
 

 1 

Mapping associations of polygenic scores with autism and ADHD traits in a 

single city region 

Zoe E. Reed1,2*, Richard Thomas3, Andy Boyd3,4, Gareth J. Griffith1,3, Tim T. 

Morris1,3, Dheeraj Rai3,5,6, David Manley7,8, George Davey Smith1,3, Oliver S.P. 

Davis1,3,5,9. 

1) MRC Integrative Epidemiology Unit at the University of Bristol, UK.  

2) School of Psychological Science, University of Bristol, UK 

3) Department of Population Health Sciences, Bristol Medical School, University of 

Bristol, UK. 

4) ALSPAC, Department of Population Health Sciences, Bristol Medical School, 

University of Bristol, UK. 

5) National Institute for Health Research Biomedical Research Centre, University 

Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK. 

6) Avon and Wiltshire Partnership NHS Mental Health Trust. 

7) School of Geographical Sciences, University of Bristol, BS8 1SS, United Kingdom.   

8) Department of Urbanism, Delft University of Technology, The Netherlands 

9) Alan Turing Institute, London, UK 

Word count: 4,659 

Abbreviated title: Mapping genetic influences on autism and ADHD in a city region 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 5, 2024. ; https://doi.org/10.1101/2022.09.22.22280240doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.09.22.22280240
http://creativecommons.org/licenses/by/4.0/


 

 2 

Abstract 

Background: The genetic and environmental aetiology of autistic and Attention 

Deficit Hyperactivity Disorder (ADHD) traits is known to vary spatially, but does this 

translate into variation in the association of specific common genetic variants? 

Methods: We mapped associations between polygenic scores for autism and ADHD 

and their respective traits in the Avon Longitudinal Study of Parents and Children 

(N=4,255 to 6,165) across the area surrounding Bristol, UK, and compared them to 

maps of environments associated with the prevalence of autism and ADHD. 

Results: Our maps suggest genetic associations vary spatially, with consistent 

patterns for autistic traits across polygenic scores constructed at different p-value 

thresholds. Patterns for ADHD traits were more variable across thresholds. We 

found that the spatial distributions often correlated with known environmental 

influences. 

Conclusions: These findings shed light on the factors that contribute to the complex 

interplay between the environment and genetic influences in autism and ADHD traits. 

Keywords: Autism, ADHD, polygenic risk score, ALSPAC, spatial  
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Introduction 

The prevalence of both autism and Attention Deficit Hyperactivity Disorder (ADHD) is 

known to vary by location (Arns, Van Der Heijden, Arnold, & Kenemans, 2013; 

Chiarotti & Venerosi, 2020; Delobel-Ayoub et al., 2020; Hoffman et al., 2017; Vieira, 

Fabian, Webster, Levy, & Korrick, 2017). For example, both more commonly occur in 

areas of greater urbanicity, although evidence for this is less clear for ADHD than for 

autism (Chen, Liu, Su, Huang, & Lin, 2008; Marlene B. Lauritsen et al., 2014; 

Madsen, Ersbøll, Olsen, Parner, & Obel, 2015; Markevych et al., 2014a; Wu & 

Jackson, 2017). Autism appears to be more prevalent in areas with greater average 

socioeconomic position (SEP) and more readily available diagnostic services 

(Bakian, Bilder, Coon, & McMahon, 2015; Mazumdar, Winter, Liu, & Bearman, 2013; 

Van Meter et al., 2010). Some studies suggest lower ADHD prevalence in areas with 

greater solar intensity (Arns et al., 2013; Arns, Swanson, & Arnold, 2018), in line with 

evidence that lower vitamin D levels are associated with increased ADHD risk 

(Khoshbakht, Bidaki, & Salehi-Abargouei, 2018). Both traits also show strong genetic 

influence, with heritability estimated at around 80% (Faraone & Larsson, 2018; 

Larsson, Chang, D’Onofrio, & Lichtenstein, 2014; Rietveld, Hudziak, Bartels, van 

Beijsterveldt, & Boomsma, 2004; Tick, Bolton, Happé, Rutter, & Rijsdijk, 2016). 

Recent genome-wide association studies (GWAS) of autism (Grove et al., 2019) and 

ADHD (Demontis et al., 2019) have confirmed both are highly polygenic. Polygenic 

scores (PGS) for autism and ADHD constructed from associated variants have been 

shown to predict autistic and ADHD traits in other populations (Burton et al., 2018; 

M. J. Taylor et al., 2019).  
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It is currently unclear whether this genetic aetiology varies spatially in a similar way 

to prevalence. Previous research on autistic traits using twin data suggests there is 

broad spatial variation within countries in genetic and environmental influences 

(Davis, Haworth, Lewis, & Plomin, 2012; Reed et al., 2021). However, we do not yet 

know whether similar variation is apparent at higher spatial resolution within a single 

city region, or using known genetic variants associated with autism and ADHD. 

Here we used variants from the GWAS described above to construct PGS for 

participants in the Avon Longitudinal Study of Parents and Children (ALSPAC), a 

geographically clustered birth cohort. We conducted weighted analyses across a 

regular grid of spatial points covering the area surrounding the city of Bristol in the 

United Kingdom (UK), to examine high resolution spatial variation in associations 

between PGS and autism and ADHD traits. 
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Methods 

Cohort description 

ALSPAC initially recruited 14,541 pregnant women resident in the former county of 

Avon centred on the city of Bristol, UK with expected delivery dates between 1st 

April 1991 and 31st December 1992. Of these initial pregnancies, 13,988 children 

were alive at age 1. When the children were approximately age 7, additional eligible 

cases who had failed to join the study originally were recruited, resulting in a total 

sample size of 14,901 children (Boyd et al., 2013, 2019; Fraser et al., 2013). The 

study website contains details of all the data that is available through a fully 

searchable data dictionary and variable search tool 

(http://www.bristol.ac.uk/alspac/researchers/our-data/).  

Ethical approval for the study was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committees. Informed consent for the use 

of data collected via questionnaires and clinics was obtained from participants 

following the recommendations of the ALSPAC Ethics and Law Committee at the 

time. Consent for biological samples has been collected in accordance with the 

Human Tissue Act (2004). Participants included in our analyses were restricted to 

those residing in the area in and around Bristol when measures were obtained.  

Phenotypic measures 

Attention-deficit hyperactivity disorder traits 

We used parent responses on the Strengths and Difficulties Questionnaire 

hyperactivity/inattention subscale (Goodman, 1997), completed when children were 

a mean age of 9.64 (SD=0.12). This scale has good internal consistency 
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(Cronbach’s alpha of 0.78) (Mieloo et al., 2012), test-retest reliability (0.81) (Stone et 

al., 2015), sensitivity (75%) (Goodman, Ford, Richards, Gatward, & Meltzer, 2000) 

and specificity (84%) (Hall et al., 2019) for ADHD diagnosis. It can sufficiently 

distinguish between clinical and community samples (Vugteveen, de Bildt, 

Theunissen, Reijneveld, & Timmerman, 2021). The scale consists of the following 

five items: ‘Restless, overactive, cannot stay still for long’, ‘Constantly fidgeting or 

squirming’, ‘Easily distracted, concentration wanders’, ‘Think things out before acting’ 

(reverse scored), ‘Sees tasks through to the end. Good attention span’ (reverse 

scored). Responses are scored as ‘Not true’ (0), ‘Somewhat true’ (1) and ‘Certainly 

true’ (2), with a maximum total score of 10. The score distribution is presented in 

Supplementary Fig S1. 

Autistic traits 

We used two measures of autistic traits. The first, which we refer to as social autistic 

traits, was administered on a single occasion, at a mean age of 10.72 (SD=0.12). 

We used total scores from parent responses to the Social and Communication 

Disorders Checklist (SCDC) (Skuse, Mandy, & Scourfield, 2005). The SCDC has 

high internal consistency (Cronbach’s alpha of 0.93), test-retest reliability (0.81), 

sensitivity (90%) and specificity (69%) for an autism diagnosis (Skuse et al., 2005). It 

consists of 12 items, with responses scored as ‘Not true’ (0), ‘Quite/Sometimes true’ 

(1), and ‘Very/Often true’ (2), with a maximum total score of 24. The score 

distribution is presented in Supplementary Fig S2. 

The second measure, which we refer to as the autistic traits mean factor score, was 

derived from 93 measures (including SCDC measurements) obtained at multiple 

time points from age 6 months to 9 years (Steer, Golding, & Bolton, 2010). The 
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SCDC measure is a more specific measure of autistic social traits, but the autistic 

traits mean factor score encompasses a broader measure of autistic traits, and 

provides a useful test of the sensitivity of the results to changes in phenotypic 

measurement. Further details can be found in the Supporting Information (Section 1 

and Fig S3). We flipped the sign of the score so that a more positive score 

corresponds to a stronger indication of autistic traits. The phenotypic correlation 

between the two measures was 0.44. 

Covariates 

We included the child’s sex and age at assessment as covariates in analyses of 

social autistic and ADHD traits. For the autistic traits mean factor score we included 

sex, but not age since the score is a composite of measures at multiple time points. 

We also included the first 20 principal components (PCs) of population structure in 

our unweighted analyses to assess whether this may influence our findings. 

Location data and weightings 

We conducted analyses at a regular hexagonal grid of 1036 locations (see 

Supplementary Fig S4) across the ALSPAC recruitment area, comprising the three 

health districts that existed in the old county of Avon (Southmead, Frenchay, and 

Bristol and Weston District Health Authorities). This spatial resolution was chosen as 

it allowed a good trade-off between greater resolution and the number of data points 

manageable for analysis in a multi-step model where the ALSPAC team and the 

researchers exchanged datasets several times to allow the use of accurate spatial 

information from participants without it being released to researchers. See 

Supporting Information (Section 2) for further details. 
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Participants’ contributions to each analysis were weighted by a function of their 

Euclidean distance from the analysis location. Participants were assigned locations 

corresponding to the centroid of their residential postcode area at age 10. A 

postcode area groups a mean of 15 neighbouring properties and covers a mean 

area of 43,830m2. The weighting function is given below, where xi is the participant’s 

location, x is the analysis location, d is the Euclidean distance between these, and wi 

is the weight for each participant: 

𝑑 = (𝑥 − 𝑥!) + (𝑦 − 𝑦!) 

𝑤!(𝑥) =
1
𝑑".$ 

The power parameter we have used is 0.5 to allow for a trade-off between more 

accurate estimation of the association and accurately localising this, where estimates 

are smoothed somewhat towards population means whilst allowing for patterns of 

variation to be observed. This allowed each participant to contribute to each 

analysis, with participants living closer to an analysis location contributing greater 

weight to the analysis. 

Genetic data 

Genetic data for children and mothers were obtained from a combination of blood 

and buccal samples (see Supporting Information Section 3). After quality control and 

removing those who had withdrawn consent, there were 8,252 children and 7,914 

mothers with genotype data available.  
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Polygenic score construction 

The construction of PGS is described in detail in Supporting Information (Section 4). 

Briefly, we used Plink (version 2) (Purcell et al., 2007) to construct weighted PGS for 

each participant from GWAS summary statistics for ADHD (Demontis et al., 2019) 

and autism (Grove et al., 2019) by summing the number of risk alleles present for 

each SNP (0, 1 or 2) weighted by the effect of that SNP in the GWAS discovery 

sample. We generated maps for multiple PGS constructed at the p-value thresholds 

(pT) p <5x10-8, p <1x10-5, and p <0.5 in the discovery GWAS, and for the threshold 

that explained the most variance in the phenotype in the full, unweighted ALSPAC 

sample. We standardised PGS to z scores, so results are presented on the scale of 

standard deviation (SD) changes in PGS. 

Statistical analysis 

All analyses were conducted in R (V3.6.2). 

Spatial variation using weighted polygenic score analyses 

Initially we conducted analyses without weighting by location to obtain estimates for 

the association of the PGS with the phenotypes (see Supporting Information Section 

5). We then ran linear regression models for each of 1,036 locations, with 

participants’ contributions to each analysis weighted by the Euclidean distance from 

the analysis location. We compared the spatial distribution of results for different pT 

with the Lee statistic (spdep R package, version 1.1-2) (Bivand & Wong, 2018; S. Il 

Lee, 2001, 2004). This is a global bivariate spatial correlation test, which integrates 

an aspatial bivariate measure (Pearson’s correlation) and a univariate spatial 

measure (Moran’s I). It captures spatial co-patterning and therefore the extent to 
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which bivariate associations are spatially clustered. Results are interpreted as the 

spatial similarity of the two distributions (a combination of the correlation between the 

measures and spatial clustering). We have no strong hypothesis about the direction 

of effect and results in either direction were of interest. Therefore, p-values reflect 

two-tailed tests. 

Maps of environmental characteristics 

We examined several environmental variables previously found to be associated 

with the prevalence of autism and ADHD, as described in the introduction: population 

density (Donovan, Michael, Gatziolis, Mannetje, & Douwes, 2019; Marlene B. 

Lauritsen et al., 2014; Marlene Briciet Lauritsen, Pedersen, & Mortensen, 2005; 

Madsen et al., 2015; Markevych et al., 2014a; Vassos, Agerbo, Mors, & Bøcker 

Pedersen, 2016; Wu & Jackson, 2017); parental education level, neighbourhood 

educational attainment and SEP (Bakian et al., 2015; Hoffman, Kalkbrenner, Vieira, 

& Daniels, 2012; Russell, Ford, & Russell, 2015; Vieira et al., 2017); and low 

exposure to sunlight (Arns et al., 2013; Hastie et al., 2019; Vinkhuyzen et al., 2018).  

To assess whether these environmental characteristics were also correlated with 

differences in the strength of the association between polygenic scores for autism 

and ADHD and the phenotypes themselves, we created maps of each environmental 

measure over the same area, using data from external sources. We quantify these in 

our model by including measures of population density, average qualification level, 

level of urbanicity, the index of multiple deprivation (IMD) and hours of bright 

sunshine (see Supporting Information Section 6 and Supplementary Table 9). Data 

for population density and IMD were log transformed due to positive skews. We used 
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the Lee statistic to compare the spatial distributions of these environmental variables 

to the maps of variation in PGS association. 

Associations between polygenic scores and participation and migration measures 

To index sampling bias, we tested the association between children’s and mothers’ 

PGS, participation rates and migration out of the Avon area. Loss to follow-up could 

be associated with PGS for autism and ADHD, as suggested previously (A. E. Taylor 

et al., 2018). To assess this, we created measures of each child’s and mother’s 

participation in ALSPAC, up to child age 11 (see Supporting Information Section 7). 

For analyses using mother’s PGS we adjusted for mother’s age. 

Data availability 

ALSPAC data access is through a system of managed open access. Access can be 

applied for as detailed in the ALSPAC access policy. 

Code availability 

The analysis code used in this study is available upon request from the authors.
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Results 

Sample description 

After excluding those without the phenotypic, location and genetic data (for PGS) 

required, we included between 4,255 and 6,165 children in each analysis (see 

Supplementary Table S1). 

Population-level polygenic score analysis 

Results for population-level PGS analyses, with and without additional adjustment for 

20 PCs, are presented in Supplementary Tables S2, S3 and S4 for ADHD traits, 

social autistic traits and the autistic traits mean factor score, respectively. When 

adjusting additionally for the 20 PCs, effects are attenuated. The p-value thresholds 

that explain the most variance are 0.5 for ADHD traits (N=5,258; r2=0.011), 0.1 for 

social autistic traits (N=5,200; r2=0.00068) and 0.5 for the autistic traits mean factor 

score (N=7,505; r2=0.0012). We have generated maps for these pT along with the 

other selected pTs, resulting in 3 analyses for ADHD traits and the autistic mean 

factor score and 4 analyses for social autistic traits (Figs 1-3).  

Spatially weighted polygenic score analyses 

Maps of spatially weighted PGS for ADHD traits (N=4,309) are presented in Fig 1 (a-

c) (pT: 5x10-8, 1x10-5 and 0.5, respectively). From visual inspection it is difficult to 

recognise patterns across the thresholds used. However, there are a few areas that 

appear more consistent, for example within Bristol, the north-west generally has 

lower genetic influence whilst the south has higher genetic influence.  
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**FIGURE 1** 

Results for spatially weighted PGS for social autistic traits (N=4,255) are presented 

in the maps in Fig 2 (a-d) (pT: 5x10-8, 1x10-5, 0.1 and 0.5, respectively). These 

results appear more consistent across the different pT than for ADHD traits, even 

though the autistic traits PGS explains less variance than the ADHD PGS. We 

generally see higher effect estimates in the south-west and north-west of the region 

than in the east. Low estimates are also seen around the most south-west area and 

this is most apparent for the 0.5 pT. The area within the city of Bristol shows 

variation, with north-western areas of the city generally showing higher estimates 

compared to the south-eastern areas.  

**FIGURE 2** 

Results for spatially weighted PGS for the autistic traits mean factor score (N=6,165) 

are presented in the maps in Fig 3 (a-c) (pT: 5x10-8, 1x10-5 and 0.5, respectively). 

These results appear less consistent across the different pT than those for social 

autistic traits. However, there are some consistencies: the most south-westerly area, 

with a similar pattern to social autistic traits, is relatively higher at lower pT compared 

to other areas, and lower at the higher pT. The east has generally low values 

compared to the west and northern areas, similarly to social autistic traits. We also 

see within-city variation for Bristol, with the north-western areas showing higher 

estimates compared to the south-eastern areas of the city of Bristol at higher pT.  

**FIGURE 3** 

We compared maps across the different pT for each trait using Lee’s L statistic 

(Supplementary Table S5). As is apparent from visual inspection, results for ADHD 
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traits are not strongly spatially correlated across pT, although maps for pT 5x10-8 

and 1x10-5 are more correlated (Lee’s statistic=0.14, p=0.002) than maps for pT 

1x10-5 and 0.5 (Lee’s statistic=-0.008, p=0.07). For social autistic traits we observe 

stronger associations across all pT (Lee’s statistic=0.57 to 0.81, p<2x10-04), 

confirming the observed spatial consistency in the patterns. For the autistic traits 

mean factor score, correlations are much weaker (Lee’s statistic=-0.22 to 0.07, 

p<2x10-04). 

Risk factor maps and comparison of spatial distributions 

Maps of population density, average qualification level, IMD, level of urbanicity and 

hours of sunshine are shown in Fig 4 (a-e), respectively. Results for the Lee test 

comparing these maps with the PGS maps, at the pT explaining the most variance, 

are shown in Supplementary Table S6. To account for multiple testing, we applied a 

Bonferroni correction and considered a p-value <0.003 to be strong evidence of 

correlation. For ADHD traits, there is strong evidence of correlations with all 

environmental measures. Strong evidence of a positive correlation was found with 

average qualification level (Lee statistic=0.07, p<2x10-04) and negative correlations 

with the other measures (Lee statistic=-0.04 to -0.47, p<2x10-04), with the strongest 

correlation being with hours of sunshine. For social autistic traits, we found strong 

evidence of positive correlations with average qualification level (Lee statistic=0.07, 

p<2x10-04) and hours of sunshine (Lee statistic=0.57, p<2x10-04) and negative 

correlations with population density (Lee statistic=-0.11, p<2x10-04) and IMD (Lee 

statistic=-0.18, p<2x10-04). The autistic traits mean factor score showed strong 

evidence of a positive correlation with average qualification level (Lee statistic=0.13, 
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p<2x10-04) and negative correlation with IMD, urbanicity and hours of sunshine (Lee 

statistic=-0.05 to -0.19, p <2x10-04). 

**FIGURE 4** 

Polygenic scores and participation and migration measures 

There was strong evidence for a negative association of child’s ADHD PGS with 

child’s participation (ß=-0.30; 95% CI=-0.45, -0.15; p=9.05x10-05) and mother’s 

ADHD PGS with mother’s participation (ß=-0.35; 95% CI=-0.54, -0.16; p=2.72x10-04) 

(Supplementary Table S7). We did not find strong evidence of associations of either 

autism or ADHD PGS with the migration measures (see Supplementary Table S8). 
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Discussion 

We found spatial variation in genetic influences for both autistic and ADHD traits 

measured using PGS in a single city region. This corroborates previous research 

using twin analysis that identified spatial variation in the genetic influence of autistic 

traits on a national scale (Reed et al., 2021). Our results were consistent across 

different pT for social autistic traits, but less consistent for the autistic traits mean 

factor score and ADHD traits. 

This spatial variation in genetic influence on autism and ADHD traits (by which we 

mean the association between autism or ADHD PGS and these traits) supports 

interplay between genetic influence and geographical environments, indicative of 

gene-environment interactions or correlations. Despite the expected low predictive 

power of the PGS, the association between PGS for autism and ADHD with their 

phenotypic counterparts does vary spatially. This suggests that certain 

geographically distributed environments draw out or mask genetic influences on 

autism and ADHD. This highlights the importance of local context when conducting 

PGS studies, going beyond the typical population-level analyses. However, it is 

difficult to identify consistent patterns across the pT for ADHD. We note that 

confidence intervals for each point overlap with those of the corresponding points on 

the other pT maps, so despite appearances the maps are not necessarily 

inconsistent. This consistency may become clearer as GWAS of larger samples 

identify variants associated with autism and ADHD that explain a greater amount of 

variance in the phenotypes.  

We investigated specific environmental characteristics that may be correlated with 

this spatial variation in associations between PGS and respective traits. We found 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 5, 2024. ; https://doi.org/10.1101/2022.09.22.22280240doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.22.22280240
http://creativecommons.org/licenses/by/4.0/


 

 17 

strong evidence of spatial correlation between the variation in these PGS 

associations and environmental characteristics that had previously been associated 

with population prevalence, with the exception of population density for the autistic 

traits mean factor score, and urbanicity for social autistic traits. Many of these 

environmental characteristics are correlated, so the consistency of associations is 

reassuring. The relationships we observe with qualification level and IMD suggest 

that area level education and SEP may amplify genetic influences on these 

neurodevelopmental traits. This fits with previous phenotypic literature suggesting 

their prevalence is correlated with SEP (Bakian et al., 2015; Hoffman et al., 2012; 

Russell et al., 2015). Qualification level tends to be higher in less deprived areas, so 

the fact we observe opposite correlations for these with the PGS association maps 

fits with this relationship. 

We observe a strong relationship between the maps for PGS associations with social 

autistic traits and hours of sunshine, where there is greater genetic influence in areas 

with more sunshine. This may be linked to previous reports of a relationship between 

decreased vitamin D levels and increased prevalence of autism (Cannell, 2017; 

Hastie et al., 2019; B. K. Lee et al., 2019; Vinkhuyzen et al., 2018). Despite a similar 

association for prevalence (Arns et al., 2013), the correlation between maps for PGS 

associations with ADHD traits and annual sunshine was in the opposite direction. 

This is not inconsistent, because influences on prevalence and aetiology are not 

necessarily the same. But if true it would suggest a different mechanism of action for 

autistic and ADHD traits. However, as noted earlier, the maps for ADHD are not 

strongly correlated across thresholds (unlike for social autistic traits), so the results 

for ADHD should be interpreted with caution. We also found negative correlations 

between maps of genetic influence and maps of population density and urbanicity, 
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suggesting that the genetic variants are more predictive of these traits in rural areas. 

Alongside previous findings of higher prevalence for autism in more urban and 

densely populated areas (Marlene B. Lauritsen et al., 2014; Marlene Briciet Lauritsen 

et al., 2005; Wu & Jackson, 2017), this might suggest that the impact of urban living 

is a more direct environmental effect that makes genetic variation relatively 

unimportant. 

Limitations 

Whilst we observe spatial variation in genetic influences in this study, there are a few 

points to consider when interpreting these results. We found that greater polygenic 

risk for ADHD was associated with decreased participation for both children and 

mothers, in line with a previous study in ALSPAC (A. E. Taylor et al., 2018). 

Therefore, analyses including the ADHD PGS may be biased by selection on study 

participation, which could result in distorted estimates. The child participation 

measures will partially capture mother’s participation as well (e.g., child-based 

questionnaires completed by mothers), but due to the age we examined, there were 

few measures available that were completed by the child. Similarly, migration could 

plausibly occur due to underlying genetic risk for a trait in parents, which in turn 

could influence the spatial patterning for offspring genetic risk. However, as we do 

not find evidence of this, it is unlikely that this will be having a large effect on our 

findings. The ADHD PGS explained more variance in ADHD traits than the autism 

PGS with social autistic traits. This is in line with the phenotypic variance explained 

in the original articles: 5.5% for ADHD compared to 2.5% for autism. However, the 

variance explained in our study was very low, so the spatial variation in genotype 

may not reflect spatial variation in the phenotype for this reason. This is likely to 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 5, 2024. ; https://doi.org/10.1101/2022.09.22.22280240doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.22.22280240
http://creativecommons.org/licenses/by/4.0/


 

 19 

improve as GWAS become larger and more powered and future studies should 

explore this further. 

Although both autistic traits and ADHD vary in presentation across the lifespan, most 

of our measures were obtained at age 10. However, autism and ADHD are 

neurodevelopmental conditions with traits arising early so it is likely these will be 

apparent by the time of measurement. The autistic traits mean factor score also 

addresses this issue by incorporating measures taken from a range of time points 

throughout childhood. However, this mean factor score also has its own limitations. 

For example, because it is an average score it assumes that the measures all 

explain equal amounts at each time point, so we are assuming a lifetime spatial 

measurement invariance, which may not be the case. Additionally, the correlation 

with the SCDC measure is not strong, likely due to the measures capturing different 

aspects of autistic traits. 

There will be measurement error in the estimated effect sizes for individual genetic 

variants used to construct the PGS, which may reduce precision (Dudbridge, 2013), 

although the discovery GWAS samples were large, which helps to mitigate this 

issue. Similarly, there is likely to be a mixture of true and false positive associations 

in GWAS with many genome-wide significant hits. Modelling associations for a range 

of pT and observing consistent patterns, as we have, helps overcome this potential 

issue (Maher, 2015). Our analyses were conducted in a population sample of 

European ancestry, so results may not generalise to populations from other 

ancestral backgrounds (De La Vega & Bustamante, 2018). Assortative mating is also 

thought to be more common in autism (Nordsletten et al., 2016), which may bias 
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autism GWAS and therefore make the PGS less accurate (Brumpton et al., 2020). 

However, the exact impact this would have on our results is not clear. 

Conclusion 

In summary, our results demonstrate spatial variation in known genetic influences for 

both autism and ADHD traits in a single city region. This variation is associated with 

some of the environmental factors that are also associated with prevalence. Future 

research might examine these associations further along with a wider range of 

environmental variables. We hope that mapping the landscape of genetic influences 

may aid the identification of new spatially distributed environments that moderate 

genetic influences on autistic traits or ADHD. Identifying these factors and how they 

interact could one day lead to social policy interventions to improve outcomes for 

those with these developmental traits.  
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Key points 

• The prevalence of autism and ADHD vary spatially.  

• Our study highlights that genetic influences based on PGS also vary 

spatially. 

• This spatial variation correlates with spatial variation in environmental 

characteristics as well, which would be interesting to examine further. 

• Our findings have implications for future research in this area examining the 

factors that contribute to the complex interplay between the environment 

and genetic influences on autistic and ADHD traits. 
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Fig 1. Mapping the association of the polygenic score for ADHD with ADHD traits shows a lack of consistency in results across 

different p-value thresholds over the area surrounding Bristol, UK 
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Spatial variation in genetic influences ranging from low (blue) to high (red). Histograms show the distribution of effect estimates, coloured in the same way. 

The city of Bristol is outlined in white. 
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Fig 2. Mapping the association of the polygenic score for autism with social autistic traits shows consistent variation across the p-

value thresholds over the area surrounding Bristol, UK 

 

Spatial variation in genetic influences ranging from low (blue) to high (red). Histograms show the distribution of effect estimates, coloured in the same way. 

The city of Bristol is outlined in white. 
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Fig 3. Mapping the association of the polygenic score for autism with the autistic traits mean factor score shows some consistency 

in variation across the p-value thresholds over the area surrounding Bristol, UK 

 

Spatial variation in genetic influences ranging from low (blue) to high (red). Histograms show the distribution of effect estimates, coloured in the same way. 

The city of Bristol is outlined in white.
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Fig 4. Maps of population density (a), average qualification level (b), Index of Multiple 

Deprivation (IMD) (c), level of urbanicity (d) and hours of sunshine (e) (30-year 

annual average from 1981 to 2010) for the ALSPAC catchment area, in and around 

Bristol. 

 

The maps in the figures show a) log transformed population density (from 2001 census data) ranging 

from low (light blue) to high (dark blue), b) average qualification level (from 2001 census data) ranging 

from low (blue) to high (red), c) log transformed Index of Multiple Deprivation (IMD) (from 2000) 

ranging from low (light blue) to high (dark blue), d) level of urbanicity (from 2001 census data) 
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showing urban i.e., with a population greater than 10,000 (red), towns/fringe areas which included an 

settlement area classified as part of a small town or urban fringe (purple) and villages, which included 

dispersed dwellings, hamlets and villages (blue), the latter two classifications determined based on 

household densities and e) hours of sunshine (30-year annual average from 1981 to 2010) ranging 

from low (blue) to high (red). Histograms shows the distribution of the respective measures coloured 

in the same way. 
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