
Title: Force Sensor Reduces Measurement Error during Sit-to-Stand Assessment of Cerebral 

Autoregulation 

Alicen A. Whitaker1, Eric D. Vidoni2,3, Robert N. Montgomery4, Kailee Carter1, Katelyn 

Struckle1, Sandra A. Billinger2,3,5 

1Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of 

Kansas Medical Center, Kansas City, KS  

2University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 

3Department of Neurology, University of Kansas Medical Center, Kansas City, KS 

4Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, 

KS 

5Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 

Kansas City, KS  

Corresponding Author: Sandra A. Billinger, PT, PhD; Email: sbillinger@kumc.edu; Phone: 

(913) 945-6685; Address: 3901 Rainbow Blvd, Mail Stop 3051, Kansas City, KS 66160  

Funding: AW was supported by the Eunice Kennedy Shriver National Institute of Child Health 

& Human Development of the National Institutes of Health (T32HD057850) and the American 

Heart Association Predoctoral Fellowship Grant (898190). EV and SB were supported in part by 

the National Institute on Aging for the KU Alzheimer’s Disease Research Center (P30 

AG072973). REDCap at University of Kansas Medical Center is supported by Clinical and 

Translational Science Awards (CTSA) Award # ULTR000001 from National Center for 

Research Resources (NCRR). The content is solely the responsibility of the authors and does not 

necessarily represent the official views of the National Institutes of Health. 

Disclosures: The authors report no conflicts of interest. All data are available upon request. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.21.22280201doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.09.21.22280201
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 

Introduction: Novel implementation of a force sensor during a sit-to-stand measure of dynamic 

cerebral autoregulation (dCA) has been shown to measure the exact moment an individual stands 

up from a chair, called arise-and-off (AO). Traditional measures estimate time delay (TD) before 

the onset of the dCA response from the verbal command to stand. We hypothesized that using a 

force sensor to measure AO would significantly improve the accuracy of the TD measure 

compared to estimating from verbal command. 

Methods: Middle cerebral artery blood velocity (MCAv) and mean arterial pressure (MAP) were 

measured simultaneously during three sit-to-stand measures of dCA. Participants were seated for 

60 seconds, then performed a sit-to-stand and the force sensor detected AO. TD was calculated 

as the time from AO until an increase in cerebrovascular conductance (CVC = MCAv/MAP). TD 

was also calculated from verbal command to stand.  

Results: Sixty-five participants completed the study: twenty-five young adults (age 25±2 years), 

twenty older adults (age 61±13 years), and twenty individuals with stroke (age 60±13 years). 

There was a significant difference in TD when using AO compared to estimating (F-value=49.9, 

p<0.001). Estimated TD introduced ~17% measurement error. Average TD measurement error 

was not related to age (r =-0.04, p=0.76) or history of stroke (r=0.01, p=0.96).  

Discussion: The addition of a force sensor to detect AO during a sit-to-stand procedure showed a 

significant difference in the TD dCA measurement. Our data support the implementation of a 

force sensor during sit-to-stand dCA measures in healthy adults across all ages and after stroke. 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.21.22280201doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.21.22280201
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 

Dynamic cerebral autoregulation (dCA) is the ability of the brain to independently react 

to changes in peripheral mean arterial pressure (MAP) and maintain cerebrovascular stability.1-3  

The dCA response can be measured during a common physiological stressor such as a sit-to-

stand.4 During a sit-to-stand, MAP decreases due to gravity and peripheral vasodilation. 

Therefore, the dCA response must quickly increase the cerebrovascular conductance (CVC) of 

middle cerebral artery blood velocity (MCAv) to the brain to maintain homeostasis.4,5  

One metric of the sit-to-stand dCA response is the time delay (TD) before the onset of the 

regulation response, or how quickly CVC increases after the sit-to-stand.4-6 The TD before the 

onset of the regulation response typically occurs within ~10 seconds of standing4-7 but can occur 

on average ~1.5 seconds after standing in healthy young men.5 Therefore, the TD before the 

onset of the regulation response is an important temporal measure.  

While previous studies have shown the ability to implement an accelerometer to detect 

the angle and speed of the sit-to-stand, 8-14 we are the first to implement a custom force sensor to 

improve the temporal accuracy of the TD response.15 Our methodology uses a force sensor to 

simultaneously measures the sit-to-stand reaction time with the physiological dCA response.15 

We have reported on the ability to implement a force sensor to identify a defined moment of 

transition between sitting and standing, or arise-and-off (AO).15 Traditionally, the TD response is 

calculated from the time in which individuals are verbally told to stand up from a seated position. 

However, in our prior work, we describe the methodology to accurately identify the exact 

moment of transition during a sit-to-stand recording and show how AO may potentially differ in 

older adults and individuals post-stroke.15 
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Therefore, the objective of this study was to determine whether implementing a force 

sensor to detect the exact moment of AO would significantly improve the accuracy of the TD 

response compared to the traditional estimation of TD from the verbal command to stand. We 

hypothesized that using a force sensor to measure AO to calculate the TD response during a sit-

to-stand measure of dCA would be significantly more accurate than the estimated TD response 

from the verbal command to stand in healthy young adults, older adults, and individuals with 

stroke. We also hypothesized that the measurement error of the TD response would be 

significantly associated with participant demographics such as age, BMI, the ability to stand 

quickly, or history of stroke. 

Methods 

This study reports on the accuracy of current methodology used in an ongoing study 

(NCT04673994). The inclusion and exclusion criteria of this study have been published 

previously.15 Briefly, we enrolled healthy young adults 18-30 years old with low cardiovascular 

risk.16 Older adults and individuals post-stroke (6 months – 5 years ago), were 1) age 40-80 years 

old, 2) sedentary (<150 minutes brisk exercise/week),16 3) able to answer consenting questions 

and follow a 2-step command, 4) able to stand up from a chair without physical assistance, and 

5) not diagnosed with another underlying neurological disease. Individuals with chronic stroke 

were included within this study as they are a clinical population that presents with hemiplegia 

and a slower sit-to-stand response that may be detected by the force sensor.     

The Human Subjects Committee within the University of Kansas Medical Center’s 

Institutional Review Board approved the study. Prior to starting the study, all individuals were 

informed of study procedures, benefits, and risks, and asked to provide voluntary written 

consent. We then collected demographic information. 
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 Our laboratory was kept at a constant temperature (22°C to 24°C) and dimly lit during 

our recordings. On the day of the visit, participants were asked to take their medications as 

prescribed, not to have caffeine for 8 hours,17-19 not to perform vigorous exercise for 24 hours,20 

and to abstain from alcohol for 24 hours.21 Participants were seated with their feet flat on the 

ground and an upright trunk posture. To determine whether individuals had the leg strength and 

balance to perform a sit-to-stand independently, a standardized 5x sit-to-stand was performed. 

Participants were asked to stand up and sit down 5 times as quickly as they could without the use 

of their arms and the time it took to perform the 5x sit-to-stand was measured in seconds.22-24 

Equipment was then donned, which included: 1) bilateral TCD probes (2-MHz, Multigon 

Industries Inc, Yonkers, New York) to measure MCAv, 2) a plethysmograph (Finometer, 

Finapres Medical Systems, Amsterdam, the Netherlands) was placed on the left middle finger (or 

upper extremity without spasticity for individuals post-stroke) to measure beat-to-beat MAP, and 

3) a 5-lead electrocardiogram (ECG; Cardiocard, Nasiff Associates, Central Square, New York) 

to measure heart rate. As we have done previously,15 participants were instructed to place their 

hand with the finger plethysmograph flat on their chest at heart level and were fitted with an arm 

sling to hold the Finometer in place. 4,5,25  

Our custom force sensor was then placed underneath the participant at the level of their 

right ischial tuberosity. For individuals with stroke, the force sensor was placed underneath the 

non-affected lower extremity.26 Participants performed seated rest for 60 seconds. The 

participant was then given a 3 second countdown and asked to stand at the 60 second mark. The 

participant continued standing for an additional 2 minutes for hemodynamic stability.27 All 

measures were recorded at 500 Hz using a custom written software within MATLab, 

implementing the Data Acquisition Toolbox (R2019a, TheMathworks Inc, Natick, 
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Massachusetts). Participants performed 3 sit-to-stand procedures (T1, T2, and T3) during the 

study visit, each separated by 20 minutes. 

Data Analysis 

Offline processing of the collected data was done using custom written software within 

MATLab. The ECG QRS complex was used to calculate beat-to-beat mean MCAv and MAP. As 

previously published, AO was identified as the minimum of the second derivative of the 

recorded force sensor voltage upon standing.15 The manual identification of  TD before the onset 

of the regulation response was completed by 2 trained researchers and evaluated as the 

physiological beat after standing where there was a continuous increase in CVC (CVC = 

MCAv/MAP).5,15,28 

The primary aim was to determine whether the force sensor significantly altered the TD 

response when calculated using AO compared to the estimated time of stance (from 60 seconds). 

To analyze this aim, the TD response calculated from AO and TD calculated from 60 seconds 

was compared using with a Two-Way Repeated Measures ANOVA with a within-subjects effect 

for time (T1, T2, and T3) and type of calculation (using AO versus Estimated). At each time 

point, post-hoc Wilcoxin Signed Rank t-tests were used to analyze the difference in the TD 

response calculated from AO or estimated from 60 seconds (verbal command to stand). We also 

performed a Mixed Model ANOVA to examine differences in the AO response with a within-

subjects effect for time (T1, T2, and T3) and between-subjects effect for group (young adult, 

older adult, and individuals post-stroke). 

The force sensor measures the true time of stance with AO, therefore, we wanted to 

calculate the measurement error between the two methodologies. To analyze measurement error, 

we calculated the difference between the AO TD response and the estimated TD response from 
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60 seconds. The average TD measurement error was then plotted within a histogram graph to 

show the frequency distribution. Spearman correlations were then used to determine if 

measurement error was significantly related to age, BMI, or the 5x sit-to-stand. A linear 

regression was used to determine if measurement error was significantly related to whether a 

participant had a history of stroke. Another way we examined the AO response of each group 

was to calculate the coefficient of variation (CoV = (standard deviation/mean) * 100).  

Results 

In total, 65 individuals including healthy young adults (n = 25), older adults (n = 20), and 

individuals with stroke (n = 20), completed the sit-to-stand transition with the force sensor. Due 

to noise in MAP and TCD with standing, 59 individuals had complete data sets with a TD 

response at all three timepoints. Participant characteristics are shown in Table 1.  

Table 1. Participant Characteristics 

 Young Adults 

(n = 25) 

Older Adults 

(n = 20) 

Stroke  

(n = 20) 

p-value 

Age (years) 25 ± 2 61 ± 13† 60 ± 13† <0.001* 

Female n (%) 12 (48%) 6 (30%) 6 (30%) 0.38 

BMI (kg/m2) 23.9 ± 3.8 28.1 ± 6.2† 30.7 ± 4.9† <0.001* 

Race n (%)     

       White/Caucasian 18 (72%) 17 (85%) 15 (75%)  

       Black/African American 0 2 (10%) 5 (25%)  

       Asian    6 (24%) 1 (5%) 0  

      Native American 1 (4%) 0 1 (5%) 0.02* 

Ethnicity n (%)     
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       Hispanic/Latino 1 (4%) 0 0 1.00 

5 Time Sit-to-Stand (sec) 8.1 ± 2.1 9.1 ± 2.5 22.0 ± 13.7†‡ <0.001* 

Means ± Standard Deviations. Two individuals identified as multiple races/ethnicities. 

* = Significantly different between Groups (p < 0.05). BMI = Body Mass Index. † = 

Significantly different from Young Adults. ‡ = Significantly different from Older 

Adults. Participant demographics were compared between groups using a One-Way 

ANOVA or Kruskal-Wallis ANOVA, with post-hoc t-tests. For categorical variables, 

a Fisher’s Exact or Chi-Square Test were used to compare differences between 

groups. 

 

Comparing the TD Response using AO vs. Estimating 

Our primary analysis was to determine whether the force sensor significantly improved 

the accuracy of the TD response during a sit-to-stand measure of dCA compared to estimating 

TD from when participants were asked to stand at 60 seconds into the recording. Our primary 

analysis showed a significant difference in TD when using AO compared to estimating from the 

verbal command to stand at 60 seconds (F-value = 49.9, p < 0.001). Across the 3 trials within the 

study visit, we found that the TD response was not significantly different across the three time 

points (p = 0.36), which suggests potential stability in a same day measure of the TD response. 

When performing post-hoc comparisons, the TD response at each separate time point was 

significantly shorter when using AO compared to estimating from 60 seconds (p ≤ 0.001). At T1, 

T2, and T3, the respective AO TD response was 3.2 ± 2.3 seconds, 2.8 ± 2.0 seconds, and 2.9 ± 

2.2 seconds compared to the estimated TD response of 3.6 ± 2.4 seconds, 3.2 ± 2.0 seconds, and 

3.2 ± 2.3 seconds. We also wanted to determine whether AO significantly differed between 
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young adults, older adults, and individuals post-stroke. We found that the AO response was not 

significantly different between groups (p = 0.85) or across the different time points (p = 0.63). 

Measurement Error 

 We have previously published on the ability to mark the true time of stance (AO) during 

a sit-to-stand recording of the dCA response.15 By calculating the measurement error, we were 

able to examine the error in the calculation of the estimated TD response from the time in which 

individuals were asked to stand (60 seconds). A histogram reveals the frequency of how 

predicted values differ from the true value, shown in Figure 1. The distribution of measurement 

error is negatively skewed showing that most individuals stood up ~0.5 seconds after being told 

to stand. With the average TD response being ~3 seconds, estimating the TD response from the 

verbal command to stand would introduce ~17% measurement error.   

 

Figure 1. Histogram of the TD Average Measurement Error. TD = Time Delay. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.21.22280201doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.21.22280201
http://creativecommons.org/licenses/by-nc/4.0/


The average measurement error of the TD response was not significantly related to age (r 

= -0.04, p = 0.76), BMI (r = -0.05, p = 0.71), 5x sit-to-stand (r = -0.07, p = 0.58), or history of 

stroke (r = 0.04, p = 0.76).  

Variation in AO Between Groups 

Though the measurement error was not significantly related to age or history of stroke, 

we calculated the CoV in AO to reveal any potential variations in the AO response between 

groups and over time, shown in Table 2. The CoV of AO is small in all groups, showing stable 

methodology for all individuals. Examining the values of the CoV shows low variability across 

timepoints and groups.   

Table 2. Coefficient of Variation of AO 

 T1  

AO CoV 

T2  

AO CoV 

T3  

AO CoV 

Young Adults 0.89% 0.79% 0.84% 

Older Adults 0.73% 1.22%  0.78% 

Stroke 1.11% 0.86% 0.72% 

 

Discussion 

Our findings in a diverse group of participants support our hypothesis and show that 

using a force sensor to detect AO during a sit-to-stand measure of dCA shows a significant 

improvement in the accuracy of the TD response calculation compared to the traditional method 

of estimating TD from the time in which individuals were asked to stand. The main findings of 

this study include 1) the TD response was significantly faster when calculated using AO 

compared to estimating from 60 seconds, 2) the force sensor reduced measurement error for all 
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individuals, and 3) the AO response showed small variability which does not differ between 

measures taken within the same day or between healthy young adults, older adults, or individuals 

post-stroke. 

Our methodology of implementing a force sensor has shown that variability in the 

transition between sitting and standing can potentially reduce measurement error by ~17% within 

the TD calculation. The reduction in measurement error ensures more accurate reporting of the 

transient time course changes in MCAv and MAP, which is critical in the field of 

cerebrovascular physiology. Further, there is considerable interest in studying older adults and 

clinical populations such as traumatic brain injury, Alzheimer’s disease and dementia, and 

stroke, where the nature of these conditions may introduce inherent variability. Therefore, 

refinement of the sit-to-stand methodology with the use of the force sensor could have a 

significant impact on data interpretation, reporting of findings and allowing the field to address 

important gaps in knowledge regarding cerebral autoregulation in humans. This is supported by 

our data that the reduction in measurement error was significant for all individuals regardless of 

age or clinical diagnosis of stroke. Our data presented here show no significant difference across 

the three time points within a single session.   

While prior studies have implemented an accelerometer to normalize the dCA response to 

the speed of the sit-to-stand, the accelerometer was not temporally aligned with the physiological 

dCA response and the moment of stance was not determined.8-13 Implementation of a force 

sensor will address this limitation by measuring the exact time of stance (AO) during the dCA 

measure. Therefore, implementing both the force sensor and accelerometer may improve the 

accuracy of sit-to-stand dCA measures by accounting for both the timing and speed of the sit-to-

stand. While our intention was to employ a quick sit to stand response (0-3 seconds) aligned with 
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the literature,5 our initial work showed that the stance time in older adults and individuals with 

cerebrovascular disease may be altered.15 Future studies are needed to report on the simultaneous 

use of a force sensor and accelerometer to increase the accuracy of the sit-to-stand dCA 

response.  

In conclusion, we compared whether a force sensor applied to the sit-to-stand procedure 

would reduce measurement error in a diverse group of individuals. The force sensor appears to 

significantly decrease measurement error in humans with low variability across time points in a 

single session.   
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