Prevalence of SARS-CoV-2 and co-occurrence/co-infection with malaria during the first wave of the pandemic (the Burkina Faso case) - Diana López-Farfán¹, R. Serge Yerbanga², Marina Parres-Mercader¹, Manuela Torres-Puente³, 1 - Inmaculada Gómez-Navarro³, Do Malick Soufiane Sanou ², Adama Franck Yao ², Jean Bosco 2 - Ouédraogo², Iñaki Comas^{3,4}, Nerea Irigoyen⁴, Elena Gómez-Díaz^{1*} 3 - 4 ¹Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones - 5 Científicas (IPBLN-CSIC), Granada, Spain. - 6 ²Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso. - 7 ³Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain. - 8 ⁴CIBER in Epidemiology and Public Health, Madrid, Spain - 9 ⁵Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK - 10 * Correspondence: - Elena Gómez-Díaz 11 - 12 elena.gomez@csic.es - 13 Keywords: SARS-CoV-2, co-infection, malaria, Western Africa, Seroprevalence, genomic - 14 surveillance. (Min.5-Max. 8) - 15 Number of words: 4.335 - Number of figures: 2 16 - 17 Number of tables: 2 - 18 **Abstract** - 19 Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, - 20 but this low incidence has been partly attributed to the limited testing capacity in most countries. In - 21 addition, the population in many African countries is at high risk of infection with endemic infectious - 22 diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 - 23 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests - 24 and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified - 25 population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of - 26 SARS-COV-2 and for whole viral genome sequencing. Our results show a 3.2% and a 2.5% of SARS- - 27 CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, - 28 with marked differences linked to age. Importantly, we found 2 cases of confirmed co-infection and 8 - 29 cases of suspected co-infection mostly in children. Finally, we report the genome sequences of 13 - 30 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages A.19, - 31 A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A and 20B. This is the first - 32 population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the - 33 pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants - 34 circulating in this Sub-Saharan African country. Besides, it highlights the low frequency of co-infection - with malaria in African communities. 35 #### 36 1 Introduction 37 To date, the SARS-CoV-2 coronavirus, responsible of the coronavirus disease 19 (COVID-19), has 38 caused more than 606 million cases and 6,5 million deaths worldwide, a small proportion of these (9,3 39 million cases [1.5%] and around 174,407 deaths [2.7%]) have occurred in Africa (data as of September 40 13th 2022, WHO¹). Despite their under-funded health systems, cases and deaths reported in Africa 41 appear low compared to other parts of the world. In addition, most of cases cluster in few Northern and 42 Southern countries (i.e. South Africa [4,01M cases], Morocco [1,26M cases] and Tunisia [1,14M 43 cases]), while data in most Western African countries is scarce or absent (i.e. the number of 44 accumulative cases considering all countries in Western Africa is ~936K). However, these estimations should be considered with caution given the low number of tests conducted in most African countries 45 46 compared to data available for Europe (one or two orders of magnitude higher). A more proper effort 47 to estimate the real incidence is needed to make conclusions about the extent of this pandemic in the 48 African continent. 49 To prevent the emergence and spread of new variants across the world, sequencing of SARS-CoV-2 50 lineages circulating in Africa is critical (1). Indeed, the higher rates of COVID-19 testing and genomic 51 surveillance in the south of the continent have permitted the early identification of several variants of 52 concern (VOC) such as Beta (B.1.351) and Omicron (B.1.1.529); and different variants of interest 53 (VOI) such as C.1.1 (2,3). To date, most of the deposited sequences from Africa in the GISAID 54 database come from the South African region (47%), while sequences from Western African countries only account for 17.6% (GISAID² as of 31 May 2022) (4). Such an uneven African genomic 55 surveillance holds a weakness in our global surveillance system and raises the concern of not leaving 56 57 Africa behind in the global pandemic response (1). - Besides the direct effects of COVID-19 in terms of cases and deaths, the pandemic has shown to have important collateral effects on several other infectious diseases such as HIV/AIDS, tuberculosis and malaria (5). According to the World Health Organization (WHO), half of all deaths in Africa are caused by these three infectious diseases (~2.4 million people/year) compared to only 2% in Europe. The Sub-Saharan Africa is one of the most affected regions with significant drops in notifications of all three diseases. According to the latest WHO World malaria report³, 15 malaria endemic countries reported more than 20% reduction in malaria testing and treatment between April and June of 2020³. - Malaria is a life-threatening disease caused by unicellular eukaryotic parasites of the genus 65 66 Plasmodium that are transmitted to humans through the bites of infected female Anopheles mosquitoes. 67 Sub-Saharan Africa carries a disproportionate portion of the global malaria burden. In 2020, the region 68 was home to 95% of malaria cases and deaths. Children below 5 years are the most vulnerable group 69 affected by malaria; accounting for 80% of all malaria deaths in the region³. At the beginning of the 70 COVID-19 pandemic, studies projected that malaria deaths could double in 2020 due to health service 71 disruptions (6). However, many countries took urgent actions to avoid the worst projections. In 2020, 72 there were an estimated 241 million cases of malaria and 627,000 deaths worldwide, this is 14 million 73 more cases and 69,000 more deaths than in 2019. Two-thirds of this increase have been associated to 74 disruption in malaria prevention campaigns, diagnosis and treatment during the first wave of the 75 pandemic³. ² https://gisaid.org/submission-tracker-global/ ³ https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 ¹ https://covid19.who.int/ - 76 Burkina Faso is a Western African country that confirmed its first community transmission cases of - SARS-CoV-2 on March 15, 2020. To date, this country has reported 21,128 total cases which is a very - 78 low incidence compared with the 4M of total cases reported from South Africa, for example. Whether - 79 this rate is representative of the real epidemiological situation of the country, or if it is due to - 80 insufficient testing, remains and it will probably remain unanswered. On the other hand, malaria that - 81 is endemic across the country, is a major health issue with a seasonal peak from June to October. - During the COVID-19 pandemic, malaria case incidence (cases per 1000 population at risk) increased - from 366.1 in 2019 to 389.9 in 2020⁴. The high malaria incidence in this country and the increase in - 84 prevalence detected during the first wave of the COVID-19 pandemic raised the question about how - 85 frequent has been SARS-CoV-2 and malaria co-infection. - 86 In order to address this, 998 volunteers from different rural and urban areas in the south of Burkina - 87 Faso were screened for malaria by microscopy, and for SARS-CoV-2 using rapid diagnostic serology - 88 tests and RT-qPCR. In addition, PCR positive samples were whole-genome sequenced and analyzed - 89 through comparative genomics and phylogenetics. We found a 3.2% seroprevalence and 2.5% of PCR - 90 positivity for SARS-CoV-2 over the studied period. Although age groups mostly affected by each - 91 disease do not overlap, 10 cases of SARS-CoV-2/malaria co-infection in younger age groups were - 92 found. Finally, we reported 13 SARS-CoV-2 whole genomes circulating in Burkina Faso at the time - of sampling. Viral genomes clustered into 3 early clades (i.e. 19B, 20A and 20B) and lineages found - 94 were A.19, A.21, B.1.1.404, B.1.1.118 and B.1. - 95 Altogether, our data shed new light on the incidence of COVID-19 and the different SARS-CoV-2 - 96 circulating variants in a Western African country, and its co-occurrence with another endemic - 97 infectious disease of utter importance such as malaria. ### 2 Methods ## **Ethics** 98 99 110 - This protocol was carried out by the Institut des Sciences et Techniques de Bobo-Dioulasso and was - approved by the Spanish National Research Council (CSIC), the Ethics Committee of Biomedical - 102 Research in Andalusia (CCEIBA), and the Centre National de la Recherche Scientifique et - 103 Technologique (CNRST) of Burkina-Faso. The protocol is in conformity with the declaration of - Helsinki and all international regulations about the ethical principles in biomedical research involving - human subjects. SARS-CoV-2 seropositive and malaria positive individuals were provided with - numan subjects. 5AK5-Cov-2 scropositive and majaria positive individuals were provided with - treatment and assisted by medical professionals. During the screening, local authorities, school - directors and families of volunteers were informed about the objectives of the study and protocols - performed. As the study involved children, a signed declaration of conformity for the participation in - the study was obtained from their parents and/or legal representatives. ## Study design
- 111 The study was conducted in 11 villages from different rural and urban areas in the south of Burkina - Faso (Supplementary Figure 1). From August to November 2020, a total of 998 asymptomatic - volunteers were enrolled. Demographic and clinical information collected included age, sex and - temperature. For each participating subject, two drops of blood were obtained by capillary puncture of - the fingertip. This blood was used for malaria detection by microscopy, and for COVID-19 serology ⁴ https://data.worldbank.org/indicator/SH.MLR.INCD.P3?locations=BF, accessed on 27 April 2022 - 116 testing using a point of care rapid test (INgezim COVID-19 CROM Easy). When there was consent, - 117 nasopharyngeal samples were also collected in AVL buffer (Qiagen) for molecular testing of SARS- - 118 CoV-2 using RT-qPCR. 148 ## **SARS-CoV-2 diagnosis** - 120 Detection of anti-SARS-CoV-2 antibodies was performed on volunteers' capillary blood using the - 121 INgezim COVID-19 CROM Easy kit (Gold Standard Diagnostics), following manufacturer's - 122 This serology-based finger-prick test is based on instructions. a dual-recognition - 123 immunochromatographic assay that determines the presence of total antibodies (IgG, IgA, and IgM) - 124 specific to SARS-CoV-2 in a single blood sample by using the nucleoprotein (N protein) as antigen. - 125 The manufacturer reported specificity of 99.3% and sensitivity of 94.5%. No cross-reactivity with other - 126 coronaviruses or agents related to human respiratory illnesses have been reported. In this study, we - 127 estimated seroprevalence as the proportion of individuals who had a positive result in the point-of-care - 128 test after 10 minutes. - Nasopharyngeal samples were taken using a sterile swab. The swab was immediately placed in a pre-129 - 130 filled tube containing 0.5 mL of inactivating lysis buffer (AVL, Qiagen). Samples were stored at 4°C - 131 for 24h and at -20°C for prolonged storage for subsequent analysis. Molecular detection of SARS- - 132 CoV-2 by RT-qPCR on seropositive volunteers was carried out in the Institut de Recherche en Sciences - 133 de la Santé/Direction Régionale de l'Ouest (IRSS DRO) of Burkina Faso using the FastPlexTriplex - 134 SARS-CoV-2 detection kit (gene target identified: ORF1ab, N and the human RNase P as control) - 135 (PreciGenome, LLC). - 136 Swab samples of seronegative volunteers were stored at -80°C and processed in the Institute of - 137 Parasitology and Biomedicine Lopez-Neyra (IPBLN) as follows: RNA was extracted from 140 µL of - 138 pooled swab samples using the OIAamp viral RNA extraction kit (Oiagen). A pool size of five samples - 139 was used in the villages with seropositive subjects (Bobo-Dioulasso and Dandé), whereas samples from - 140 villages with negative seroprevalence were processed in pools of 10 samples. RT-qPCR analysis was - performed using the one step Direct SARS-CoV-2 Realtime PCR Kit (Vircell S.L) following the 141 - 142 manufacturer's instructions. Targets identified with this kit are N, E and hRNase P genes. RT-qPCR - 143 was performed in 20 µL final volume reactions (5 µL of RNA sample) using a CFX96 Real-Time PCR - Detection System (Bio-Rad, Hercules, CA, USA). Cycle threshold (Ct) values were analyzed using the 144 - 145 BIORAD CFX manager software. Samples of positive pools were extracted individually and retested - 146 by RT-qPCR. Samples were considered positive when the N and E target genes had a Ct < 40. Positive - 147 and negative controls were included in all experiments. ### Whole Genome Sequencing and Phylogenetic Analysis - 149 RNA from SARS-CoV-2 positive samples with a Ct value <35 was sent to sequencing to the Institute - 150 of Biomedicine of Valencia (IBV-CSIC). RNA was retrotranscribed into cDNA and SARS-CoV-2 - 151 complete genome amplification was performed in two multiplex PCR, accordingly to openly available - 152 protocol developed by the ARTIC network⁵ using the V4.1 multiplex primers scheme (artic-network - 153 n.d.). Two resulting amplicon pools were combined and used for library preparation. Genomic libraries - 154 were constructed with the Nextera DNA Flex Sample Preparation kit (Illumina Inc., San Diego, CA) - 155 according to the manufacturer's protocol with 5 cycles for indexing PCR. Whole genome sequencing - 156 was carried out in a MiSeq platform (2×150 cycles paired-end run; Illumina). Sequences obtained went - 157 through an open source bioinformatic pipeline based on IVAR⁶ (7). The different steps of the pipeline - 158 are as follows: 1) removal of human reads with Kraken (8); 2) filtering of the fastq files using fastp v - 159 0.20.1 (9) (arguments: --cut tail, --cut-window-size, --cut-mean-quality, -max len1, -max len2); 3) - mapping and variant calling using IVAR v 1.2; and 4) quality control assessment with MultiOC (10). 160 - 161 Consensus sequences generated by this pipeline were aligned against the SARS-CoV-2 reference - 162 sequence (11) with MAFFT (12). Problematic positions were masked using the mask alignment.py - 163 script from the repository maintained by Rob Lanfear⁷. Lineages and clade nomenclature were assigned - using Pangolin (13) and Nexclade online tool (14). Phylogenetic tree was generated with Nextclade 164 - v2.5.08, the tree was downloaded in JSON format and visualized using Auspice v2.37.3 online tool9 165 - 166 (15,16). 175 ## Malaria diagnosis - Malaria prevalence was estimated in the same population sample of 998 volunteers simultaneously to 168 - 169 SARS-CoV-2 detection. Detection of malaria was performed by microscopic examination of blood - 170 thick smears that were prepared following standard methods (17). Thick smears were screened for the - 171 presence of *Plasmodium falciparum* asexual and gametocyte stages in the blood. #### 172 Statistical analysis - 173 We tested the association between variables with the Wilcoxon Sum Rank tests (for continuous - 174 quantitative variables) and the Kruskal-Wallis chi-squared test. #### 3 **Results and Discussion** - 176 COVID-19 transmission in Africa has been marked by relatively fewer infections, mostly - 177 asymptomatic, and lower death rate compared to developed countries. A younger population structure - 178 and a variety of socio-ecological factors (i.e. warm weather, low population density and mobility and - 179 trained immunity by previous high burden infectious diseases), as well as early public health measures - 180 taken by governments (i.e. early lockdown sub-Saharan countries) (18), have been suggested to explain - such lower incidence (19). Surprisingly, the pandemic has been more pronounced in a few countries 181 - 182 (e.g. South Africa, Morocco and Tunisia) suggesting country-specific drivers of SARS-CoV-2 spread - 183 and morbidity, but this could also be largely explained by a low and unequal testing capacity. Reported - 184 cases of COVID-19 are dissimilar between countries like South Africa (4,01 million cases and 102,129 - 185 deaths), Kenia (338,301 cases and 5,674 deaths) or Ethiopia (493,353 cases and 7,572 deaths). Testing - 186 also differs greatly, with 50,000 tests/day in South Africa versus 5,000 tests/day in Kenia or Ethiopia. - 187 In Burkina Faso, with a population of 20,903,278, only 21,128 cases and 387 deaths have been reported - 188 (as of September 13th 2022, WHO¹). However, no data about the testing effort in Burkina Faso are - 189 available for comparison. - 190 At the beginning of the pandemic, serological surveillance was used as a prospective tool to define the - 191 cumulative incidence of COVID-19, particularly in the presence of asymptomatic or mild infections - 192 (20). At present, seven countries in Western Africa, four countries in Eastern Africa and four countries ⁶ https://gitlab.com/fisabio-ngs/sars-cov2-mapping ⁷ https://zenodo.org/record/4069557#.X37nuXUzaWg ⁸ https://clades.nextstrain.org (accessed on 13 September 2022) ⁹ https://auspice.us/ - 193 in Central Africa have conducted seroprevalence studies that are published or available as preprint - 194 (Supplementary Table 1). Serological surveys in African countries show highly heterogeneous results - 195 with SARS-CoV-2 seroprevalence ranging from 0.9% to 45% during 2020 (Supplementary Table 1). - 196 To our knowledge, no data have been reported from Burkina Faso for any period. - 197 In this study, we report the results of a population-based and stratified survey involving a total of 998 - volunteers that were recruited during a period of 3 months in 2020 (August 22nd to November 19th). 198 - 199 The sampling was conducted in 11 villages from different rural and urban areas in the south of Burkina - 200 Faso (Supplementary Figure 1). 55% of the participants (549 out of 998) were female, and 45% (449 - 201 out of 998) were male. The samples were distributed equally into four age groups: (A) 5-12 years - 202 (25.2%); (B) 13-20 years (24.9%); (C) 21-40 years (25.2%); and (D) >40 years (24.7%). Importantly, - all the participants were asymptomatic. The distribution of positive cases by age and gender classes is 203 - 204 detailed in Table 1. - 205 A total of 32 individuals out of 998 tested positive for SARS-CoV-2 total antibodies (IgG/A/M), - 206 resulting in an overall seroprevalence rate of 3.2% (95% CI 2.1–4.3). However, most of seropositives - 207 came from the urban city of Bobo-Dioulasso where local seroprevalence was of 4.96% at that time. A - 208 higher seroprevalence in urban areas in Africa has been reported previously (21–24). Apart from urban - 209 vs. rural differences, we report significant differences between age groups in SARS-CoV-2 - 210 seropositivity (Kruskal-Wallis chi-squared=16.285, df=3, p-value < 0.001). The highest - 211 seroprevalence was in the group age of >40 years (6.9% [95% CI 3.7–10.1]), followed by teenagers - 212 aged 13-20 years (2.8% [95% CI 0.7–4.9]) and children aged 5–12 years (2.4% [95% CI 0.5–4.3]), - 213 whereas the lowest seroprevalence was observed
in the group of 21-40 years (0.8% [95% CI 0–1.9]). - 214 (Figure 1A, Table 1). However, there were no significant differences in SARS-CoV-2 seroprevalence - 215 between female and male individuals (Wilcoxon rank sum test W = 15690, p-value = 0.78) - 216 (Supplementary Figure 2), which agrees with other population-wide seroprevalence surveys in Sub- - Saharan Africa (22,25,26). Finally, we also observed that SARS-CoV-2 seroprevalence varied 217 - 218 markedly with time with a significant increase in the incidence with a maximum of ~5.5% in November - 219 2020 (Supplementary Figure 3). This increase in infection rate agrees with previously published - 220 reports from the African CDC and WHO¹ that observed a gradually increase in cases since September - 221 2020. - Furthermore, seroprevalence estimates for SARS-CoV-2 obtained in this study are also comparable 222 - 223 with results reported in other African countries during 2020 (although sample period and the testing - 224 effort might be different) (Supplementary Table 1). For example, in a serosurvey of asymptomatic - 225 people conducted in May 2020 in Addis Ababa (Ethiopia), 3.0% tested positive for SARS-CoV-2 IgG - 226 (27). Similarly, a seroprevalence study of 3,098 Kenyan blood donors sampled between April-June - 227 2020 reported a national seroprevalence of 4.3%, with some urban regions reaching around 8% (e.g. - 228 Nairobi and Mombasa) (21). Another study in Ethiopia during July 2020 in 14 urban areas found a - 229 seroprevalence of 3.5% from 16,932 samples (22). - 230 The 32 SARS-CoV-2 seropositive individuals were subjected to RT-qPCR. SARS-CoV-2 active - 231 infection was confirmed in 7 samples (seropositive/PCR positive). Due to the low sensitivity of rapid - 232 antibody tests to detect early infections, all the seronegative samples were also analyzed by RT-qPCR. - 233 Swab samples were first processed in pools, and then, positive pools were processed individually. - 234 Pooled testing is a useful approach to reduce time, cost and increase testing capacity in areas with low - 235 prevalence of COVID-19. This PCR pooling works with maximum efficiency with a prevalence <3% - 236 and a pool size <10 (28,29). First, we tested the sensitivity of our 'pool-test' in groups of five (one - 237 positive sample diluted in four negative ones) and ten (one positive sample diluted in nine negative ones) samples (**Supplementary Table 2**). With these results, we decided to group samples in pools of five in areas with seropositive subjects (i.e. Bobo-Dioulasso and Dandé); whereas samples from areas with zero seroprevalence, pools of 10 swabs were processed instead. RNA was extracted from pooled swab samples and RT-PCR was performed. Then, samples in positive pools were extracted and tested individually. With this procedure, we found 17 additional SARS-CoV-2 positive samples by RT-qPCR, most of them from the urban locality of Bobo-Dioulasso (**Table 1, Figure 1B**). In concordance with serological tests, there were not significant differences in SARS-CoV-2 PCR positivity between females and males (Wilcoxon rank sum test W = 125348, p-value = 0.08114) (**Supplementary Figure 2**). However, there were significant differences between age groups (Kruskal-Wallis chi-squared = 20.155, df = 3, p-value < 0.001) with the highest prevalence in the age group of >40 years decreasing with age. The lowest prevalence was observed in children between 5–12 years (**Figure 1A, Table 1**). 19 out of 24 SARS-CoV-2 PCR positive samples had a Ct value ≤ 35 and they were processed for whole-genome sequencing. After genome assembly and quality control processes, good quality genomes were obtained from 13 samples. To assign the sequences to lineages and clades, we used the dynamic lineage classification method called Phylogenetic Assignment of Named Global Outbreak Lineages (PANGOLIN) (13) and the sequence analysis web tool, Nextclade (14). Phylogenetic analysis showed that our SARS-CoV-2 genomes clustered into three clades: 19B, 20A and 20B (Table 2, Figure 2). Most of the samples belong to clade 19B, this one along with 19A were the clades that emerged in Wuhan in late 2019 and dominated the early outbreak. Clade 20A emerged from 19A and dominated the European outbreak in March 2020, and 20B is a sub-clade of 20A (30). Lineages found were A.19, A.21, B.1.1.404, B.1.1.118 and B.1. The distribution and description of these lineages ¹⁰ are summarized in Supplementary Table 3. Lineages A.19, A.21 and B.1.1.404 were common in Burkina Faso at the time of analysis, and importantly, were described there for the first time¹⁰. However, lineages B.1.1.118 and B.1 were not common in Burkina Faso nor even in Africa at that time¹⁰. As these lineages presented a worldwide distribution, they probably correspond to imported lineages. Indeed, B.1 was reported in Morocco, Saudi Arabia, Spain, France and Brazil on February 2020¹¹. A genomic study of SARS-CoV-2 conducted in Ghana with samples from March 12 to April 1 2020 and the end of May 2020, reports the same clades that we found circulating in Burkina Faso from August to November 2020, moreover they also report the linage B.1 (31). Although little divergence was observed (Figure 2) as sequences comes from early days in the pandemic, we detected a common spike mutation in most of the Burkina Faso genomes, D614G mutation (Table 2). A SARS-CoV-2 variant carrying this mutation became dominant during the early days of the pandemic at global level and had a presumed fitness advantage (32). The D614G mutation was also dominant in Guinea genomes (31) and north-middle African genomes (33). In order to estimate the frequency of SARS-CoV-2/malaria co-infection for the same period and subjects, malaria was screened by microscopy. 219 individuals out of 998 tested positive for malaria (22% CI 19.4–24.5). Like in the case of SARS-CoV-2, there were significant differences in malaria prevalence between age groups (Kruskal-Wallis chi-squared = 132.18, df = 3, p-value < 0.001), but in this case, malaria was mostly detected in children below 12 years old (42.2%; 95% CI 36.1–48.4) (**Figure 1; Table 1**). In addition, a small sex difference was observed with a higher prevalence in male subjects (W = 92508, p-value < 0.05) (**Supplementary Figure 2**). Similar to the temporal trend observed for SARS-CoV-2, malaria cases also showed a significant increase from 5.26% at the beginning of the study to 29.2% at the end of the sampled period (**Supplementary Figure 3**). This 238 239 240 241242 243 244 245 246247 248 249 250 251 252 253254 255 256 257 258 259 260 261262 263 264265 266 267 268269 270 271 272 273 274 275 276 277 278 279 ¹⁰ https://cov-lineages.org/lineage list.html ¹¹ https://gisaid.org/phylodynamics/global/nextstrain/ 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 could suggest an impact in malaria control due to the pandemic. Indeed, according to official reports, the incidence of malaria in Burkina Faso (cases per 1000 population at risk) increased from 366.1 in 2019 to 389.9 in 2020¹². Of the 7 SARS-CoV-2 seropositive/PCR positive samples, none of them were co-infected with malaria. Whereas of the 17 seronegative/PCR positive samples, two co-infections with malaria were reported (**Table 1, Figure 1B**). Finally, of the remaining 25 seropositive/PCR negative subjects, 8 were positive for malaria (**Table 1. Figure 1B**). Since the serology test measures total antibodies (IgG/A/M) for SARS-CoV-2, it cannot differentiate recent or past infections, therefore, we cannot rule out whether these data correspond to a co-infection or a sequential infection. To summarize, we found 2 cases of confirmed SARS-CoV-2 (PCR positive) co-infection with malaria and 8 cases of suspected co-infection (seropositive/PCR negative). Of them, eight were children and teenagers below 14 years and two were adults of >40 years (**Table 1**). There were no significant differences in coinfection frequency between females and males (6 males, 4 females). Only one of the two PCR positive co-infected samples was suitable for sequencing (Ct < 35) and the linage was A.21. Similar low frequency for SARS-CoV-2 and malaria co-infections found in our study (1%) has been also reported in other studies (34–38) (Supplementary Table 4). A systematic review of COVID-19 and malaria coinfection studies has estimated 11% of pooled prevalence (data of 5 studies) with a high degree of heterogeneity (39). However, it is important to note that these studies examined symptomatic patients at the hospital and our study tested stratified asymptomatic people randomly. A recent study reported a higher prevalence of co-infection (12%) with highest prevalence in the age group of 0–20 years (22%) and above 60 years (20%), in this case malaria infection was evaluated in a cohort of hospitalized patients in Uganda with SARS-CoV-2 PCR-confirmed infection (40). As for the symptomatology of co-infections, preliminary data suggest that patients with SARS-CoV-2 and malaria did not seem to have a worst disease outcome but previous malaria exposure seems to be related to less frequency of severe COVID-19 (40). Another study reports that patients co-infected with malaria had significantly faster recovery compared to those not co-infected (38). One limitation of our study to analyze and draw conclusions about clinical outcomes of the co-infections is that all volunteers were asymptomatic. In addition, the low frequency of SARS-CoV-2 and malaria parasite single infections in the population (the small sample size of volunteers that were positive for either disease), reduces the probability of find them together. 310 It has been suggested that the low incidence and mortality of COVID-19 in malaria endemic regions 311 could be related to cross-immunity and common immunodominant epitopes between malaria and 312 SARS-CoV-2 (40–43). In-silico analysis have identified
potential shared targets for immune response 313 between SARS-CoV-2 and *Plasmodium falciparum* proteins which could generate cross-reactivity 314 through HLA and CD8+ T-cell activation (42). Moreover, tuberculosis and malaria prevalence had 315 been significantly associated with reduced COVID-19 mortality (43). Previous studies have also 316 indicated that malaria-induced immunomodulation could be protective against respiratory viruses, 317 reducing pulmonary inflammatory response inflammation (44,45). Alternatively, the higher burden of 318 infectious diseases in sub-Saharan Africa has been suggested to mediate the asymptomatic SARS-CoV-2 infections by induction of immunological tolerance or trained immunity to other infections such 319 320 as tuberculosis, other human coronaviruses and even Bacillus Calmette-Guérin (BCG) vaccination 321 (19,43). In addition, other studies have reported that bacterial, fungal and viral co-infections with 322 SARS-CoV-2 are also uncommon, however when present, they may cause a worse outcome (46–48). 323 In the case of coinfections with HIV, the prevalence seems higher (26,6%) and HIV subjects showed 12 https://data.worldbank.org/indicator/SH.MLR.INCD.P3?locations=BF - an increased risk of hospital admission for COVID-19 (49). However, the studies are still preliminary - and further research is needed to test these hypotheses. Therefore, additional prospective studies are - required to establish a cause-effect relationship between the SARS-CoV-2 disease outcome and co- - infection with other circulating pathogens. These should include more patients, control groups, clinical - and immunological information, tracing on SARS-CoV-2 severity when co-occurrence with other - 329 prevalent infectious diseases. ### 4 Conclusions 330 - To our knowledge, this is the first population-based SARS-CoV-2 prevalence study performed in - Burkina-Faso during the first wave of the COVID-19 pandemic. In addition, this is also one of the few - 333 studies that examines the co-occurrence of SARS-CoV-2 infection with the malaria parasite in an - 334 asymptomatic population. - 335 The findings from this seroprevalence study for SARS-CoV-2 indicate that the prevalence of antibodies - against the new coronavirus was around 3% in Burkina Faso at the time of analysis, with large - differences in prevalence at local level and between various age classes. This supports the hypothesis - that Africa had one of the lowest coronavirus case rates and that would not be due, at least entirely, to - a lower testing capacity. Another important finding of our study is the low frequency of co-infection - with malaria among the sampled population (1.0%). Of these, 8 out of the 10 cases reported were in - 341 children (4) or teenagers (4), and 2 cases in adults of >40 years. - Finally, the whole genome sequencing analysis revealed that the circulating lineages found in Burkina - Faso during the first wave of the pandemic were early clades derived from the Wuhan strain. Most of - 344 the lineages reported have been previously described in Burkina Faso or the neighbour countries. - However, we also identified two less frequent lineages that were probably imported to Burkina-Faso - from USA or Europe. We believe that data presented in this study help to fill the gap of the SARS- - 347 CoV-2 epidemiological situation in sub-Saharan Africa, where interactions with endemic infectious - 348 diseases are common. ## 349 **5** Conflict of Interest - 350 The authors declare that the research was conducted in the absence of any commercial or financial - relationships that could be construed as a potential conflict of interest. ## 352 6 Author Contributions - 353 Conceptualization was the responsibility of EG-D that also supervised the project with NI . RSY and - JBO provided infrastructure and organized fieldwork activities in Burkina Faso. SRY, DMSS, AFY - performed data collection. DL-F and MP-M performed RT-qPCR assays. IC, IG-M and MT-P - 356 conducted whole genome sequencing and phylogenetic analysis. DL-F and EG-D analysed the data - and wrote the manuscript. NI, SRY and IC reviewed the manuscript. All authors read and approved the - 358 final manuscript. ## 7 Funding - 360 This research work received funding from by the European Commission-NextGenerationEU - 361 (Regulation EU 2020/2094) and grant: 202020E159, through CSIC's Global Health Platform (PTI - 362 Salud Global). ## 8 Acknowledgments - We would like to thank all volunteers who participated in this study, as well as the local authorities - and communities in Burkina Faso for their support. We also thank the IPBLN, IRSS and IBV core - 366 facilities for their support to project activities. - 367 9 References - Wilkinson E, Giovanetti M, Tegally H, San JE, Lessells R, Cuadros D, et al. A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa. Science (80-). - 370 2021;374(6566):423–31. - 371 2. Kannan S, Shaik Syed Ali P, Sheeza A. Omicron (B.1.1.529) variant of concern molecular profile and epidemiology: A mini review. Eur Rev Med Pharmacol Sci. 2021;25(24):8019–22. - 373 3. Tegally H, Wilkinson E, Lessells RJ, Giandhari J, Pillay S, Msomi N, et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat Med [Internet]. 2021;27(3):440–6. Available - 375 from: http://dx.doi.org/10.1038/s41591-021-01255-3 - 376 4. Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, et al. GISAID's Role in Pandemic - Response. China CDC Wkly [Internet]. 2021 Dec 12 [cited 2022 Sep 16];3(49):1049. Available - from: /pmc/articles/PMC8668406/ - 5. Hogan AB, Jewell BL, Sherrard-Smith E, Vesga JF, Watson OJ, Whittaker C, et al. Potential - impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and - middle-income countries: a modelling study. Lancet Glob Heal. 2020 Sep 1;8(9):e1132–41. - 382 6. Sherrard-Smith E, Hogan AB, Hamlet A, Watson OJ, Whittaker C, Winskill P, et al. The - potential public health consequences of COVID-19 on malaria in Africa. Nat Med [Internet]. - 384 2020;26(9):1411–6. Available from: http://dx.doi.org/10.1038/s41591-020-1025-y - 385 7. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An - amplicon-based sequencing framework for accurately measuring intrahost virus diversity using - PrimalSeg and iVar. Genome Biol [Internet]. 2019 Jan 8 [cited 2022 Sep 16];20(1):1–19. - Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1618- - 389 7 - 390 8. Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact - alignments. Genome Biol [Internet]. 2014 Mar 3 [cited 2022 Sep 16];15(3):1–12. Available - from: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-3-r46 - 393 9. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. - Bioinformatics [Internet]. 2018 Sep 9 [cited 2022 Sep 16];34(17):i884. Available from: - 395 /pmc/articles/PMC6129281/ - 396 10. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple - tools and samples in a single report. Bioinformatics [Internet]. 2016 Oct 1 [cited 2022 Sep - 398 16];32(19):3047–8. Available from: - https://academic.oup.com/bioinformatics/article/32/19/3047/2196507 - 400 11. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nat 2020 5797798 [Internet]. 2020 Feb 3 [cited 2022 Sep - 402 16];579(7798):265–9. Available from: https://www.nature.com/articles/s41586-020-2008-3 - 403 12. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol [Internet]. 2013 Apr 1 [cited 2022 405 Sep 16];30(4):772–80. Available from: https://academic.oup.com/mbe/article/30/4/772/1073398 - 407 13. O'Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol [Internet]. 2021 [cited 2022 Sep 16];7(2). Available from: /pmc/articles/PMC8344591/ - 410 14. Aksamentov I, Roemer C, Hodcroft EB, Neher RA. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J Open Source Softw [Internet]. 2021 Nov 30 [cited 2022 Sep 16];6(67):3773. Available from: https://joss.theoj.org/papers/10.21105/joss.03773 - Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. NextStrain: Real-time tracking of pathogen evolution. Bioinformatics. 2018 Dec 1;34(23):4121–3. - 416 16. Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likelihood phylodynamic analysis. 417 Virus Evol [Internet]. 2018 Jan 1 [cited 2022 Sep 16];4(1). Available from: 418 /pmc/articles/PMC5758920/ - 419 17. WHO. Malaria Microscopy Quality Assurance Manual. 2009; - Haider N, Osman AY, Gadzekpo A, Akipede GO, Asogun D, Ansumana R, et al. Lockdown measures in response to COVID-19 in nine sub-Saharan African countries. BMJ Glob Heal. 2020;5(10):1–10. - 423 19. Kusi KA, Frimpong A, Partey FD, Lamptey H, Amoah LE, Ofori MF. High infectious disease 424 burden as a basis for the observed high frequency of asymptomatic SARS-CoV-2 infections in 425 sub-Saharan Africa. AAS Open Res. 2021;4(May):2. - 426 20. Wu X, Fu B, Chen L, Feng Y. Serological tests facilitate identification of asymptomatic SARS-427 CoV-2 infection in Wuhan, China. J Med Virol [Internet]. 2020 Oct 1 [cited 2022 Sep 428 16];92(10):1795–6. Available from: https://pubmed.ncbi.nlm.nih.gov/32311142/ - 429 21. Uyoga S, Adetifa IMO, Karanja HK, Nyagwange J, Tuju J, Wanjiku P, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science (80-). 2021;371(6524):79–431 82. - Tadesse EB, Endris AA, Solomon H, Alayu M, Kebede A, Eshetu K, et al. Seroprevalence and risk factors for SARS-CoV-2 Infection in selected urban areas in Ethiopia: a cross-sectional evaluation during July 2020. Int J Infect Dis
[Internet]. 2021;111:179–85. Available from: - 435 https://doi.org/10.1016/j.ijid.2021.08.028 - 436 23. Barrie MB, Lakoh S, Kelly JD, Kanu JS, Squire JS, Koroma Z, et al. SARS-CoV-2 antibody prevalence in Sierra Leone, March 2021: a cross-sectional, nationally representative, age- - stratified serosurvey. BMJ Glob Heal [Internet]. 2021;6:7271. Available from: http://gh.bmj.com/ - 440 24. Abdella S, Riou S, Tessema M, Assefa A, Seifu A, Blachman A, et al. Prevalence of SARS-441 CoV-2 in urban and rural Ethiopia: Randomized household serosurveys reveal level of spread 442 during the first wave of the pandemic. EClinicalMedicine [Internet]. 2021 May 1 [cited 2022 443 Jul 5];35. Available from: https://pubmed.ncbi.nlm.nih.gov/34124630/ - Wiens KE, Mawien PN, Rumunu J, Slater D, Jones FK, Moheed S, et al. Seroprevalence of severe acute respiratory syndrome coronavirus 2 IgG in Juba, South Sudan, 2020. Emerg Infect Dis. 2021;27(6):1598–606. - 447 26. Mulenga LB, Hines JZ, Fwoloshi S, Chirwa L, Siwingwa M, Yingst S, et al. Prevalence of SARS-CoV-2 in six districts in Zambia in July, 2020: a cross-sectional cluster sample survey. 449 Lancet Glob Heal [Internet]. 2021;9(6):e773–81. Available from: http://dx.doi.org/10.1016/S2214-109X(21)00053-X - 451 27. Kempen JH, Abashawl A, Suga HK, Difabachew MN, Kempen CJ, Debele MT, et al. SARS-452 CoV-2 serosurvey in Addis Ababa, Ethiopia. Am J Trop Med Hyg. 2020;103(5):2022–3. - Daniel EA, Esakialraj L BH, S A, Muthuramalingam K, Karunaianantham R, Karunakaran LP, et al. Pooled Testing Strategies for SARS-CoV-2 diagnosis: A comprehensive review. Diagn Microbiol Infect Dis [Internet]. 2021 Oct 1 [cited 2022 Sep 16];101(2). Available from: https://pubmed.ncbi.nlm.nih.gov/34175613/ - de Salazar A, Aguilera A, Trastoy R, Fuentes A, Alados JC, Causse M, et al. Sample pooling for SARS-CoV-2 RT-PCR screening. Clin Microbiol Infect [Internet]. 2020 Dec 1 [cited 2022 Sep 16];26(12):1687.e1-1687.e5. Available from: https://pubmed.ncbi.nlm.nih.gov/32919074/ - 460 30. Alm E, Broberg EK, Connor T, Hodcroft EB, Komissarov AB, Maurer-Stroh S, et al. 461 Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, 462 January to June 2020. Eurosurveillance [Internet]. 2020 Aug 13 [cited 2022 Sep 463 14];25(32):2001410. Available from: https://www.eurosurveillance.org/content/10.2807/1560464 7917.ES.2020.25.32.2001410 - 465 31. Ngoi JM, Quashie PK, Morang'a CM, Bonney JHK, Amuzu DSY, Kumordjie S, et al. Genomic 466 analysis of SARS-CoV-2 reveals local viral evolution in Ghana. Exp Biol Med. 467 2021;246(8):960–70. - 468 32. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking Changes 469 in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. 470 Cell. 2020 Aug 20;182(4):812-827.e19. - 33. Sallam M, Ababneh NA, Dababseh D, Bakri FG, Mahafzah A. Temporal increase in D614G mutation of SARS-CoV-2 in the Middle East and North Africa. Heliyon. 2021 Jan 1;7(1):e06035. - 474 34. Bakamutumaho B, Cummings MJ, Owor N, Kayiwa J, Namulondo J, Byaruhanga T, et al. Severe COVID-19 in uganda across two epidemic phases: A prospective cohort study. Am J Trop Med Hyg. 2021;105(3):740–4. - 477 35. Morton B, Barnes KG, Anscombe C, Jere K, Matambo P, Mandolo J, et al. Distinct clinical and - immunological profiles of patients with evidence of SARS-CoV-2 infection in sub-Saharan - 479 Africa. Nat Commun. 2021;12(1). - 480 36. Matangila JR, Nyembu RK, Telo GM, Ngoy CD, Sakobo TM, Massolo JM, et al. Clinical - characteristics of COVID-19 patients hospitalized at Clinique Ngaliema, a public hospital in - 482 Kinshasa, in the Democratic Republic of Congo: A retrospective cohort study. PLoS One - 483 [Internet]. 2020;15(12 December):1–15. Available from: - 484 http://dx.doi.org/10.1371/journal.pone.0244272 - 485 37. Amoo OS, Aina OO, Okwuraiwe AP, Onwuamah CK, Shaibu JO, Ige F, et al. COVID-19 - Spread Patterns Is Unrelated to Malaria Co-Infections in Lagos, Nigeria. Adv Infect Dis. - 487 2020;10(05):200–15. - 488 38. Mahajan NN, Gajbhiye RK, Bahirat S, Lokhande PD, Mathe A, Rathi S, et al. Co-infection of - 489 malaria and early clearance of SARS-CoV-2 in healthcare workers. J Med Virol. - 490 2021;93(4):2431–8. - 491 39. Wilairatana P, Masangkay FR, Kotepui KU, Milanez GDJ, Kotepui M. Prevalence and - characteristics of malaria among covid-19 individuals: A systematic review, meta-analysis, and - analysis of case reports. PLoS Negl Trop Dis [Internet]. 2021;15(10):1–18. Available from: - 494 http://dx.doi.org/10.1371/journal.pntd.0009766 - 495 40. Achan J, Serwanga A, Wanzira H, Kyagulanyi T, Nuwa A, Magumba G, et al. Current malaria - infection, previous malaria exposure, and clinical profiles and outcomes of COVID-19 in a - setting of high malaria transmission: an exploratory cohort study in Uganda. The Lancet - 498 Microbe [Internet]. 2022;3(1):e62–71. Available from: http://dx.doi.org/10.1016/S2666- - 499 5247(21)00240-8 - 500 41. Osei SA, Biney RP, Anning AS, Nortey LN, Ghartey-Kwansah G. Low incidence of COVID- - 501 19 case severity and mortality in Africa; Could malaria co-infection provide the missing link? - 502 BMC Infect Dis [Internet]. 2022;22(1):1–11. Available from: https://doi.org/10.1186/s12879- - 503 022-07064-4 - 504 42. Iesa MAM, Osman MEM, Hassan MA, Dirar AIA, Abuzeid N, Mancuso JJ, et al. SARS-CoV- - 2 and Plasmodium falciparum common immunodominant regions may explain low COVID-19 - incidence in the malaria-endemic belt. New microbes new Infect [Internet]. 2020 Nov 1 [cited - 507 2022 Jul 7];38. Available from: https://pubmed.ncbi.nlm.nih.gov/33230417/ - 508 43. Raham TF. Influence of malaria endemicity and tuberculosis prevalence on COVID-19 - 509 mortality. Public Health [Internet]. 2021;194:33–5. Available from: - 510 https://doi.org/10.1016/j.puhe.2021.02.018 - 511 44. Edwards CL, Zhang V, Werder RB, Best SE, Sebina I, James KR, et al. Coinfection with Blood- - Stage Plasmodium Promotes Systemic Type I Interferon Production during Pneumovirus - Infection but Impairs Inflammation and Viral Control in the Lung. Clin Vaccine Immunol - 514 [Internet]. 2015 May 1 [cited 2022 Jul 7];22(5):477–83. Available from: - 515 https://pubmed.ncbi.nlm.nih.gov/25716232/ - 516 45. Thompson MG, Breiman RF, Hamel MJ, Desai M, Emukule G, Khagayi S, et al. Influenza and - malaria coinfection among young children in western Kenya, 2009-2011. J Infect Dis [Internet]. - 518 2012 Dec 1 [cited 2022 Jul 7];206(11):1674–84. Available from: - 519 https://pubmed.ncbi.nlm.nih.gov/22984118/ - 520 46. Garcia-Vidal C, Sanjuan G, Moreno-García E, Puerta-Alcalde P, Garcia-Pouton N, Chumbita - M, et al. Incidence of co-infections and superinfections in hospitalized patients with COVID- - 522 19: a retrospective cohort study. Clin Microbiol Infect [Internet]. 2021 Jan 1 [cited 2022 Jul - 523 4];27(1):83–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32745596/ - 524 47. Musuuza JS, Watson L, Parmasad V, Putman-Buehler N, Christensen L, Safdar N. Prevalence - and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A - 526 systematic review and metaanalysis. PLoS One. 2021 May 1;16(5 May). - 527 48. Feldman C, Anderson R. The role of co-infections and secondary infections in patients with - 528 COVID-19. Pneumonia [Internet]. 2021 [cited 2022 Jul 7]; Available from: - 529 https://doi.org/10.1186/s41479-021-00083-w - 530 49. Danwang C, Noubiap JJ, Robert A, Yombi JC. Outcomes of patients with HIV and COVID-19 - co-infection: a systematic review and meta-analysis. AIDS Res Ther. 2022 Dec 1;19(1). - 533 10 Supplementary Material - 534 Supplementary figures 1 to 3. - 535 Supplementary tables 1 to 4 - 536 Supplementary references 541 - 537 11 Data Availability Statement - The datasets generated for this study can be found in the European Nucleotide Archive (ENA) database - 539 (https://www.ebi.ac.uk/ena/browser/home) with project ID PRJEB55393 and sample IDs - 540 SAMEA110648965-SAMEA110648977. - 542 Figure captions - Figure 1. (A) Prevalence of SARS-CoV-2, malaria and co-infection by age group. (B) Venn diagram - representation of positive cases. - 545 Figure 2. Phylogenetic tree with the 13 new SARS-CoV-2 Burkina Faso genomes placed on a - reference tree of 2022 published sequences from all over the world along with the diversity panel - below, a bar-chart showing the variation (i.e. mutations) of the 13 sequences in the genome relative to - 548 the reference sequence Wuhan-Hu-1/2019 (MN908947). Phylogenetic tree generated with Nextclade - online software v2.5.0 (https://clades.nextstrain.org) (accessed on 13 September 2022) and visualized - using Auspice v2.37.3 (https://auspice.us/) (accessed on 13 September 2022). - Table 1. Distribution of positive cases by age classes and gender | Age
group | Sex | non-
infected | COVID-19
IgG/A/M | malaria | COVID-19 Ig
& malaria | SARS-CoV-2
PCR | SARS-CoV-2
PCR &
COVID-19 Ig | SARS-CoV-2
PCR &
malaria | Total | |--------------|-----|------------------|---------------------|---------|--------------------------|-------------------|------------------------------------|--------------------------------|-------| | A 5-12 | F | 75 | 0 | 46 | 0 | 0 | 0 | 0 | 121 | | A 5-12 | M | 67 | 6 | 60 | 3 | 1 | 0 | 1 | 130 | | В 13-20 | F | 84 | 6 | 34 | 2 | 0 | 0 | 0 | 122 | | B_13-20 | М | 82 | 1 | 43 | 1 | 3 | 0 | 1 | 127 | | C 21-40 | F | 150 | 1 | 11 | 0 | 4 | 0 | 0 | 166 | | C 21-40 | М | 79 | 1 | 4 | 0 | 1 | 0 | 0 | 85 | | D >40 | F | 116 | 10 | 14 | 2 | 5 | 3 | 0 | 140 | | D >40 | М | 87 | 7 | 7 | 0 | 10 | 4 | 0 | 107 | | Sub-total | F | 425 | 17 | 105 | 4 | 9 | 3 | 0 | 549 | | Sub-total | М | 315 | 15 | 114 | 4 | 15 | 4 | 2 | 449 | | Total | .,1 | 740 | 32 | 219 | 8 | 24 | 7 | 2 | 998 | **Table 2.** Circulating lineages and clades of SARS-CoV-2 in Burkina Faso from August to November 2020. Mutations (aminoacid substitutions) relative to the reference
sequence Wuhan-Hu-1/2019 (MN908947) are showed. | Sample
Accession (ENA) | Sample
Alias | Lineage
(Pangolin) | Clade
(Nextstrain) | Global
mutations | Spike mutations | |---------------------------|-----------------|-----------------------|-----------------------|---------------------|---------------------| | SAMEA110648965 | BOB20 | A.21 | 19B | 15 | D614N, V622F, Q675R | | SAMEA110648966 | BOB49 | A.19 | 19B | 11 | D614G | | SAMEA110648967 | BOB86 | A.19 | 19B | 3 | D614G | | SAMEA110648968 | BOB108 | A.19 | 19B | 7 | D614G | | SAMEA110648969 | BOB113 | B.1.1.404 | 20B | 7 | D614G, G1219V | | SAMEA110648970 | BOB155 | A.21 | 19B | 7 | - | | SAMEA110648971 | BOB159 | B.1.1.404 | 20B | 6 | D614G | | SAMEA110648972 | BOB216 | B.1.1.404 | 20B | 7 | D614G | | SAMEA110648973 | BOB323 | B.1 | 20A | 13 | D614G | | SAMEA110648974 | BOB327 | B.1.1.404 | 20B | 8 | Y248S, D614G | | SAMEA110648975 | DAN86 | A.19 | 19B | 7 | D614G | | SAMEA110648976 | KOK14 | B.1.1.118 | 20B | 9 | D614G, S640F | | SAMEA110648977 | ZAN2 | A.21 | 19B | 15 | D614N, V622F | A. B. medRxiv preprint doi: https://doi.org/10.1101/2022.09.20.22280138; this version posted September 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.