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Abstract  

 

Background: Pathological brain changes such as white matter hyperintensities (WMHs) occur 

with increased age and contribute to cognitive decline. Current research is still unclear regarding 

the association of amyloid positivity with WMH burden and progression to dementia in people 

with mild cognitive impairment (MCI).  

Methods: This study examined whether WMH burden increases differently in both amyloid-

negative (Aβ-) and amyloid-positive (Aβ+) people with MCI who either remain stable or progress 

to dementia. We also examined regional WMHs differences in all groups: amyloid positive (Aβ+) 

progressor, amyloid negative (Aβ–) progressor, amyloid positive (Aβ+) stable, and amyloid 

negative (Aβ–) stable. MCI participants from the Alzheimer’s Disease Neuroimaging Initiative 

were included if they had APOE ɛ4 status and if they had amyloid measures to determine amyloid 

status (i.e., positive, or negative). A total of 820 MCI participants that had APOE ɛ4 status and 

amyloid measures were included in the study with 5054 follow-up time points over a maximum 

period of 13 years with an average of 5.7 follow-up timepoints per participant. Linear mixed-

effects models were used to examine group differences in global and regional WMHs.  

Results: People who were Aß– stable had lower baseline WMHs compared to both Aß+ 

progressors and Aß+ stable across all regions. When examining change over time, compared to 

Aß– stable, all groups had steeper change in WMH burden with Aß+ progressors having the largest 

change (largest increase in WMH burden over time).  

Conclusion: These findings suggest that WMH progression is a contributing factor to conversion 

to dementia both in amyloid-positive and negative people with MCI.   
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1 Introduction 

 

Mild cognitive impairment (MCI) is characterized by declines in cognitive functioning that go 

beyond what is observed in normal aging, but do not interfere with activities of daily living 

(Petersen et al., 2014). People with MCI experience both an increased rate of cognitive decline 

and progress to dementia with a higher annual conversion rate compared to healthy older adults 

(Petersen, 2016; Petersen et al., 2014). While not everyone with MCI progresses to dementia, this 

stage of cognitive decline is often identified as a transitional stage between healthy aging and 

dementia. Much research has thus focused on studying people with MCI to identify who will 

eventually convert to dementia. More specifically, researchers endeavor to find early biomarkers 

in people with MCI who convert to dementia (hereafter referred to as progressive MCI, pMCI) 

that distinguish them from people with MCI who do not convert to dementia (hereafter referred to 

as stable MCI, sMCI). Identifying who will progress from MCI to dementia has been difficult in 

clinical practice because of the heterogeneous nature of MCI. However, one approach is to 

examine people with MCI who have biomarkers that increase their risk of developing dementia. 

For example, people with MCI who are also positive for beta-amyloid (Aβ) or pathologic tau, key 

early events in the pathophysiological process of Alzheimer’s disease (AD), are more likely to 

progress to AD and may be in the earliest symptomatic stages of AD (see Sperling et al., 2014 for 

a review).  

 Other pathological brain changes, such as white matter hyperintensities (WMHs), have 

been shown to contribute to healthy older adults’ risk for cognitive decline (Morrison et al., 2022) 

and progression to MCI or dementia (Bangen et al., 2018; Kim et al., 2015; Yoshita et al., 2006). 

WMHs are observed as increased signal in T2-weighted or fluid-attenuated inversion recovery 

(FLAIR) magnetic resonance images (MRIs). WMHs are used as a proxy for cerebrovascular 
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disease, a known contributor for cognitive decline and dementia (Abraham et al., 2016; Tamura & 

Araki, 2015; Van Der Flier et al., 2018). High WMH burden is associated with increased cognitive 

decline in MCI (Hirao et al., 2021; Kamal et al., 2022; Kim et al., 2015; Li et al., 2016) and 

increased rate of progression from MCI to dementia (Dadar et al., 2019). When observing pMCI 

in Parkinson’s disease (PD) dementia, people with PD-MCI who progressed to Parkinson’s disease 

dementia, at least 24 months later, had higher WMH volumes compared to PD-sMCI (Sunwoo et 

al., 2014). One study found that over an 18-month period, pMCI was associated with increased 

periventricular and deep WMHs compared to sMCI (Prasad et al., 2011). However, the sample 

size in this study was quite limited. In a much larger sample of 591 people with MCI, Dadar et al., 

(2019) observed that those with pMCI had increases in total WMH volume compared to sMCI 

(with mean follow-up times of 2-2.5 years). While these studies offer insight into the association 

between WMHs and MCI, the follow-up periods are quite short given that the annual conversion 

rate from MCI to dementia in community and clinic samples is only 3% and 13% , respectively 

(Farias et al., 2009). 

 Several other limitations exist in the current research examining the relationship between 

WMHs and progressive vs. stable MCI. These studies used a total WMH approach which captures 

overall lesion volume affecting the whole brain. Examining regional WMHs is important when 

examining conversion from MCI to dementia because different patterns of WMH accumulation 

are associated with different types of dementia. For example, a more widespread WMH 

accumulation in people with MCI is associated with progression to vascular dementia (Bombois 

et al., 2008) whereas posterior WMHs are associated with AD (Brickman, 2013; Habes et al., 

2018). These findings suggest that the evaluation of regional WMH differences may provide 

insight into the type of dementia someone with MCI will develop. Furthermore, previous studies 
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have not examined WMH differences between pMCI and sMCI who are Aβ+ and Aβ–. Those with 

MCI who are Aβ+ are on the AD trajectory, whereas Aβ– are more likely to develop other types 

of dementia. This difference in diagnostic outcomes may also influence WMH burden. Previous 

research examining amyloid positivity in mild amnestic type dementia found that those who are 

Aβ+ have increased WMHs compared to those who are Aβ–. Ultimately, while previous studies 

have observed that people with pMCI have increased WMH burden compared to sMCI, they have 

limited sample size, short follow-up times, have not examined WMH burden in a regional 

approach, and have not compared Aβ+ and Aβ– participants. More research is therefore needed to 

understand the association of amyloid positivity with WMH burden and progression to dementia 

in people with MCI. 

Using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the present 

study was designed to expand on the current research by examining differences in WMH burden 

between Aβ+ and Aβ– progressive and stable MCI participants over a follow-up period of 13 years 

(820 participants, with an average of 5.7 follow-up timepoints per participant). The goal of this 

study was to examine whether WMHs influence conversion to dementia in both amyloid negative 

and amyloid positive people with MCI. Additionally, we sought to examine how much of WMH 

progression is associated with amyloid positivity vs. vascular risk factors by including vascular 

risk factors into our models. This distinction between amyloid vs. vascular causes of WMHs is 

essential since many vascular risk factors associated with WMHs might be potentially treatable or 

preventable (Scott et al., 2015; Snyder et al., 2015; Yamada & Naiki, 2012). Therefore, if we 

observe that WMHs in these groups are associated with the vascular risk factors, then progression 

to dementia may be mitigated or prevented by treating these underlying risk factors.  
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2 Methods 

2.1 Alzheimer’s Disease Neuroimaging Initiative 

The data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to measure 

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The 

study received ethical approval from the review boards of all participating institutions. Written 

informed consent was obtained from participants or their study partner. Participants were included 

from all ADNI cohorts (ADNI-1, ADNI-2, ADNI-GO, and ADNI-3). 

 

2.2 Participants 

Participant inclusion and exclusion criteria are available at www.adni-info.org. All participants 

were between 55 and 90 years of age at the time of recruitment and exhibited no evidence of 

depression. MCI participants obtained scores between 24 and 30 on the Mini-Mental Status 

Examination (MMSE), 0.5 on the Clinical Dementia Rating (CDR), and exhibited abnormal scores 

on the Wechsler Memory Scale. Participants were only included if they had a reported 

Apolipoprotein E (APOE) ɛ4 status and if they had amyloid measures to determine amyloid status 

(i.e., positive, or negative).  A total of 820 MCI participants had both APOE ɛ4 status and amyloid 

measures and were thus included in the study with 5054 follow-up time points over a maximum 

period of 13 years with an average of 5.7 follow-up timepoints per participant. 
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MCI participants were divided into four groups: 1) amyloid positive (Aβ+) progressor, 2) 

amyloid negative (Aβ–) progressor, 3) amyloid positive (Aβ+) stable, 4) amyloid negative (Aβ–) 

stable. Both PET and CSF values were used to determine amyloid positivity in people with MCI 

because some participants had only one measurement available. Amyloid positivity was identified 

based on participants meeting one of the following criteria: 1) a standardized uptake value ratio 

(SUVR) of > 1.11 on AV45 PET (Landau et al., 2013), or 2) an SUVR of >1.2 using Pittsburgh 

compound-B PET (Villeneuve et al., 2015), or 3) an SUVR of ≥1.08 for Florbetaben (FBB) PET 

(S. Landau et al., 2011), or 4) a cerebrospinal fluid Aß1-42 ≤ 980 pg/ml as per ADNI 

recommendations. Participants were considered as a progressor if they had a diagnosis of dementia 

on their last follow-up visit and considered as stable if they still had a diagnosis of MCI on their 

last follow-up visit. The groups had the following number of participants: 1) Aß+ Progressor: 239 

with 1685 follow-ups (average follow-up times of 7.05 years), 2) Aß– Progressor: 22 with 140 

follow-ups (average follow-up times of 6.36 years), 3) Aß+ stable: 343 with 1984 follow-ups 

(average follow-up times of 5.65 years), and 4) Aß– Stable: 216 with 1291 follow-ups (average 

follow-up times of 5.98 years). Only participants that had multiple follow-up visits were included 

in the study. To ensure that the minimum duration of follow-up time does not impact our study 

findings, the models were repeated including participants with a minimum of one, two, and three 

years of follow-up. 

 

2.3 Structural MRI acquisition and processing  

Standardized acquisition protocols designed and implemented by ADNI were used for scanning of 

all participants. Detailed MRI protocols and imaging parameters can be found at: 
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http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/. All participant MRI data (baseline and 

longitudinal) were downloaded from the ADNI public website. 

All T1w scans were pre-processed using our standard pipeline which includes: noise 

reduction (Coupe et al., 2008), intensity inhomogeneity correction (Sled et al., 1998), and intensity 

normalization into range [0-100]. These pre-processed images were then linearly (9 parameters: 3 

translation, 3 rotation, and 3 scaling) (Dadar, Fonov, et al., 2018) registered to the MNI-ICBM152-

2009c average template (Fonov et al., 2011).  

 

2.4 WMH measurements  

 

A previously validated WMH segmentation technique that has been extensively tested for 

assessment of WMHs in aging and neurodegenerative disorders was used to obtain WMH 

measurements (Dadar et al., 2017). This technique has been employed in other multi-center studies 

(Anor et al., 2021; Dadar et al., 2020) and has also been validated in the ADNI cohort (Dadar et 

al., 2019). Automatic segmentation of the WMHs was completed using the T1w contrasts, along 

with location and intensity features from a library of manually segmented scans (50 ADNI 

participants independent of the ones studied here) in combination with a random forest classifier 

to detect the WMHs in new images (Dadar et al., 2017). The WMHs were segmented using T1w 

images (instead of FLAIR and T2w/PD scans) since ADNI1 only acquired T2w/PD images with 

resolutions of 1×1×3 mm3, whereas ADNI2/GO acquired only axial FLAIR images with 

resolutions of 1×1×5 mm3, and ADNI3 acquired sagittal FLAIR images with resolutions of 

1×1×1.2 mm3. Hence, since these inconsistencies might have made direct comparisons of WMH 

measurements across ADNI1 and ADNI2/3/GO studies unreliable, we opted to use T1w images 

that were consistently acquired to estimate WMH burden. Further, we have previously 
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demonstrated that these T1w-based WMH volumes are very highly correlated with FLAIR and 

T2w based WMH loads in the ADNI dataset (Dadar, Maranzano, et al., 2018). The quality of the 

registrations and WMH segmentations was visually assessed (by M.D.) and the cases that did not 

pass this quality control step were excluded from the analyses (N = 59). WMH load was defined 

as the volume of all voxels identified as WMH in the standard space (in mm3) and were thus 

normalized for head size. Regional and total WMH volumes were calculated based on Hammers 

Atlas (Dadar et al., 2017; Dadar, Maranzano, et al., 2018). All WMH volumes were also log-

transformed to achieve normal distribution.  

 

2.6 Statistical Analysis 

2.6.1 Baseline Assessments 

Participant demographic information is presented in Table 1. T-tests and chi-square analyses were 

performed on the demographic information and corrected for multiple comparisons using 

Bonferroni correction. The following linear regression models were used to investigate group 

differences in total and regional WMH loads, including age, sex, years of education, and APOE4 

status as covariates. The categorical variable of interest was group status (Aß+ Progressor, Aß– 

Progressor, Aß+ Stable, and Aß– Stable) to examine whether group status influenced baseline 

WMH.  

Baseline WMH ~ Age + Education + Sex + Group Status + APOE4                           (1) 

 

To investigate the impact of presence of vascular risk factors on WMH burden, the same 

analysis was completed a second time including hypertension, diabetes status, BMI, diastolic and 
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systolic blood pressure as additional covariates. History of hypertension was a categorical factor 

whereas measures of systolic and diastolic blood pressure were continuous.  

Baseline WMH ~ Age + Education + Sex + Group Status + APOE4 + BMI+              (2) 

+Hypertension +Diabetes + Diastolic blood pressure + Systolic blood pressure                            

 

2.6.3 Longitudinal Assessments 

Differences in WMH progression between Aß+ pMCI, Aß– pMCI, Aß+ sMCI, and Aß– sMCI 

were investigated using linear mixed effects models. To do so, we examined WMH load (frontal, 

temporal, parietal, occipital, and total) at different visits as the dependent variable of interest and 

the interaction between follow-up time and group status (i.e., Aß+ Progressor, Aß– Progressor, 

Aß+ Stable, and Aß– Stable) as the main dependent variables. Regional WMH values (i.e., frontal, 

temporal, parietal, and occipital) were summed across the right and left hemispheres to obtain one 

measure for each region. All results were corrected for multiple comparisons using false discovery 

rate (FDR), p-values are reported as raw values with significance then determined by FDR 

correction (Benjamini et al., 1995). 

 The main variable of interest was the interaction term between follow-up time and group 

status based on group status (i.e., Aß+ or Aß-, Progressor or Stable), contrasting the slopes of 

changes in WMH burden for MCI: Aß+ Progressor, Aß– Progressor, and Aß+ Stable against the 

Aß– Stable. Further contrasts were completed to examine the slope differences between Aß+ 

Progressor and Aß+ Stable, Aß+ Stable and Aß– Progressor, and between Aß+ Progressor and 

Aß– Progressor. Other variables of interest also included follow up time and group status. The 

model also included vascular risk factors, age at baseline, sex, education, and APOE4 status as 

covariates. The categorical variable APOE4 was used to contrast subjects with one or two APOE 

ɛ4 alleles against those with zero. Participant ID was included as a categorical random effect.   
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WMH ~ Age_bl + Education + Sex + Group Status:Follow up Time  +                    (3) 

Group Status + Follow up Time + APOE4 +BMI + Hypertension + 

Diabetes + Diastolic blood pressure + Systolic blood pressure + (1|ID)   

                   

All continuous longitudinal values were z-scored within the population prior to the 

regression analyses. All statistical analyses were performed using MATLAB version 2021a. To 

complete the baseline analysis, we used function fitlm and for longitudinal assessments we used 

fitlme. 

 

2.6.4 ROC curve analysis 

To further verify whether WMH progression impacts conversion to dementia in MCI individuals 

on the AD trajectory (i.e., Aß+ MCI populations), we calculated and used subject specific WMH 

progression slopes to distinguish between Aß+ Progressor and Aß+ Stable participants. WMH 

progression slopes were calculated by regressing the longitudinal WMH volumes (global and 

regional) against follow-up times as well as an intercept term (using regress function). We then 

applied receiver operating characteristic (ROC) curve analysis for total and regional slopes to 

differentiate Aß+ Progressor and Aß+ Stable participants.  We performed the ROC analysis 

separately for groups with baseline CDR-SB values of 0.5, 1, 1.5, and 2, since individuals with 

different baseline CDR-SB values are at different stages of cognitive decline with different rates 

of conversion (i.e.  MCI individuals with higher baseline CDR-SB values are closer to a threshold 

of dementia diagnosis), creating an unaddressed confound if assessed together We report area 

under the curve (AUC), a measure of separability between the two groups, for each region and 

total WMH.  
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3 Results 

3.1 Baseline Demographics and Cognitive Scores 

Table 1 presents demographic information and clinical characteristics of the participants included 

in the study. Aß– Stable was significantly younger than both Aß+ Progressor (x2= -3.48, p<.001) 

and Aß+ Stable (x2= -4.09, p<.001). The proportion of people with APOE ԑ4+ significantly 

differed between all groups except Aß– Stable and Aß– Progressor (x2 belongs to [12-122], 

p<.001), with Aß+ Progressor having the highest proportion of people with APOE ԑ4+, followed 

by Aß+ Stable, Aß– Stable, and lastly, Aß– Progressor. Years of education and proportion of male 

to females did not differ between any of the groups. All groups had significantly different 

Alzheimer’s Disease Assessment Scale-13 (ADAS-13) scores except for both Aß– and Aß+ 

Progressors, and Aß– Progressor and Aß+ Stable (t belongs to [4.43–21.12], p<.001). Aß+ 

Progressor exhibiting the lowest cognitive performance, followed by Aß– Progressor, then Aß+ 

Stable, and lastly, Aß– Stable with the best performance. For CDR-SB scores, Aß+ Progressor 

significantly differed from Aß+ and Aß- Stable (t belongs to [7.71-7.86], p<.001). Body mass index 

(BMI) was significantly lower in Aß+ progressors than Aß– Stable (t= -3.97, p<.001). As for 

vascular risk factors, hypertension, diabetes, and systolic and diastolic blood pressure were not 

significantly different between groups. 

< Insert Table 1 about here> 

 

3.2 Baseline Assessments 

Figure 1 shows boxplots of baseline total WMH load and separately for each lobe for all groups. 

Table 2 summarizes the linear regression model results for baseline WMHs for all groups across 

all regions. Both Aß+ groups exhibited greater WMH burden than the Aß– stable group (Aß+ 
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progressor: t belongs to [2.97–3.73], p<.001, and Aß+ stable: t belongs to [2.73–3.94], p<.01) at 

all regions of interest.  

 

3.3 Longitudinal Assessments 

Figure 2 shows the longitudinal WMH distributions separately for each lobe for all groups. Table 

3 summarizes the results of the longitudinal linear mixed effects models for all groups contrasted 

against Aß– stable across all WMH regions. Follow-up time was associated with a significant 

increase in WMH load in Aß– stable (t belongs to [7.15–21.33], p<.001). Aß– progressors (t 

belongs to [4.45–5.22], p<.001) had increased WMH load change over time compared to AB– 

stable at all regions except temporal. Aß+ stable (t belongs to [6.12–9.30], p<.001), and Aß+ 

progressors (t belongs to [10.77–19.17], p<.001) had significantly increased WMH load change 

over time in all regions compared to Aß– stable group. Aß+ progressors (t belongs to [3.87–11.01], 

p<.001) had significantly increased WMH load change over time in all regions compared to Aß+ 

stable group. Aß– progressors (t=2.89, p=.004) had increased WMH load change over time 

compared to Aß+ stable group at only the occipital region. Aß+ progressors (t belongs to [5.07–

6.45], p<.02) had significantly increased WMH load change over time in all regions compared to 

Aß- progressor group at total, frontal, and parietal regions only. That is, compared to Aß– stable, 

increasingly steeper change over time was observed in Aß– progressors, then Aß+ stable, then to 

Aß+ progressors.  To ensure that the minimum duration of follow-up time does not impact these 

results, the models were repeated including only participants with a minimum of one, two, and 

three years of follow-up, yielding similar results in terms of effect size and significance. 

< Insert Table 2 about here> 
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3.4 Vascular Risk factors 

At baseline assessment, BMI and systolic and diastolic blood pressure were not significantly 

associated with WMHs at any region. Diabetes was observed to be a significantly associated with 

WMH only in the occipital region (t=-2.12, p=.03) showing no relationship in the other regions. 

Hypertension was found to be significantly associated with WMH in total volume (t=3.38, p<.001) 

and all regions (t belongs to [2.14–3.70], p<.035) except occipital.  

At longitudinal assessment, BMI, systolic and diastolic blood pressure, and diabetes were 

not significantly associated with WMHs at any region (p > 0.05). Hypertension was found to be 

significantly associated with WMH in total volume (t=4.00, p<.001) and all regions (t belongs to 

[2.50–4.33], p<.015) except occipital. Although not significant, the strongest association between 

WMHs and diabetes was observed in the occipital region (t=-1.90, p=.056). 

3.4 ROC for Classification: Amyloid Positive Converters vs Non-Converters 

To distinguish between Aß+ progressors and Aß+ stable based on the longitudinal slope of WMH, 

we compared the predictive value of total and regional WMHs for each baseline CDR-SB value 

(0.5, 1, 1.5, and 2). As expected, conversion ratios were very different across groups with different 

baseline CDR-SB values. For baseline CDR-SB value of 0.5 (N = 111), conversion ratio was 

observed at 0.1875. For CDR-SB value of 1 (N = 118), 1.5 (N = 109), and 2 (N = 85), conversion 

ratios were observed at 0.3364, 0.4455, and 0.5467, respectively. ROC curve analyses showed that 

WMH slopes were able to differentiate between stable and progressor individuals. Classification 

performance was highest for the group with baseline CDR-SB value of 1, with best differentiation 

seen for the frontal (AUC = 0.71, Fig. 3) and total WMHs (AUC = 0.72, Fig. 3). Overall, total and 

frontal WMH slopes were very good differentiators of conversion, suggesting that WMH 
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progression is a contributing factor to AD conversion, particularly in individuals in the initial 

stages of cognitive impairment (i.e., CDR-SB<2).  

 

4 Discussion  

Previous research has identified an association between MCI and WMH load, with pMCI showing 

increased WMH loads compared to sMCI. This association, however, has not been examined in 

studies with long follow-ups to determine whether rate of WMH load change over time differs 

between the groups. Findings have also yet to explore whether amyloid positivity or negativity 

influences rate of change in WMH burden in progressive and stable MCI. The present study      

investigated regional WMH accumulation at baseline and longitudinally in four subtypes of people 

with MCI: Aß+ progressors, Aß+ stable, Aß– progressors, and Aß– stable. We have 4 main 

findings: 1) WMH burden was related to progression to both AD and dementia (i.e., associated 

with increased rate of change in both Aß+ progressors and Aß– progressors, 2) Aß+ positive 

individuals have increased WMH progression compared to Aß– individuals, 3) hypertension was 

significantly associated with baseline and longitudinal progression of WMH burden in total 

volume and all regions except occipital, and 4) slope of change in frontal and total WMHs can 

differentiate between Aß+ stable and progressor individuals with similar baseline cognitive status 

(CDR-SB), particularly in earlier stages of cognitive decline    

We observed that Aß– stable had lower baseline WMHs compared to both Aß+ progressors 

and Aß+ stable across all regions. In line with previous reports, which had a shorter follow-up 

period, we found a disproportionately greater prevalence of WMHs in Aß+ progressors with 

increased rate of progression from MCI to dementia (Dadar et al., 2019). When examining the 

longitudinal data, we found that increased follow-up time was associated with increased WMH in 

all regions. In the present study, when examining change over time, compared to Aß– stable, all 
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groups had significantly steeper change in WMH burden. The largest change (in slope) was 

observed for Aβ+ progressors compared to Aß– stable. Compared to positive stable, negative 

progressors only had steeper slopes (i.e., increased change in WMHs over time) in the occipital 

region. Posterior WMH accumulation has previously been associated with  AD-associated 

degenerative mechanisms (Brickman, 2013; Habes et al., 2018; McAleese et al., 2021). Thus, 

although these amyloid negative individuals are progressing to non-AD dementia, they are 

exhibiting some WMH burden that resembles the pattern seen in individuals with AD.  

In such cases, accumulation of WMH in the occipital region is an indicator of dementia 

conversion for amyloid negative individuals. Positive progressors exhibited a steeper slope over 

time than negative progressors (only in total volume, frontal, and temporal regions). This 

difference between negative and positive progressors suggests that WMH rate of change in these 

areas in people who develop dementia may be partly accounted for by amyloid positivity. This 

interpretation is further supported by the positive progressors exhibiting increased rate of WMH 

change compared to positive stable in the same regions as negative progressors (total, frontal, and 

temporal) but also in the parietal and occipital; indicating that the parietal and occipital changes 

might be associated with progression to dementia, whereas the total, frontal, and temporal WMHs 

may be associated with other factors (e.g., amyloid or vascular risk factors). This interpretation 

coincides with previous research suggesting that frontal white matter lesions are partly associated 

with small vessel disease (McAleese et al., 2021). These findings suggest that an increase in 

widespread WMH pathology occurs in MCI who progress to dementia. More specifically, 

regardless of amyloid status, older adults that convert to dementia have more WMH progression 

than those who remain stable. 
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Overall, our results highlight that regardless of amyloid status, older adults that convert to 

dementia have more WMH progression than those who remain stable. Thus, WMH progression is 

a contributing factor to the conversion to dementia both in Aß– and Aß+ older adults with MCI. 

These findings indicate that WMHs are important components for progression to dementia/AD. 

Additionally, Aß+ MCIs exhibited more WMH progression than Aß– MCIs. Therefore, our 

finding suggests that amyloid positivity is related to rate of progression of WMH across brain 

regions and at least a portion of WMH progression can be explained by amyloid positivity. 

In addition to examining the relationship between WMH progression and amyloid status, 

we also examined the relationship between WMH burden and vascular risk factors as the direct 

underlying mechanism involved in WMH accumulation. The importance of examining these 

factors is that vascular risk factors are potentially preventable/treatable and with appropriate 

intervention, WMH progression might be controlled, which in turn can slow down the progression 

to dementia. To examine the association with vascular factors, diabetes, systolic and diastolic 

blood pressure, BMI, and hypertension were added to the baseline and longitudinal models. Our 

findings suggest that hypertension is strongly associated with both baseline and rate of 

accumulation of total and frontal WMHs. In this sample, approximately 48% of participants had 

hypertension, which allows for stronger conclusions regarding the influence of hypertension on 

WMH burden. This finding follows past research indicating the association between small vessel 

disease and anterior WMH burden (McAleese et al., 2021). Given that hypertension is a modifiable 

condition, it may be possible to prevent some of the WMH accumulation through blood pressure 

management. Prevention of WMH burden may in turn mitigate or slow progression to dementia 

(Kjeldsen et al., 2018; Williamson et al., 2019).  Diabetes showed to be marginally associated with 

baseline occipital WMH burden which was no longer significant in the longitudinal findings when 
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including other risk factors as covariates in the models. These limited findings are likely because 

the few participants identified as having diabetes (only 69 out of the entire 820 participants 

included). Therefore, these results need to be replicated in a larger sample of diabetic patients in 

order to make generalizable conclusions on the influence of diabetes on WMH burden in people 

with MCI. BMI and systolic and diastolic blood pressure were not significantly associated with 

baseline or longitudinal WMH accumulation. Other factors such as waist-to-hip ratio, which has 

previously shown to be associated with WMH burden (Veldsman et al., 2020), may be a more 

sensitive risk factor that should be examined in future MCI studies.  

The ROC analysis (Figure 3) showed that total and frontal longitudinal WMH slopes at 

baseline CDR-SB score of 1 outperformed other regions and baseline CDR-SB scores at accurately 

classifying Aβ+ pMCI from Aβ+ sMCI (Total AUC = 0.72; Frontal AUC = 0.71). While previous 

research has shown that most individuals with Aβ positivity will eventually develop AD (Sperling 

et al., 2014), screening based on Aβ positivity generally leads to the inclusion of a considerable 

proportion of stable participants (Ossenkoppele et al., 2015). Our findings suggest that WMHs can 

improve classification of Aβ+ pMCI vs Aβ+ sMCI with relatively high accuracy (AUC = 0.72, 

Fig 3). These findings suggest that total and regional WMHs can aid in future research and clinical 

settings to assess trajectories of Aβ+ MCI patients on the AD continuum.  

There are limitations to the present study that future research should explore. First, 

participants in the ADNI dataset have relatively high education levels and socioeconomic status. 

While our models included years of education as a covariate, future research should aim to examine 

the influence of education levels on WMHs in more representative Aβ negative and positive pMCI 

and sMCI populations, to determine whether high education levels are protective against WMH 

progression and the related conversion to dementia. Furthermore, the Aß– Progressor group had a 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.21.22280209doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.21.22280209


20 

 

smaller sample size compared to the other groups, limiting the statistical power and 

generalizability of its results. Although linear mixed models are robust with regards to unbalanced 

data and optimally use all information together without reducing power, a larger sample is 

warranted and would make the results comparing the baseline and longitudinal data involving Aß– 

Progressor individuals more conclusive. 

The current study observed that WMH accumulation is an important factor in MCI 

progression to dementia for both Aß+ and Aß– individuals. This association was strongest in 

those who were Aß+, indicating that WMH accumulation is, in part, related to amyloid 

deposition. Hypertension was also found to be associated with increased WMH burden and rate 

of change in total volume and all regions except occipital, suggesting that progression from MCI 

to dementia may be mitigated through hypertension prevention and treatment.  
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Table 1: Demographic and clinical characteristics for Aß+ Progressor, Aß– Progressor, Aß+ Stable, and Aß– Stable 

 

 

 

 

 

 

 

 

 

Notes: values are expressed as mean ± standard deviation, or number of participants (percentage %). Significance reported if result survived correction of multiple 

comparison. 1 = Aß– Stable was significantly younger than both Aß+ Stable and Aß+ Progressor. 2 = The proportion of people with APOE ԑ4+ significantly differed 

between all groups except Aß– Stable and Aß– Progressor. 3= All groups significantly differed except for both Aß– and Aß+ Progressors, and Aß– Progressor and 

Aß+ Stable. 4= Aß+ Progressor significantly differed from Aß+ Stable and Aß- Stable 5= Aß+ Progressor and Aß– Stable significantly differed. APOE ԑ4+ = 

number and percentage of people with at least one ԑ4 allele. ADAS-13 = Alzheimer’s Disease Assessment Scale -13. CDR-SB = Clinical Dementia Rating – Sum 

of Boxes. BMI = body mass index. BP = blood pressure. WMH = white matter hyperintensity in mm3 

 

Table 2: Linear regression model results showing baseline differences between Aß+ Progressor, Aß– Progressor, Aß+ Stable, and Aß– Stable 

 

 Total Frontal Temporal Parietal Occipital 

 T stat P T stat P T stat P T stat P T stat P 

WMH  

Aß– Stable vs Aß– Progressor 1.39 =.164 1.80 =.072 1.04 =.299 1.09 =.276 0.75 =.454 

Aß– Stable vs Aß+ Stable 3.75 <.001* 3.07 =.002* 3.88 <.001* 3.94 <.001* 2.73  <.001* 

Aß– Stable vs Aß+ Progressor 3.59 <.001* 2.97 =.003* 3.46 <.001* 3.73 <.001* 3.04 <.001* 

Aß+ Stable vs Aß+ Progressor 0.06 =.800 0.07 =.795 0.008 =.976 0.05 =.814 0.49 =.480 

Aß+ Stable vs Aß– Progressor 0.03 =.867 0.28 =.595 0.33 =.563 0.30 =.581 0.15 =.695 

Aß– Progressor vs Aß+ Progressor 0.07 =.793 0.18 =.673 1.06 =.303 0.39 =.530 0.42 =.517 

 

Demographic Information 
Aß+ Progressor   

n = 239 

Aß– Progressor 

n = 22 

Aß+ Stable  

n = 343 

Aß– Stable  

n = 216 

Baseline Age 73.4 ± 6.6 74.9 ± 7.0 73.7 ± 7.3 70.9 ± 8.21 

Education 15.8 ± 2.8 16.5 ± 2.2 16.1 ± 2.8 16.0 ± 2.7 

APOE ԑ4+ 165 (69%)2 2 (9%)2 186 (54%)2 38(18%)2 

Male sex 136 (57%) 16 (73%) 208 (60%) 125 (58%) 

ADAS-13 19.8 ± 6.83 16.8 ± 5.573 14.6 ± 5.93 11.9 ± 5.23 

CDR-SB 1.76 ± 1.034  1.52 ± 1.064 1.14 ± 0.834 1.10 ± 0.744 

BMI 26.3 ± 4.30 28.9 ± 5.24 27.2 ± 4.83 27.8 ± 4.595 

Hypertension 101 (42%) 13 (60%)  176 (51%) 105 (49%) 

Diabetes 17 (.07%) 3 (14%) 30 (8%) 19 (9%) 

BP Systolic 133 ± 18.5 135 ± 17.5 133 ± 19.2 133 ± 15.4 

BP Diastolic 73.5 ± 10.7 73.6 ± 10.3 75.0 ±9.88 74.3 ± 9.77 

Median Baseline WMH 6011 (2897 – 50650) 6219 (3360 – 26101) 6202 (2146 – 50911) 4768 (2762 – 36006) 
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Notes: * Represents results that are significant when uncorrected and bolded values represent those that remained significant after correction for multiple 

comparisons.  

 

Table 3: Linear mixed model results showing longitudinal slope differences between Aß+ Progressor, Aß– Progressor, Aß+ Stable, and Aß– Stable 

 Total Frontal Temporal Parietal Occipital 

 T stat P T stat P T stat P T stat P T stat P 

WMH  

FollowUpTime  21.33 <.001* 21.27 <.001* 13.72 <.001* 20.88 <.001* 7.15 <.001* 

Aß– Stable vs Aß– Progressor : FollowUpTime 4.87 <.001* 4.45 <.001* 1.93 =.054 4.76 <.001* 5.22 <.001* 

Aß– Stable vs Aß+ Stable : FollowUpTime 9.17 <.001* 7.27 <.001* 7.00 <.001* 9.30 <.001* 6.12  <.001* 

Aß– Stable vs Aß+ Progressor : FollowUpTime 19.17 <.001* 17.95 <.001* 10.77 <.001* 17.07 <.001* 15.67 <.001* 

Aß+ Stable vs Aß+ Progressor : FollowUpTime 10.30 

 

<.001* 11.01 <.001* 3.87 <.001* 7.97 <.001* 9.89 <.001* 

Aß+ Stable vs Aß– Progressor : FollowUpTime 1.30 .193 1.62 .105 -.80 .421 1.13 .259 2.89 .004* 

Aß– Progressor vs Aß+ Progressor : FollowUpTime 6.45 .011* 6.20 .012* 5.07 .020* 3.41 .065 0.67 .412 

Notes: * Represents results that are significant when uncorrected and bolded values represent those that remained significant after correction for multiple 

comparisons.  
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Figure 1: Boxplots showing baseline WMH distributions (log transformed) across diagnostic groups for each lobe. 
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Figure 2: Longitudinal change in total and regional WMH volume by group 
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Figure 3: Receiver operating characteristics (ROC) analysis to compare the area under the curve (AUC) of Amyloid Positive 

Converters vs Non-Converters 
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Figure Captions   

 

Figure 1: Boxplots showing baseline WMH distributions (log transformed) across diagnostic groups for each lobe. 

Notes: baseline WMH distributions (log transformed) across diagnostic groups for each lobe. The first and second 

rows show the log transformed WMH loads for each group by lobe. Amyloid positive (Aβ+) progressor, amyloid 

negative (Aβ–) progressor, amyloid positive (Aβ+) stable, and amyloid negative (Aβ–) stable. WMH = white matter 

hyperintensity  

 
Figure 2: Longitudinal change in total and regional WMH volume by group 

Notes: Longitudinal WMH distributions (log transformed) across diagnostic groups for each lobe. The first and 

second rows show the log transformed WMH loads for each group by lobe. Amyloid positive (Aβ+) progressor, 

amyloid negative (Aβ–) progressor, amyloid positive (Aβ+) stable, and amyloid negative (Aβ–) stable. WMH = 

white matter hyperintensity 

 
Figure 3: Receiver operating characteristics (ROC) analysis to compare the area under the curve (AUC) of Amyloid 

Positive Converters vs Non-Converters  

Notes: Receiver operating characteristics (ROC) analysis to compare the area under the curve (AUC) of Amyloid 

Positive Converters vs Non-Converters at 0.5,1,1.5 and 2 CDR-SB scores for regional and total WMH. CDR-SB = 

Clinical Dementia Rating – Sum of Boxes.  WMH = white matter hyperintensity    
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