss function for 

updating the policy Q-net and Polyak update us used for updating the target Q-net. 

The update rule for double deep Q-net learning is as follows, 

𝑌𝑡 ← 𝑅𝑡+1 + 𝛾𝑄𝑡(𝑆𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑑𝑄𝑝(𝑆𝑡+1, 𝑑; 𝑤𝑡),𝑤𝑡
−). 

Here, 𝑌𝑡 is the target value, 𝛾 is the discount factor, 𝑤𝑡 is the weights of policy net 𝑄𝑝, and 𝑤𝑡
− is 

the weights of the target network 𝑄𝑡. The policy net is updated with the target value every step 

via stochastic gradient descent. However, the target net is kept almost fixed, only updating in 

small increment by copying parameters from target net via Polyak averaging, i.e. 

𝑤𝑡+1
− ← 𝛼𝑤𝑡

− + (1 − 𝛼)𝑤𝑡 

where 𝛼 is the polyak factor.  

For quantifying model uncertainty (or decision confidence), we trained 5 identical models. 
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Use Case 1: NSCLC 

 

 

Figure S4: Clinical decision-making in NSCLC KBR-ART. In the evaluation phase, patients received 20 daily 

doses of preplanned fractions. After that the patients are evaluated, and an adaptive dose plan is 

designed and administered in 10 daily doses.   
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S7.1 Data Description 

Dense multi-omics information on 117 patients were available. Out of that, 67 patients had 

complete information.  

Table S2: NSCLC Patient Characteristics 

 

 

 

Variable Category Patient Count (n =67) 

Sex 
Male 51 

Female 16 

Age 
Median (Q1-Q3) 66 (59-73) 

Range 55 – 85 

Stage 

I 4 

II 6 

III 57 

Smoking 
Yes 65 

No 6 

COPD 
Yes 28 

No 39 

CVD 
Yes 22 

No 45 

Hypertension 
Yes 41 

No 26 

Histology 

Adenocarcinoma 15 

Squamous Cell Carcinoma 27 

Large Cell 0 

Poorly Differentiated 25 

Chemo 
Yes 57 

No 10 

Outcome 

LC = 0 20 

LC = 1 47 

RP2 = 0 51 

RP1 = 0 16 

COPD: Chronic obstructive pulmonary disease 

CVD: Cardiovascular Diseases 

LC: local control 

RP2: Radiation induced pneumonitis of grade 2 or higher 
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Figure S5: Directed graph showing the inter-relation between the NSCLC patient’s features. The nodes, 

which represent features, are color coded with the number of outgoing relationships. Pre stands for pre-

treatment observation, RD and slope stands for relative difference and change in feature value between 

pretreatment and mid-treatment observation, respectively. 
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Figure S6: Plots showing NSCLC population tumor gEUD vs observed local control and lung gEUD vs 

observed radiation induced pneumonitis of grade 2 or higher. This plot captures inter-patient 

heterogeneity which shows patient’s diverse treatment response. 
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Table S3: NSCLC Patients’ feature description. 

Patient Variable Biological/Clinical Characteristics 

Cytokines/Signaling molecule 

IL4 Interleukin 4 is a Th2 cytokines: (i) Regulates antibody production, hematopoiesis, 

and inflammation. (ii) Promotes the differentiation of naïve helper T cells into Th2 

cells. (iii) Decreases the production of Th1 cells.6–8 

IL15 Interleukin 15 is a Th2 cytokines: (i) Induces activation and cytotoxicity of NK 

(natural killer) cells. (ii) Activates macrophages. (iii) Promotes proliferation and 

survival of T and B- lymphocytes and NK cells.6–8 

IP10  IP10 (Interferon gamma-induced protein 10) is secreted in response to IFN- by 

various cells including monocytes, endothelial and fibroblasts. (i) Acts as 

chemoattractant for monocytes/macrophages, T cells, NK (natural killer) cells, and 

dendritic cells. (ii) Promotes T cell adhesion to endothelial cells. (iii) Antitumor 

activity (iv) Inhibition of bone marrow colony formation (v) Angiogenesis.6–8 

CD4 T helper cells are lymphocytes that strongly modulate the response of the immune system against 

cancer cells proliferation and tumor growth. They are classified into Th1 and Th2 cells. Th1 and Th2 cells 

generate Th1 and Th2 immune response by releasing cytokines. Th1 immune response is 

proinflammatory and Th2 immune response in anti-inflammatory. 

IFN-:  Th1 cytokines: (i) Enhances the microbicidal function of macrophages. (ii) Promotes the 

differentiation of naïve helper T cells into Th1 cells. (iii) Activates polymorphonuclear leukocytes, 

cytotoxic T cells, and NK cells. 6 

Tumor PET Imaging features/ Radiomics 

MTV Metabolic tumor volume was delineated from PET imaging using a method 

combining the tumor/aorta ratio auto segmentation and CT anatomy-based 

manual editing.9 

GLSZM-LZLGE Radiomics features: the large zone low gray-level emphasis (LZLGE) feature of a 

gray-level size zone matrix (GLSZM) is defined as ∑ ∑
𝑗2𝑝(𝑖,𝑗)

𝑖2
𝐿𝑧
𝑗=1

𝑁𝑔
𝑖=1

. refer to 

Appendix A5 of Carrier-Valliere’s thesis 10 for the Notations. 

GLSZM-ZSV  Radiomics features: the zone-size variance (ZSV) feature of a gray-level size zone 

matrix (GLSZM) is defined as  
1

𝑁𝑔×𝐿𝑧
∑ ∑ (𝑗𝑝(𝑖, 𝑗) − 𝜇𝑗)

2𝑗=1
𝐿𝑧

𝑖=1
𝑁𝑔

, refer to Appendix A5 of 

Carrier-Valliere’s thesis 10 for the Notations. 

Dosimetry 

Tumor gEUD  Generalized equivalent uniform dose (gEUD) of tumor converted from EQD2 

(Equivalent Dose at standard 2 Gy per fraction) dose distribution: 𝑔𝐸𝑈𝐷 =

(∑ 𝜈𝑖eqd2
𝑎

𝑖 )
1

𝑎 and eqd2 = 𝑁𝑓𝑟𝑎𝑐 × 𝑑 ×
𝑑+𝛼/𝛽

2+𝛼/𝛽
 where 𝛼/𝛽= 10Gy, is the radiation 

fractionation sensitivity of cell, a = -10 is an organ specific parameter, and 𝜈 is the 

fractional organ volume obtained from the 3D dose distribution 11 

Lung gEUD Generalized equivalent uniform dose (gEUD) of lung converted from EQD2 

(Equivalent Dose at standard 2 Gy per fraction) dose distribution: 𝑔𝐸𝑈𝐷 =

(∑ 𝜈𝑖eqd2
𝑎

𝑖 )
1

𝑎 and eqd2 = 𝑁𝑓𝑟𝑎𝑐 × 𝑑 ×
𝑑+𝛼/𝛽

2+𝛼/𝛽
 where 𝛼/𝛽= 4Gy, and a =1 11 

Genetics 

Cxcr1-Rs2234671  A SNP in the gene cxcr1, also known as Interleukin 8 receptor alpha (IL8RA), related 

to radiation induced toxicity in non-small cell lung cancer. 12 

Ercc2-Rs238406 A SNP in the gene ercc2 known to repair DNA excision and related to risk of lung 

cancer 13 
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Ercc5-Rs1047768 A SNP in the gene ercc5 also known to repair DNA excision and related to lung 

cancer susceptibility 14 

SNP: Single nucleotide polymorphism is a substitution of single nucleotide that occurs at a specific 

position in the genome via mutation. 

MicroRNA 

miR-191-5p miR-191 is abnormally expressed in many cancer-types which regulate vital cellular 

processes such as cell proliferation, differentiation, apoptosis, and migration by 

targeting important transcription factors, chromatin remodelers, and cell cycle 

associated gene. 15 

miR-20a-5p miR-20a has been found to be associated with lung cancer. It is encoded by a gene 

located on chromosome 13q31. It is involved in several oncogenic processes like 

cellular proliferation, angiogenesis, and apoptosis.16   

MicroRNAs are small non-coding RNAs that negatively regular target gene expression through mRNA 

degradation or translation inhibition.17 
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S7.2 GLoGD-GNN for Monotonic TCP/NTCP  

 

Figure S7: NSCLC outcomes estimate for adaptive dose ranging from 1.5 to 4.0 Gy/frac. The GLoGD-GNN 

correction successfully established a monotonic relationship for the NTCP. The model uncertainty is 

obtained from an ensemble of five RTOE model and presented as ±1 standard deviation. Note: the 

sample/patient IDs in the figures are arbitrary, unidentifiable, and meaningless and they were not known 

to anyone outside the research.
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 Figure S8: NSCLC outcomes estimate for adaptive dose ranging from 1.5 to 4.0 Gy/frac in the outcome 

space spanned by TCP and NTCP. Model uncertainty is obtained from an ensemble of five RTOE model 

and presented as an eclipse set by the Covariance matrix. In the left figure, NTCP is decreasing with 

increasing dose value. In the right figure, GLoGD-GNN correctly flipped the dose order i.e., NTCP is 

increasing with increasing dose value. Note: the sample/patient IDs in the figures are arbitrary, 

unidentifiable, and meaningless and they were not known to anyone outside the research. 
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S7.3 RTOE Hyper Parameter Tuning  

Tables S4-S7 lists the top 10 performing HP for the NSCLC dataset followed by receivers 

operating characteristics (ROC) for the best performing HP (marked in bold) shown in Figures 

S4-S12. To check for the reproducibility, ROC were generated by retraining the models with the 

best performing HP. The reported AUROC values are in the mean±stdev format, where the mean 

AUROCC value is the area under the mean true positive rate curve, while the standard deviation 

is calculated from the AUROCC of 10 individual model output. 

Table S4: Top 10 HP for NSCLC TCP (LC) with Single GNN 

 

Figure S9: 10-fold stratified shuffle 80-20 split ROC for NSCLC RTOE of TCP modeled with Single GNN 

architecture.  

HP # Opt lr Node Epoch 
Training AUC Avg Validation AUC 

Mean Stdev Mean Stdev 

1 0.0001 128 50 0.85 0.03 0.79 0.10 

2 0.0001 64 200 0.88 0.02 0.76 0.12 

3 0.0001 64 100 0.84 0.02 0.76 0.12 

4 0.0001 128 100 0.88 0.02 0.76 0.10 

5 0.0001 64 300 0.91 0.01 0.76 0.12 

6 0.0001 256 50 0.88 0.03 0.76 0.11 

7 0.0005 64 50 0.87 0.03 0.75 0.12 

8 0.0001 64 50 0.82 0.02 0.75 0.14 

9 0.0001 256 100 0.93 0.01 0.75 0.13 

10 0.0005 128 50 0.93 0.02 0.74 0.13 
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Table S5: Top 10 HP for NSCLC NTCP (RP2) with Single GNN 

 

 

 

 

 

 

 

 

Figure S10: 10-fold stratified shuffle 80-20 split ROC for NSCLC RTOE of NTCP modeled with Single GNN 

architecture. 

HP # Opt lr Node Epoch 
Training AUC Avg Validation AUC 

Mean Stdev Mean Stdev 

1 0.0001 64 50 0.77 0.04 0.75 0.13 

2 0.0001 128 50 0.83 0.04 0.72 0.17 

3 0.0001 64 200 0.86 0.03 0.67 0.18 

4 0.0001 64 100 0.82 0.03 0.67 0.18 

5 0.0001 128 100 0.88 0.03 0.66 0.18 

6 0.0001 256 50 0.87 0.02 0.64 0.18 

7 0.0005 64 50 0.88 0.03 0.64 0.17 

8 0.005 128 200 0.99 0.02 0.63 0.18 

9 0.0001 64 300 0.91 0.03 0.62 0.16 

10 0.001 64 50 0.93 0.02 0.62 0.18 
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Table S6: Top 10 HP for NSCLC TCP (LC) with GLoGD-GNN 

Figure S11: 10-fold stratified shuffle 80-20 split ROC for NSCLC RTOE of TCP modeled with GLoGD-GNN 

architecture. 

HP # Opt lr mu Opt lr T Node Epoch 
Training AUC Avg Validation AUC 

Mean Stdev Mean Stdev 

1 0.0001 0.0005 256 300 0.89 0.08 0.74 0.18 

2 0.0001 0.001 64 300 0.85 0.08 0.74 0.15 

3 0.0001 0.001 64 200 0.84 0.06 0.73 0.15 

4 0.0001 0.0005 64 100 0.83 0.03 0.72 0.15 

5 0.0001 0.0001 64 100 0.83 0.01 0.72 0.16 

6 0.0001 0.0005 128 400 0.88 0.08 0.72 0.16 

7 0.0001 0.0005 64 200 0.87 0.05 0.72 0.13 

8 0.0001 0.001 128 200 0.84 0.03 0.72 0.14 

9 0.0001 0.0005 128 200 0.85 0.05 0.71 0.15 

10 0.0001 0.0005 256 100 0.84 0.05 0.71 0.16 
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Table S7. Top 10 HP for NSCLC NTCP (RP2) with GLoGD-GNN 

 

 

Figure S12: 10-fold stratified shuffle 80-20 split ROC for NSCLC RTOE of NTCP modeled with GLoGD-

GNN architecture. 

 

 

 

 

 

HP # Opt lr mu Opt lr T Node Epoch 
Training AUC Avg Validation AUC 

Mean Stdev Mean Stdev 

1 0.0001 0.001 128 100 0.84 0.05 0.80 0.13 

2 0.0001 0.001 256 400 0.89 0.04 0.78 0.17 

3 0.0001 0.001 256 300 0.85 0.11 0.76 0.19 

4 0.0001 0.0001 256 400 0.88 0.07 0.76 0.19 

5 0.0001 0.001 64 100 0.85 0.05 0.75 0.16 

6 0.0001 0.0005 256 400 0.85 0.11 0.74 0.16 

7 0.0001 0.0005 256 300 0.84 0.11 0.74 0.19 

8 0.0001 0.0005 128 400 0.83 0.10 0.74 0.20 

9 0.0001 0.001 256 100 0.84 0.08 0.74 0.16 

10 0.0001 0.001 128 200 0.84 0.05 0.73 0.20 
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 S7.4 Synthetic Patient Generation via WGAN-GP  

Figure S13: Distribution comparison of generated and original NSCLC dataset. Jensen Shannon 

Divergence metric between the distributions is provided for further insight on the differences.  
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Figure S13 contd: Distribution comparison of 

generated and original NSCLC dataset. Jensen 

Shannon Divergence metric between the 

distributions is provided for further insight on the 

differences. 
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S7.5 ODM Decision Analysis 

We trained the models on only the synthetic data and set aside the entire clinical dataset for 

testing. To further test the generalizability, each model was trained with 4000 out of 10,000 

randomly chosen synthetic patients. After learning, the models were tested on the clinical data. 

We compared two model architectures as listed in Table S8 in terms of Root Mean Square 

Difference (RMSD) and Mean Absolute Difference (MAD) calculated with respect to the reported 

clinical decisions. For a level comparison, all architectures were trained under identical 

conditions.  

Table S8: ODM Decision Analysis Results for NSCLC 

Error 

 [Gy/frac]  

Overall (n=67) 
Positive Clinical  

Outcome (n=33 (49%)) 

Negative Clinical 

Outcome (n=34 (51%)) 

RMSD MAD RMSD MAD RMSD MAD 

Single GNN RTOE 

+ DDQN ODM 
0.97 ± 0.12 0.85 ± 0.11 0.96 ± 0.11 0.85 ± 0.11 0.97 ± 0.12 0.84 ± 0.11 

GloGD GNN ROTE 

+ DDQN ODM 
0.61 ± 0.03 0.51 ± 0.03  0.66 ± 0.02 0.58 ±   0.02  0.55 ± 0.05 0.43 ± 0.04  

*Error ± SEM | Error between average recommendation and clinical decisions| ensemble of 5 models  

Figure S14: Mean Absolute Difference (MAD) of ARCliDS’s two model architecture for NSCLC patients 

grouped together according to the outcomes.  

Self-Evaluation  

[Count (%)] 

Overall (n=67) 
Positive Clinical 

Outcome (n=33 (49%)) 

Negative Clinical 

Outcome (n=34 (51%)) 

Good  Bad Not Sure Good 
Not 

Sure 
Good Bad 

Single GNN RTOE + 

DDQN ODM 
26 (39%) 14 (21%) 27 (40%) 6 (18%) 27 (82%) 20 (59%) 14 (41%) 

GloGD GNN ROTE + 

DDQN ODM 
37 (55%) 9 (13%) 21 (31%) 12 (36%) 21 (64%) 25 (74%) 9 (26%) 

0.85 0.85 0.84

0.51
0.58

0.43

0.00

0.40

0.80

1.20

Overall (n=67) Positive Clinical
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Negative Clinical

Outcome(n=34 (51%))

M
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E
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G
y
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c]
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MAD of 2 ARCliDS models - NSCLC (n=67) 
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S7.5.1 DDQN trained on Single GNN RTOE - NSCLC 

Figure S15:  A visual comparison between the AI recommendation generated by the Single-GNN RTOE + 

DDQN ODM architecture and clinical decision for 2 groups of NSCLC patients divided according to the 

clinical outcomes. The clinical decisions are color coded with the outcomes and the ARCliDS 

recommendations are color coded with the respective q-value. Qualitatively, the q-value can be 

considered as the AI confidence in its recommendations. 
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 S7.5.2 DDQN trained on GLoGD-GNN RTOE- NSCLC 

Figure S16:  A visual comparison between the AI recommendation generated by the GLoGD-GNN RTOE 

+ DDQN ODM architecture and clinical decision for 2 groups of NSCLC patients divided according to the 

clinical outcomes. The clinical decisions are color coded with the outcomes and the ARCliDS 

recommendations are color coded with the respective q-value. Qualitatively, the q-value can be 

considered as the AI confidence in its recommendations. 
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Use Case 2: HCC 
 

Figure S17: Decision-Making in HCC KBR-ASBRT. At first, patients are evaluated for the best course of 

treatment. Those that are not fit for adaptive SBRT receive traditional SBRT. The patients are further 

evaluated on whether they should receive the treatment in 3 or 5 fractions. The patients selected for 

Adaptive SBRT receive the first three fractions followed by a 1-month gap. After analyzing the trend in the 

multi-omics information, those deemed safe for further radiation recieves an adaptive dose (𝑑𝑎𝑑𝑎𝑝𝑡) for 2 

more fractions. 

As shown in the Figure S17, decision making in the Adaptive Arm is a two-step process. First, the 

patient is given 3 daily dose fractions and evaluated if they are safe for more radiation. Second, 

for those that are safe, there is a question of what the optimal adaptive dose should be. The first 

decision can be decided by an RTOE, while the second decision by another RTOE and an ODM.  

The Non-Adaptive RTOE is trained with input from non-adaptive patient’s pre and mid 

treatment information and label from their outcome. The Adaptive RTOE is trained on the 

adaptive patient’s dataset.  
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S8.1 Data Description 

Information on 292 patients with 360 tumor sites were available. The greater number of tumor 

sites is due to multiple tumor or recurrence. Out of that, 81 patients with 104 tumor sites had 

dense multi-omics data available and 71 patients with 99 tumor sites had complete information.  

 Table S9: HCC Patient Characteristics 

 

Table S10: HCC Patient count classified by the treatment outcome. 

 

For the training of Adaptive RTOE, we added the 3 non-adaptive patients to the list of adaptive 

patients to increase the LC=0 count. To train RTOE for LC, the data from patients with multiple 

tumor sites were considered as different datapoints. Due to small sample size of non-adaptive 

patients, we considered only the second decision-making problem for the adaptive patients.  

Variable Category Patient Count (n =71) 

Sex 
Male 56 

Female 15 

Age 
Median (Q1–Q3) 65 (59–75) 

Range 34–85 

Pre-Treatment Cirrhosis 
Yes 64 

No 7 

Portal Vein Thrombosis 
Yes 12 

No 59 

Pre-Treatment Number 

of Active Lesions 

Median (Q1-Q3) 1 (1–1) 

Range 1–4 

Adaptive-Arm 

Count 

HCC 

(n = 99) 

Count 

HCC –Non-Adaptive 

(n = 36) 

Count 

HCC –Adaptive 

(n = 64) 

LC = 0 4 3 1 

LC = 1 95 32 63 

Adaptive-Arm 

Count 

HCC 

(n = 71) 

Count 

HCC –Non-Adaptive 

(n = 30) 

Count 

HCC –Adaptive 

(n = 41) 

LT = 0 54 20 34 

LT = 1 17 10 7 

LC: local control 

LT: Liver Toxicity (≥ 2 points increase in Child Pugh Score during any point in the treatment.) 

Total patients = 71, Non-adaptive Patient = 30, Adaptive Patients = 41,  

For LC endpoints, patients with multiple tumor site were considered as different data points, Non-

adaptive Datapoints = 36, Adaptive Datapoints = 64.  

For LT endpoint, each patient was considered as one data point. 
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Figure S18: Directed graph showing the inter-relation between the HCC patient’s features. The nodes, 

which represent features, are color coded with the number of outgoing relationships. Pre stands for pre-

treatment observation, RD and slope stands for relative difference and change in feature value between 

pre-treatment and mid-treatment observation, respectively. 
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Figure S19: Plots showing HCC population GTV gEUD vs observed local control and Liver-GTV gEUD vs 

observed liver toxicity (LT). This plot captures inter-patient heterogeneity which shows patient’s diverse 

treatment response. Note that, for population trend for LT is opposite to expected trend for an individual 

patient, i.e., patients with highest Liver-GTV gEUD is not showing toxicity.  
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Table S11: HCC Patients’ feature description. 

Patient Variable Biological/Clinical Characteristics 

Clinical Factors 

Sex Biological male/female 

Age Pre-treatment Age 

Cirrhosis Late stage of scarring (fibrosis) of the liver 

ECOG-PS Eastern Cooperative Oncology Group Performance Status: ECOG-PS is a scale for 

assessing the level of function and capability of self-care. It ranges from integer 0 

to 4 where PS0 indicates fully active patients while PS4 indicates patients that are 

completely unable for physical activity and self-care.  

Active Liver 

Lesions 

Abnormal clumps of cells in the liver 

Albumin A globular protein produced in the liver that circulates throughout human body via 

plasma. Its synthesis is stimulated by hormones such as insulin and inhibited by 

pro-inflammatory substance such as IL6 and TNF-𝛼.18 

Tumor PET Imaging 

GTV Gross tumor volume is the volume of the actual tumor. 

Liver-GTV Liver volume minus GTV. This provides the volume of the normal liver tissue. 

Dosimetry 

GTV gEUD  Generalized equivalent uniform dose (gEUD) of GTV converted from EQD2 

(Equivalent Dose at standard 2 Gy per fraction) dose distribution using the Linear-

Quadratic-Linear model. The model parameters used are 𝛼/𝛽 = 10 Gy, a=-20, and 

𝐷𝑇=20 Gy.11 

Liver-GTV gEUD Generalized equivalent uniform dose (gEUD) of liver volume minus GTV converted 

from EQD2 (Equivalent Dose at standard 2 Gy per fraction) dose distribution using 

the Linear-Quadratic-Linear model. The model parameters used are 𝛼/𝛽 = 2.5 Gy, 

a=1, and 𝐷𝑇=5 Gy.11 

Cytokines/Signaling molecule 

TGF-𝜷  Transforming growth factor beta is the prototype of TGF-𝛽 family that has diverse 

role in the control of cell proliferation and differentiation, wound healing and 

immune system, and pathology such as skeletal diseases, fibrosis, and cancer.19 

CD40L Cluster of Differentiation 40 receptor is a costimulatory molecule from the tumor 

necrosis factor receptor (TNF-R) family. CD40 binds with its ligand (CD40L) which is 

transiently expressed on T cells (immune cell) as well as other non-immune cells, 

under inflammatory conditions. This activates antigen presenting cells and other 

wide spectrum of molecular and cellular process. 20 

HGF Hepatocyte growth factor is a pleiotropic cytokine required for development of 

several organs. It is produced after injury of the organ tissue and promotes tissue 

repair. HGF promotes tissue repair through inhibition of apoptosis of epithelial and 

endothelial cells, and by counteracting several pro-apoptotic and fibrosis factors 

such as TGF-𝛽, IL-1𝛽, IL8, TNF-𝛼.21,22 
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S8.2 GLoGD-GNN for Monotonic TCP/NTCP  

Figure S20: HCC outcomes estimate for adaptive dose ranging from 1 to 15 Gy/frac. The GLoGD-GNN 

correction successfully established a monotonic relationship for the NTCP. The model uncertainty is 

obtained from an ensemble of five RTOE model and presented as ±1 standard deviation. Note: the 

sample/patient IDs in the figures are arbitrary, unidentifiable, and meaningless and they were not known 

to anyone outside the research.
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Figure S21:  NSCLC outcomes estimate for adaptive dose ranging from 1 to 15 Gy/frac in the outcome 

space spanned by TCP and NTCP. Model uncertainty is obtained from an ensemble of five RTOE model 

and presented as an eclipse set by the Covariance matrix. In the left figure, NTCP is decreasing with 

increasing dose value. In the right figure, GLoGD-GNN correctly flipped the dose order i.e., NTCP is 

increasing with increasing dose value. Note: the sample/patient IDs in the figures are arbitrary, 

unidentifiable, and meaningless and they were not known to anyone outside the research. 
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S8.3 RTOE Hyper Parameter Tuning 

Tables S12-S15 lists the top 10 performing HP for the HCC dataset followed by receivers 

operating curves (ROC) for the best performing HP (in bold) shown in Figures S22-S25. To check 

for the reproducibility, ROCs were generated by retraining the models with the best performing 

HP. The reported AUROCC values are in the mean±stdev format, where the mean AUROCC value 

is the area under the mean true positive rate curve, while the standard deviation is calculated 

from the AUROCC of 10 individual model output. 

Table S12: Top 10 HP for HCC Adaptive TCP with single-GNN 

 

 

 

 

 

 

 

 

Figure S22: 10-fold stratified shuffle 80-20 split ROC for HCC Adaptive RTOE of TCP modeled with single-

GNN architecture. Note: High Validation AUC deviation and relatively flatter AUC curve is due to severe 

class imbalance. 

HP # Opt lr Node Epoch 
Training AUC Avg Validation AUC 

Mean Stdev Mean Stdev 

1 0.005 64 200 0.99 0.00 0.76 0.31 

2 0.0001 64 100 0.99 0.00 0.74 0.31 

3 0.001 256 200 0.99 0.00 0.73 0.30 

4 0.001 128 300 0.99 0.00 0.73 0.32 

5 0.005 64 300 0.99 0.00 0.72 0.30 

6 0.001 256 100 0.99 0.00 0.72 0.33 

7 0.001 256 300 0.99 0.00 0.72 0.30 

8 0.001 256 50 0.99 0.00 0.72 0.33 

9 0.005 128 200 0.99 0.00 0.72 0.34 

10 0.0005 256 300 0.99 0.00 0.71 0.32 
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Table S13: Top 10 HP for HCC Adaptive NTCP with single-GNN 

 

 

 

Figure S23: 10-fold stratified shuffle 80-20 split ROC for HCC Adaptive RTOE of NTCP modeled with 

Single GNN architecture.  

 

HP # Opt lr Node Epoch 
Training AUC Avg Validation AUC 

Mean Stdev Mean Stdev 

1 0.005 128 100 0.99 0.02 0.81 0.13 

2 0.0001 128 300 0.99 0.00 0.80 0.12 

3 0.001 256 50 0.99 0.00 0.80 0.12 

4 0.001 256 300 0.99 0.00 0.80 0.14 

5 0.0001 128 200 0.99 0.00 0.78 0.11 

6 0.001 128 50 0.99 0.00 0.78 0.11 

7 0.005 64 50 0.99 0.01 0.78 0.15 

8 0.0005 256 100 0.99 0.00 0.78 0.12 

9 0.001 256 200 0.99 0.00 0.78 0.13 

10 0.005 64 100 0.99 0.00 0.78 0.17 
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Table S14: Top 10 HP for HCC Adaptive TCP with GloGD-GNN 

Figure S24: 10-fold stratified shuffle 80-20 split ROC for HCC Adaptive RTOE of TCP modeled with 

GLoGD-GNN architecture. Note: High Validation AUC deviation and relatively flatter AUC curve is due to 

severe class imbalance. 

 

 

 

  

HP # Opt lr mu Opt lr T Node Epoch 
Training AUC Avg Validation AUC 

Mean Stdev Mean Stdev 

1 0.0005 0.0001 256 300 0.92 0.13 0.77 0.21 

2 0.0005 0.0005 256 100 0.87 0.14 0.76 0.19 

3 0.0001 0.0005 256 200 0.89 0.20 0.75 0.21 

4 0.0001 0.001 256 400 0.85 0.22 0.73 0.21 

5 0.0001 0.001 128 100 0.91 0.15 0.72 0.20 

6 0.0001 0.0005 128 300 0.76 0.24 0.72 0.21 

7 0.0001 0.001 128 200 0.81 0.21 0.71 0.22 

8 0.0001 0.0005 256 300 0.94 0.15 0.71 0.21 

9 0.0005 0.0001 64 200 0.99 0.00 0.71 0.28 

10 0.0001 0.001 128 400 0.97 0.06 0.69 0.26 
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Table S15: Top 10 HP for HCC Adaptive NTCP with GloGD-GNN 

 

Figure S25: 10-fold stratified shuffle 80-20 split ROC for HCC Non-Adaptive RTOE of NTCP modeled with 

GLoGD-GNN architecture. 

  

HP # Opt lr mu Opt lr T Node Epoch 
Training AUC Avg Validation AUC 

Mean Stdev Mean Stdev 

1 0.0001 0.0005 256 100 0.98 0.02 0.68 0.21 

2 0.0001 0.0005 128 200 0.94 0.06 0.66 0.14 

3 0.0001 0.001 256 200 0.99 0.00 0.65 0.23 

4 0.0005 0.0001 64 100 0.98 0.02 0.64 0.23 

5 0.0001 0.001 64 400 0.93 0.07 0.63 0.19 

6 0.0001 0.001 128 200 0.95 0.05 0.62 0.18 

7 0.0001 0.0005 256 200 0.86 0.22 0.61 0.20 

8 0.0001 0.001 128 400 0.88 0.21 0.61 0.20 

9 0.0005 0.0001 128 100 0.78 0.23 0.61 0.21 

10 0.0005 0.0001 64 400 0.91 0.17 0.61 0.26 
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S8.4 Synthetic Patient Generation via WGAN-GP 
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Figure S26. Distribution comparison of generated and original HCC dataset. Jensen Shannon Divergence 

metric between the distributions is provided for further insight on the differences.  
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S8.5 ODM Decision Analysis 

Table S16: ODM Decision Analysis Results for HCC 

Error  

[Gy/frac]  

Overall (n=64) 
Positive Clinical Outcome 

(n=54 (83%)) 

Negative Clinical 

Outcome (n=10 (15%)) 

RMSD MAD RMSD MAD RMSD MAD 

Single GNN RTOE + 

DDQN ODM 
4.75 ± 0.16 3.69 ± 0.16 4.25 ± 0.26 3.34 ± 0.22 6.78 ± 0.35 5.60 ± 0.38 

GloGD GNN ROTE + 

DDQN ODM 
2.96 ± 0.42 2.31 ± 0.47  2.79 ± 0.50 2.10 ±   0.54  4.02 ± 0.23 3.46 ± 0.17  

Error ± SEM | Error between average recommendation and clinical decisions| ensemble of 5 models  

Figure S27: Mean Absolute Difference (MAD) of ARCliDS’s two model architecture for HCC patients 

grouped together according to the outcomes. 
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Self-Evaluation  

[Count (%)] 

Overall (n=64) 

Positive Clinical 

Outcome (n=54 

(83%)) 

Negative Clinical 

Outcome (n=10 

(15%)) 

Good  Bad 
Not 

Sure 
Good 

Not 

Sure 
Good Bad 

Single GNN RTOE 

+ DDQN ODM 
15 (23%) 9 (14%) 40 (62%) 14 (26%) 40 (74%) 1 (10%) 9 (90%) 

GloGD GNN ROTE 

+ DDQN ODM 
30 (46%) 7 (11%) 27 (42%) 27 (50%) 27 (50%) 3 (30%) 7 (70%) 
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S8.5.1 DDQN trained on Single GNN RTOE – HCC 

 

 

Figure S28:  A visual comparison between the AI recommendation generated by the Single-GNN RTOE + 

DDQN ODM architecture and clinical decision for 2 groups of HCC patients divided according to the 

clinical outcomes. The clinical decisions are color coded with the outcomes and the ARCliDS 

recommendations are color coded with the respective q-values. Qualitatively, the q-value can be 

considered as the AI confidence in its recommendations. 
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S8.5.2 DDQN trained on GLoGD-GNN RTOE - HCC 

 

 

Figure S29:  A visual comparison between the AI recommendation generated by the GloGD-GNN RTOE + 

DDQN ODM architecture and clinical decision for 2 groups of HCC patients divided according to the 

clinical outcomes. The clinical decisions are color coded with the outcomes and the ARCliDS 

recommendations are color coded with the respective q-values. Qualitatively, the q-value can be 

considered as the AI confidence in its recommendations. 
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S8.5.3 Experimentation with population-based reward goal for HCC 

Due to data-related issues, as described in the Discussion Section S10, both TCP and NTCP 

response estimated by the GloGD-GNN ROTE were flatter than expected. Due to a flatter NTCP 

response, which did not span the whole probability space, the population-based reward goal 

severely limited the AI dose recommendation. In this section, we present plots for three different 

reward goals. As seen from the plots, for ntcp < 25%, the AI recommended lower dose values. 

The best recommendation corresponded to tcp > 90% and ntcp < 40%, however, the overall 

RMSD was lower than tcp > 50% and ntcp <50%. 

1.  

 

Figure S30:  A visual comparison between the AI recommendation generated by the GloGD-GNN RTOE + 

DDQN ODM architecture and clinical decision for 2 groups of HCC patients divided according to the 

clinical outcomes. The ODM was trained with population-based reward goal of tcp > 90% and ntcp < 

25%. 

𝑟𝐻𝐶𝐶 = {
𝑅 + 2,   𝑖𝑓 𝑡𝑐𝑝 > 0.90  𝑎𝑛𝑑 𝑛𝑡𝑐𝑝 < 0.25
𝑅 + 1,    𝑖𝑓 𝑡𝑐𝑝 > 0.50  𝑎𝑛𝑑 𝑛𝑡𝑐𝑝 < 0.50
𝑅,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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2. 

 

 

 

Figure S31:  A visual comparison between the AI recommendation generated by the GloGD-GNN RTOE + 

DDQN ODM architecture and clinical decision for 2 groups of HCC patients divided according to the 

clinical outcomes. The ODM was trained with population-based reward goal of tcp > 50% and ntcp < 

25%. 

 

𝑟𝐻𝐶𝐶 = {

𝑅 + 2,   𝑖𝑓 𝑡𝑐𝑝 > 0.50  𝑎𝑛𝑑 𝑛𝑡𝑐𝑝 < 0.25
𝑅 + 1,    𝑖𝑓 𝑡𝑐𝑝 > 0.50  𝑎𝑛𝑑 𝑛𝑡𝑐𝑝 < 0.50
𝑅,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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3. 

 

Figure S32:  A visual comparison between the AI recommendation generated by the GloGD-GNN RTOE + 

DDQN ODM architecture and clinical decision for 2 groups of HCC patients divided according to the 

clinical outcomes. The ODM was trained with population-based reward goal of tcp > 90% and ntcp < 

40%. 

  

𝑟𝐻𝐶𝐶 = {
𝑅 + 2,   𝑖𝑓 𝑡𝑐𝑝 > 0.90  𝑎𝑛𝑑 𝑛𝑡𝑐𝑝 < 0.40
𝑅 + 1,    𝑖𝑓 𝑡𝑐𝑝 > 0.50  𝑎𝑛𝑑 𝑛𝑡𝑐𝑝 < 0.50
𝑅,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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