Development and Clinical Validation of Swaasa AI Platform for screening and prioritization of Pulmonary TB

- 3
- 4 Dr. Gayatri Devi Yellapu¹, Gowrisree Rudraraju^{*2}, Narayana Rao Sripada², Baswaraj Mamidgi²,
- 5 Charan Jalukuru², Priyanka Firmal², Venkat Yechuri², Dr. Sowmya Varanasi¹, Dr. Venkata Sudhakar
- 6 Peddireddi¹, Dr. Devi Madhavi Bhimarasetty¹, Dr. Sidharth Kanisetti¹, Dr. Niranjan Joshi³, Dr Prasant
- 7 Mohapatra⁴, Dr. kiran Pamarthi¹
- 8 1 Andhra Medical College, Visakhapatnam, India
- 9 2 Salcit Technologies, Jayabheri Silicon Towers, Hyderabad India
- 10 3 C-CAMP
- 11 4 Department of Computer Science, University of California, Davis
- 12 *Corresponding author: <u>gowri@salcit.in</u>
- 13

Keywords: Pulmonary Tuberculosis (PTB), Cough signature, Convolutional Neural Network
 (CNN), Feedforward Artificial Neural Network (FFANN), Machine learning

16 Abstract

17 Acoustic signal analysis has been employed in various medical devices. However, studies 18 involving cough sound analysis to screen the potential Pulmonary Tuberculosis (PTB) 19 suspects are very few. The main objective of this cross-sectional validation study was to 20 develop and validate the Swaasa AI platform to screen and prioritize at risk patients for PTB 21 based on the signature cough sound as well as symptomatic information provided by the 22 subjects. The voluntary cough sound data was collected at Andhra Medical College-India. An 23 Algorithm based on multimodal Convolutional Neural Network (CNN) architecture and 24 Feedforward Artificial Neural Network (FFANN) (tabular features) was built and validated 25 on a total of 567 subjects, comprising 278 positive and 289 negative PTB cases. The output 26 from these two models was combined to detect the likely presence (positive cases) of PTB. In 27 the clinical validation phase, the AI-model was found to be 86.82% accurate in detecting the 28 likely presence of PTB with 90.36% sensitivity and 84.67% specificity. The pilot testing of 29 model was conducted at a peripheral health care centre, RHC Simhachalam-India on 65 30 presumptive PTB cases. Out of which, 15 subjects truly turned out to be PTB positive with a 31 Positive Predictive Value of 75%. The validation results obtained from the model are quite 32 encouraging. This platform has the potential to fulfil the unmet need of a cost-effective PTB 33 screening method. It works remotely, presents instantaneous results, and does not require a 34 highly trained operator. Therefore, it could be implemented in various inaccessible, resource-35 poor parts of the world.

36

37

38 Introduction

39 Tuberculosis (TB) is the world's second leading airborne infectious disease after COVID-19. 40 Unlike COVID the causative agent of TB is a bacterium, Mycobacterium tuberculosis 41 (MTB). However, both the infections mainly affect the respiratory system. Although the 42 bacteria have the capability to cause infection in various body parts. Pulmonary Tuberculosis 43 (PTB) along with Extra pulmonary tuberculosis (EPTB) are the active form of infection, which displays symptoms such as fever, night sweat, weight loss and cough 1,2 . In 2020, the 44 45 World Health Organization globally reported nearly 10 million active TB cases and 1.5 46 million TB related mortalities. Although, TB is curable and preventable, the number of active 47 cases is still high in various low income, developing countries including India. An active PTB patient can infect nearly ten to fifteen people every year ³. Currently there are several 48 49 methods for diagnosing presumptive as well as active PTB cases, such as sputum staining, 50 chest X-ray (CXR) and sputum cartridge based nucleic acid amplification test (CB-NAAT) or 51 sputum GeneXpert test. However, all these methods are very expensive, require proper lab setting and trained technicians. Therefore, quick, and inexpensive mass screening methods ⁴ 52 53 are required for reducing the transmission of infection by providing timely diagnosis followed by appropriate treatment regime 5,6 . 54

55 Cough is a common symptom of respiratory disease and is caused by an explosive expulsion of air to clear the airways⁷. It is a significant feature of pulmonary tuberculosis and results in 56 the release of airborne particles into the environment^{8,9}. There are commonly two types of 57 58 coughs i.e., wet and dry. Coughs are classified as wet when they have auditory characteristics 59 that are suggestive of mucus, and dry when there is no discernible wetness 10 . It has also been 60 postulated that the glottis behaves differently under different pathological conditions, which 61 makes it possible to distinguish coughs originating from different underlying conditions such as asthma, bronchitis, and pertussis (whooping cough)¹¹. Since coughing is a dominant 62

63 symptom of PTB, there are reports which suggest that the coughing sound of an individual 64 with pulmonary TB has some unique characteristic features that distinguish the diseased 65 condition from the normal scenario ^{12–14}. Still, a lot of research is needed to fully explore and 66 decode the information contained in the cough sound to use it as an indicator of the 67 underlying disease.

68 The recent application of Artificial Intelligence (AI) and advances of ubiquitous computing 69 for respiratory disease prediction has created an auspicious trend and myriad of future 70 possibilities in the medical domain 15-17. There is an expeditiously emerging trend of 71 Machine learning (ML) and Deep Learning (DL)-based algorithms exploiting cough 72 signatures ¹⁸. Cough analysis approaches are primarily subjective and are affected by the 73 limitations of human perception. Audiometric analysis of cough (digital signal) provides 74 essential information about characteristics of cough sounds in different respiratory 75 pathological conditions. Several studies have been conducted in the past to collect and 76 analyse cough sound data for PTB pre-screening and triaging using mobile devices. 77 However, there are some missing links in terms of selecting the subjects, collecting the cough 78 data and lack of proper technical/ clinical validations to scale up these tools for mass screening of PTB subjects 8,9,13,19,20. 79

80 Our study provides a holistic approach by developing, validating, and testing the "Swaasa AI 81 platform" to screen and prioritize the potential PTB cases. It is a SaMD (Software as a 82 Medical Device) that evaluates respiratory health using a 10-second cough sound recording, 83 serving as a quick Point of Care tool. It effectively prioritizes at-risk patients for molecular 84 testing when used as a screening and triaging tool. As opposed to majority of the previous 85 reports that utilized the crowdsource cough sound database for training their model, we have 86 conducted the data collection from 567 unique subjects for our model derivation as well as 87 validation phase in a proper clinical setting. Hence, our data have cough recordings collected

88 from various unique subjects to build a robust model. Unlike others, we have trained two 89 parallel models i.e., Convolutional Neural Network (CNN) model with Mel spectrograms and 90 Feedforward Artificial Neural Network (FFANN or tabular) model with primary as well as 91 secondary features and merged the final layer to build a combined logic. In the validation 92 phase, the AI-model was found to be 86.82% accurate in detecting the likely presence of PTB 93 with 90.36% sensitivity and 84.67% specificity. Therefore, it satisfies the specificity (70%) 94 and sensitivity (90%) criteria set by the World Health Organisation (WHO) for a community-95 based mass TB screening test ¹⁴. The results obtained by the model are very promising with a 96 scope to make it scalable for quick, cost-effective, and non-invasive screening of PTB cases. 97 A large-scale study will further help us to improvise the accuracy of the platform for making 98 it more reliable for screening genetically diverse subjects under different environmental 99 conditions.

100 Materials and Methods

101 Sample size estimation

102 To calculate the adequate sample size for our study, we used a simple formula that required 103 us to select appropriate values for several assumptions. The formula used was $n=Z^{2}*P(1-P)/d^{2}$, where n represented the sample size, Z was the statistic corresponding to the 104 105 level of confidence, P was the expected prevalence, and d was the precision corresponding to the effect size ²¹. By using this formula, we were able to determine an appropriate sample 106 107 size for our study. These many number of subjects were appropriate for validating if the 108 device could detect PTB respiratory conditions with a 90% sensitivity on considering a 1% 109 error for a 95% confidence interval (CI) and a prevalence of 0.75% as the highest prevalence of PBT in India is 0.747% (747 per 100,000 population)²². In total 567 subjects were 110 111 recruited, out of which 50.9% subjects were classified as controls. The control group

112 consisted of both healthy individuals and those who displayed respiratory disease symptoms 113 but tested negative for PTB via CB-NAAT. These respiratory conditions included asthma, 114 Chronic Obstructive Pulmonary Disease (COPD), Interstitial lung disease (ILD), and 115 pneumonia. The number of TB records were calculated based on disease prevalence. In order 116 to avoid potential bias in the model, it was trained using an equal number of TB and non-TB 117 records.

118 **Data Collection**

119 The cough data has been collected at Andhra Medical College (AMC), Visakhapatnam, India 120 as part of the clinical study "Swaasa Artificial Intelligence Platform for detecting the likely 121 presence of Pulmonary Tuberculosis". The study was registered with Clinical Trials Registry-India (CTRI/2021/09/036609) on 17th September 2021. The methods were performed in 122 123 accordance with relevant guidelines and regulations and approved by AMC- Institutional 124 Ethics Committee (IEC). Written informed consent was taken from all the enrolled subjects. 125 After getting the informed consent, the patient's demographic details and vitals were 126 collected. The patients were also interviewed as per the Part I of the St. George's Respiratory Questionnaire (SGRQ)²³, which primarily covers the symptoms they've had experienced 127 128 within the past few months or year. This was followed by cough sound collection by trained 129 health care personnel via a smartphone (Android or iPhone). To ensure the highest quality 130 data for analysis, several factors were taken into consideration before recording. The person 131 being recorded was given specific instructions to sit comfortably in a quiet place, hold the 132 recording device (which included smartphones and tablets from various manufacturers) 4-8 133 inches away from their mouth, and maintain a 90-degree angle with their face. They were 134 also instructed to take a deep breath and cough 2-3 times until the recording stopped, which 135 lasted for 10 seconds. However, since the collected data was from varying environments and 136 a variety of devices, it was important to control as many potential variables as possible.

137 Therefore, noise filtering was applied using a noise reduction algorithm. This algorithm 138 calculated the ratio of the power of observed signals at two microphones for smartphones 139 with two or more built-in microphones, and then calculated the spectral gain function based 140 on the power level ratio using the sigmoid function. The result was a denoised audio 141 recording. For smartphones with a single built-in microphone, noise filtering was not applied 142 during the recording. Instead, a noise removal technique was applied during pre-processing. 143 This involved subtracting the noise audio clip (which contained background noise such as 144 electronic noise, multiple people talking, and fan sound) from the signal audio clip (which 145 contained the cough). The noise removal technique isolated the signal using Fast Fourier 146 Transform, removing the background noise and resulting in a cleaner recording. Valid coughs 147 were detected using a cough/non-cough classifier, which screened the dataset for coughs with 148 high background noise. If a recording did not meet the minimum required valid coughs, a 149 message would appear on the mobile screen instructing the person to give another recording 150 following the instructions. Overall, these processes standardized the dataset, making it 151 suitable for analysis.

152 During the audio recording process, we implemented several safety measures to prevent the 153 transmission of disease. All subjects were required to wear a surgical mask while providing 154 the audio recordings, in order to limit the spread of germs through water droplets during 155 coughing. After each recording, the phone used for recording was cleaned using one of three 156 methods. A disinfectant wipe was used to clean the phone, or alternatively, a damp 157 microfiber cloth dipped in soapy water was used if the phone was waterproof. Another option 158 was to use a mobile sanitizer to clean the phone. These measures helped to maintain a clean 159 and safe environment during the data collection process.

Following the cough sample collection, patients were subjected for CB-NAAT and chest XRay (CXR P/A) view for diagnosis of PTB. The data distribution across different gender and

age groups is presented in Figure 1. The inclusion criteria were that a patient must be of (a) age \geq 18 years and should display (b) symptoms suggestive of PTB (presumptive PTB). Whereas patients with (a) age \leq 18 years and who were (b) on ventilators support were completely excluded from the current study. COVID precautionary and infection control measures were followed strictly.

167 Model development and training

In the Phase 1 (Derivation phase) of the study, we aimed to develop and train a machine learning-based model for the detection of pulmonary tuberculosis (PTB) using cough sounds. The objective of this phase was to quantify the technical as well as analytical performance of the device by establishing a unique cough signature for PTB. A total of 195 PTB positive cases were recruited for the derivation phase, and audio cough recordings were collected. In addition, 152 non-PTB subjects were also included to train the model to distinguish between PTB condition and normal healthy subjects as well as other respiratory disease scenarios.

175 Event extraction was carried out from the collected audio cough records using the moving window signal standard deviation technique²⁴. A cough/non-cough classifier was used to 176 177 segregate the events into actual coughs and non-coughs such as silence, speech, fan sounds, 178 vehicle sounds like horn, and noise. A total of 3102 cough events were extracted at this step. 179 The features were extracted from the time as well as frequency domain of each cough event. 180 The important time domain features that were taken into consideration were Zero crossing 181 rate (ZCR) and Energy. The frequency domain features which were utilized for data analysis 182 are MFCC, Spectral centroid, Spectral bandwidth, and Spectral roll-off ²⁵. The features were 183 extracted for each frame within the cough signal. Each frame was typically about 20 ms in 184 duration. The cough event duration can vary from anywhere between 200 ms to 700 ms.

185 The total features extracted were 209, that includes age, gender, 120 Mel Frequency Cepstral 186 coefficients (40 MFCC, 40 first derivatives of MFCC, 40 second order derivatives of 187 MFCC), 9 spectral features (spectral centroid, spectral roll-off, spectral bandwidth, dominant 188 frequency, spectral skewness, spectral kurtosis, spectral crest, spectral spread and spectral 189 entropy), 33 chroma features (11 chroma, 11 first derivatives of chroma, 11 second 190 derivatives of chroma), 18 contrast features (6 contrast, 6 first derivatives of contrast, 6 191 second derivatives of contrast), 15 tonnentz features (5 tonnentz, 5 first derivatives of 192 tonnentz, 5 second derivatives of tonnentz), 3 Zero-crossing rate (ZCR, first derivatives of 193 ZCR, second derivatives of ZCR), 3 Energy (Energy, first derivatives of energy, second 194 derivatives of energy), 3 skewness, first derivatives of skewness, second 195 derivatives of skewness), 3 kurtosis (kurtosis, first derivatives of kurtosis, second derivatives 196 of kurtosis). On these features, we did correlation analysis and recursive feature elimination 197 (RFE) to rank the feature according to their importance. Correlation-based feature selection 198 was used to reduce the feature size from 209 to 170, and highly correlated features were 199 removed to prevent overfitting and improve the performance of the model. Primary features 200 include all the 170 features. The secondary features included age (categorized), gender, 201 symptoms, cough type (dry/wet), and cough duration. The cough type is derived from the 202 primary features and cough duration is derived from audio signal. The CNN model is trained 203 with the Mel spectrograms of cough sounds. Whereas, both secondary and primary features 204 were used to train the FFANN model.

The CNN model used in the study was based on transfer learning using Resnet-34 with imagenet for training on spectrograms. Whereas, the FFANN was utilized to process the tabular data. The FFANN consisted of two hidden layers, with 400 and 300 neurons, respectively. Each layer was followed by batch normalization. The selection of the number of layers, number of neurons in each layer, and the activation functions were determined using

the Bayesian optimization method. The last fully connected layers of both models were removed, and a new fully connected layer (merged layer) was added to predict the final output. The merged layer consists of activation layers (Figure 2). This merging approach of the last layers of the two models was named the combined logic. When the model is uncertain about the likely detection of PTB as yes/no, it provides the output as inconclusive as displayed in the block diagram in Figure 3, wherein PTB likely indicates TB positive and PTB unlikely indicates TB negative condition.

Overall, the primary and secondary features were used to train feedforward neural network models (tabular) and Mel spectrograms were used to train CNN and the combined logic approach was used to merge the outputs of the two models. The correlation-based feature selection was also used to improve the performance of the model.

During our study, we split the initial dataset into 80% training and 20% testing sets to assess the performance of the machine learning model. In addition, we used the k-fold (K=10) cross-validation approach to divide the training dataset into k subsets of data, which allowed us to obtain a more robust estimate of the model's performance.

225 Clinical validation of the Model

After training the model, it was tested in the Phase 2 i.e., Clinical validation phase. A total of presumptive PTB cases were recruited and subjected to the screening test using the model. The results were compared with diagnosis based on sputum CB-NAAT test or radiological diagnosis, which are considered classical gold standard diagnostic methods. A total of 98% of the subjects underwent sputum CB-NAAT testing for the diagnosis of TB. In cases where the results of CB-NAAT testing were unclear for the remaining 2% of subjects, a repeat test was performed. If the results remained inconclusive after the second test, fresh

sputum samples were collected. Additional tests such as acid-fast bacilli (AFB) staining, and

chest X-ray (CXR) were performed to confirm the TB status of the patients.

The consolidated test summary sheet was generated, which contained the results obtained from the classical gold standard diagnosis methods along with the model's output. Both the results were then compared by a statistician.

238 External validation of the Model

239 In Phase 3 (Pilot Phase), the model was externally validated to evaluate its effectiveness as a 240 screening tool for PTB detection prior to clinical diagnosis. The sample size for this phase 241 consisted of 65 individuals who were identified as presumptive PTB cases and recruited from 242 a peripheral healthcare center, RHC Simhachalam. The effectiveness of the model was 243 measured by calculating the ratio of patients truly diagnosed as PTB positive via standard 244 lab-based diagnostic techniques to all those who were predicted to be PTB positive via the 245 AI-based model. The diagnostic performance of the model was evaluated using metrics such 246 as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 247 and accuracy. To assess the effectiveness of the model, a data analysis strategy similar to that 248 used in phase 2 was employed. The AI-based model was compared with classical gold 249 standard diagnostic methods, such as sputum CB-NAAT testing or radiological diagnosis, 250 and the results were analysed using statistical methods.

251 LIME Representation

In Local interpretable model-agnostic explanations (LIME) representation ²⁶, the green part shows where the model reacted positively for a particular class and red parts highlights where it reacted negatively. It explains the prediction by presenting textual or visual artefacts that provide qualitative understanding of the relationship between the instance's components (e.g., words in text, patches in an image) and the model's prediction.

257 Statistical analysis

The comprehensive evaluation of the model performance on the test set includes accuracy sensitivity, specificity, positive prediction value (PPV), negative predictive values (NPV) and ROC. To measure the variability around these parameters, we used 95% confidence intervals using the Clopper–Pearson method ²⁷. To better understand the performance of the model in screening PTB subjects, we also calculated confusion metrics on the entire test set.

263 **Results:**

264 **Patient population in Model derivation phase**

265 Cough sound data was collected from 195 subjects PTB positive subjects and 152 PTB 266 negative subjects in the derivation phase. Among 195 subjects, 65% were male and 35% 267 were female, with age ranging from 18 years to 64 & above. Subjects were confirmed with 268 TB by standard diagnosis methods. In this phase multiple data points were collected from the 269 subjects. Each data point was called a record. A total of 597 cough records were collected 270 from 195 patients. The data was annotated with disease condition as PTB i.e., PTB likely as 271 "yes". For PTB unlikely, data representing other respiratory disease conditions was added 272 from the pre-existing labelled datasets (collected as a part of earlier studies) in appropriate propositions²⁵. 273

The features listed in Table 1 depicts the mean value of the features extracted from individual frames, where we have considered normal as well as respiratory diseases data other than PTB from our previous validation study conducted at Apollo Hospitals, Hyderabad ²⁵.

277 LIME data comparison

Spectral content is the distribution of audio signal based on its frequency w.r.t time, wherehigh spectral content emphasizes that the energy of the cough bout remains same throughout

the signal, whereas low spectral content corresponds to the conditions where the energy of the cough decreases with time. We observed that conditions like COPD and ILD carried very low spectral frequencies as compared to Asthma, which has a medium spectral frequency. On the other hand, we detected a very high spectral content for diseases where mucus accumulation in the airways and fluid accumulation in parenchyma region was present such as, PTB. Features like high spectral content brought uniqueness in the PTB cough, which differentiates it from the other respiratory diseases.

Thorough feature analysis of the cough sounds highlighted that the cough sounds could distinguish diseases. Variation in the cough duration and frequency distribution alters with the pathological conditions of the respiratory system ^{9,28}.

290 We have enlisted a few examples of cough signatures, cough spectrograms and related LIME 291 maps for different respiratory diseases, including PTB in Table 2. It is evident from the LIME 292 maps that frequency distribution of the coughs is unique for each disease. To be specific, both 293 Asthma & ILD have negative reactions in high frequency regions. TB has a positive reaction 294 in the high frequency region and in the low frequency region. Normal cough signature is 295 widely spread. However, it is not like other diseased conditions, where it has a strong patch 296 around a given region. Similarly in the first column of the table, the variation of the 297 amplitudes of the cough from bout to bout is different in coughs related to different diseases. 298 As amplitudes vary, energy also varies from bout to bout.

From the feature analysis we conclude that PTB related cough has a unique signature, and it is captured by the features extracted from the cough, which can be identified by a machine learning model.

302 **Performance of Combined logic Model**

303 Initially, the training data i.e., 3102 coughs which were extracted from 597 records collected 304 from 195 subjects was internally divided into training and validation as required to build as 305 well as optimize the model performance based on K-fold cross validation technique. The 306 performance of our model was evaluated using k-fold cross validation, with k set to 10. The 307 metric used for evaluation was the Area Under the Curve of the "Receiver Operating 308 Characteristic (AUCROC) curve, which provides a measure of the model's ability to 309 distinguish between positive and negative samples. The obtained AUC score was 0.98, 310 indicating that our model is highly effective in making accurate predictions. Figure 4 shows 311 the representative ROC curve of the best performing fold among the 10 cross validation 312 folds. In machine learning model, attribute like learning function, activation function were 313 fixed for learning. Hence, the dataset was divided into subsets and the model was trained with 314 each subset to validate the model.

Further, the data collected in the derivation phase have been divided into 80% train and 20% test, when the test data was run through the classifier. We obtained four outcomes as enlisted in Table 3 i.e., 102 True positives (TP), 20 False Negatives (FN); 22 False Positives (FP) and 128 True Negatives (TN), that corresponds to 85% accuracy, 84% sensitivity and 85% specificity.

A total of 220 subjects participated in the validation phase, out of which 83 subjects were found to be PTB positive and 137 subjects PTB negative by standard diagnostic methods. Only one cough record was collected from each subject in this phase. We achieved an AUC (Area Under the ROC Curve) of 0.94 (Figure 5). Confusion matrix for validation phase of the model is illustrated in Table 4, where the row represents the actual label, and the column represents predicted label. For the Validation phase we achieved an accuracy of 86.82% with 90.36% sensitivity and 84.67% specificity (Table 5).

327 Model Output in the Pilot phase

Pilot testing was done on a total of 65 subjects. The patients approaching the testing centre with symptoms of cough suggestive of possible pulmonary tuberculosis are assessed for eligibility. Patient's demographic details and vitals were collected and interviewed as per the SGRQ questionnaire. This is followed by cough sound collection by trained health care personnel.

Among 65 subjects, the model was able to identify 20 subjects as having a likely presence of TB. Out of these 20 subjects, 15 truly turned out to be TB positive with a Positive predictive value (PPV) of 75%. The confusion matrix for pilot testing phase is listed in Table 6. The model obtained a high AUC score of 0.90. Figure 6 shows the ROC curve of the model's ability to distinguish between positive and negative samples.

When compared to the existing classical methods, screening of PTB patients by the model saved a significant amount of time. Additionally, it does not require any trained professionals, the testing can be done by a community healthcare worker. The worker did not require any specific hardware or any other consumables. A smartphone with an internet connection is enough to conduct the test.

343 Discussion

Several studies have been conducted in the past to deploy the information contained in the cough sound to detect and predict different disease outcomes such as Asthma, Pneumonia, COPD, bronchitis, and lung-cancer ^{10,29–31}. Nowadays, due to the increasing COVID-19 cases, there has been a tremendous boost in the use of ML/DL frameworks to determine the presence of SARS-CoV-2 infection via cough sample analysis. This is because cough is one of the most prominent symptoms for the diseases that primarily affect the respiratory system. Numerous studies have shown that cough analysis can accurately predict COVID-19 ^{32,33}.

351 However, there are only a handful of clinical trials that emphasise the association of cough to the underlying Pulmonary TB condition $^{12-14,20}$. Most of the previously developed tools were 352 353 utilizing the logistic regression methods to build the model. However, in the current study, 354 we developed the model by combining the final output layers of the two separate models i.e., 355 FFANN model (training input: primary and secondary features) and CNN model (training 356 input: Mel spectrograms) because it gave us far better prediction outcome as compared to the 357 either logical regression or CNN model used alone by other groups^{13,14,20}. We conducted the 358 pilot screening on a comparatively large cohort, whereas previous studies were performed on 359 a smaller scale. A pilot study conducted in Peru focused on analysing cough sounds for 360 providing a foundation to support larger-scale studies of coughing rates over time for TB 361 patients undergoing treatment ²⁰. A similar cough sound analysis study was undertaken in 362 South Africa for automatically classifying coughing sounds, which could be a viable low-cost 363 and low-complexity screening method for PTB¹³.

364 The approach of the current study is different with respect to the previously published data in 365 terms of the amount of data collected to build and train the model. As compared to the 366 maximum AUC of 0.94 achieved in a similar study upon utilizing only 23 features and with 367 less dataset, we have utilized 170 features while training the model and achieved an AUC of 368 0.84 on a dataset comprising TB and non-PTB, where non-PTB includes other important diseases like Asthma, COPD, COVID-19, Pneumonia as well as healthy subjects ¹⁴. Having a 369 370 greater number of latent features helps in distinguishing the signature better. Our model 371 achieved an accuracy of 86.82% with 90.36% sensitivity and 84.67% specificity in the 372 clinical validation phase. We conducted the pilot testing in a real primary care setting to test 373 the accuracy of the tool. Upon deployment as a screening and triaging tool prior to molecular 374 testing, the model was proven statistically effective in prioritizing at-risk patients for

375 confirmatory testing. In the pilot phase also, the model achieved a positive prediction value376 of 75% in a clinical setup at a tertiary care hospital.

Considering the performance of the present diagnostic tests for PTB, our model's technical and clinical validation results are quite encouraging, given the device is primarily intended to be used as a screening tool and helps in prioritizing and fast tracking the patients for subjecting them to the standard reference tests for confirmation of diagnosis of PTB.

During our study we observed that on an average 10 to 12 patients are diagnosed with extensive PTB with severe parenchymal damage, respiratory failure and poor lung function every month at a remote community health centre in India. Most of these patients belong to tribal areas. The delay in diagnosis is mainly due to lack of awareness, and social inhibitions in reaching a doctor or a peripheral health worker. We believe that this model will help in reducing the gap in accessibility for the much-needed population.

387 Data availability

388 Due to the nature of this research, participants of this study did not agree for their data to be 389 shared publicly. However, the detailed analysis can be shared by NRS upon reasonable 390 request.

391 Author contributions

392 GDY and DMB defined study protocol, including the study design and methodology. NRS 393 conceptualized the idea of using cough sounds for screening and diagnosing respiratory 394 problems. GR performed literature review and data analysis. BM and CJ were involved in 395 device development. VY created a value proposition for the device. VSP assisted in 396 executing the project at AMC by providing all the resources and extending research 397 capabilities. SV, SK and KP performed data analysis, sample size estimation and result 398 analysis. PM provided subject matter expertise. GR and PF wrote the manuscript. All the 399 authors provided intellectual inputs and helped in preparing the manuscript.

400 Conflict of interest

401 The authors declare no commercial or financial conflict of interest.

402 Acknowledgement

- 403 This study is supported by the UK Government (British High Commission, New Delhi). This
- 404 is a commissioned research report on commercial terms between C-CAMP and the UK
- 405 Government (British High Commission, New Delhi). We would also like to acknowledge the
- 406 team from Andhra Medical College Visakhapatnam, Government TB & Chest Hospital
- 407 Visakhapatnam for all the support provided

408 References

- 409 1. Al Lawati, R. et al. COVID-19 and Pulmonary Mycobacterium Tuberculosis
- 410 Coinfection. *Oman Med. J.* **36**, e298–e298 (2021).
- 411 2. Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Prim. 2, 1–23 (2016).
- 412 3. WHO. Global tuberculosis report 2021. Geneva: World Health Organization; 2021.
- 413 *Licence: CC BY-NC-SA 3.0 IGO.* (2021).
- 414 4. WHO. Systematic screening for active tuberculosis. World Health Organization
 415 (2013).
- 416 5. Migliori, G. B. et al. Reducing tuberculosis transmission: a consensus document from
- 417 the World Health Organization Regional Office for Europe. *Eur. Respir. J.* **53**, 1–18
- 418 (2019).
- Gill, C. M., Dolan, L., Piggott, L. M. & McLaughlin, A. M. New developments in
 tuberculosis diagnosis and treatment. *Breathe* 18, 1–15 (2022).
- 421 7. Chung, K. F. & Pavord, I. D. Prevalence, pathogenesis, and causes of chronic cough.
 422 *Lancet* 371, 1364–1374 (2008).
- 423 8. Simonsson, B. G., Jacobs, F. M. & Nadel, J. A. Role of Autonomic Nervous System
- 424 and the Cough Reflex in the Increased Responsiveness of Airways in Patients with
- 425 Obstructive Airway Disease. J. Clin. Invest. 46, 1812–1818 (1967).
- 426 9. Turner, R. D. & Bothamley, G. H. Cough and the Transmission of Tuberculosis. *J.*427 *Infect. Dis.* 211, 1367–1372 (2015).
- 428 10. Swarnkar, V. et al. Automatic Identification of Wet and Dry Cough in Pediatric
- 429 Patients with Respiratory Diseases. Ann. Biomed. Eng. 41, 1016–1028 (2013).
- 430 11. Kaplan, A. G. Chronic Cough in Adults: Make the Diagnosis and Make a Difference.
 431 *Pulm. Ther.* 5, 11–21 (2019).
- 432 12. Proaño, A. et al. Protocol for studying cough frequency in people with pulmonary

- 433 tuberculosis. *BMJ Open* **6**, 1–9 (2016).
- 434 13. Botha, G. H. R. *et al.* Detection of tuberculosis by automatic cough sound analysis.
- 435 *Physiol. Meas.* **39**, 045005 (2018).
- 436 14. Pahar, M. et al. Automatic cough classification for tuberculosis screening in a real-
- 437 world environment. *Physiol. Meas.* **42**, 105014 (2021).
- 438 15. Armstrong, S. The computer will assess you now. BMJ 355, 1–2 (2016).
- 439 16. The Lancet. Artificial intelligence in health care: within touching distance. *Lancet* 390,
 440 2739 (2017).
- 441 17. Topalovic, M. et al. Artificial intelligence outperforms pulmonologists in the
- 442 interpretation of pulmonary function tests. *Eur. Respir. J.* **53**, 1–11 (2019).
- 18. Ijaz, A. *et al.* Towards using cough for respiratory disease diagnosis by leveraging

444 Artificial Intelligence: A survey. *Informatics Med. Unlocked* **29**, 1–28 (2022).

- 445 19. Kik, S. V., Denkinger, C. M., Casenghi, M., Vadnais, C. & Pai, M. Tuberculosis
- 446 diagnostics: which target product profiles should be prioritised? *Eur. Respir. J.* 44,
- 447 537–540 (2014).
- Larson, S. *et al.* Validation of an Automated Cough Detection Algorithm for Tracking
 Recovery of Pulmonary Tuberculosis Patients. *PLoS One* 7, 1–10 (2012).
- 450 21. Pourhoseingholi, M. A., Vahedi, M. & Rahimzadeh, M. Sample size calculation in
- 451 medical studies. *Gastroenterol. Hepatol. from Bed to Bench* **6**, 14–17 (2013).
- 452 22. National TB elimination programme Central TB Division. *National TB Prevalence*
- 453 Survey in India 2019 2021. Ministry of Health and Family Welfare
- 454 https://tbcindia.gov.in/showfile.php?lid=3659 (2021).
- 455 23. Jones, P. W., Quirk, F. H. & Baveystock, C. M. The St George's Respiratory
- 456 Questionnaire. *Respir. Med.* **85**, 25–31 (1991).
- 457 24. Barry, S. J., Dane, A. D., Morice, A. H. & Walmsley, A. D. The automatic recognition

458	and counting of cou	gh. Cough 2.8	(2006).

- 459 25. Rudraraju, G. *et al.* Cough sound analysis and objective correlation with spirometry
 460 and clinical diagnosis. *Informatics Med. Unlocked* 19, 1–11 (2020).
- 461 26. Ribeiro, M., Singh, S. & Guestrin, C. "Why Should I Trust You?": Explaining the
- 462 Predictions of Any Classifier. in *Proceedings of the 2016 Conference of the North*
- 463 American Chapter of the Association for Computational Linguistics: Demonstrations
- 464 1135–1144 (Association for Computational Linguistics, 2016). doi:10.18653/v1/N16465 3020.
- Clopper, C. J. & Pearson, E. S. The Use of Confidence or Fiducial Limits Illustrated in
 the Case of the Binomial. *Biometrika* 26, 404–413 (1934).
- 468 28. Belkacem, A. N., Ouhbi, S., Lakas, A., Benkhelifa, E. & Chen, C. End-to-End AI-
- 469Based Point-of-Care Diagnosis System for Classifying Respiratory Illnesses and Early
- 470 Detection of COVID-19: A Theoretical Framework. *Front. Med.* **8**, 1–13 (2021).
- 471 29. Abeyratne, U. R., Swarnkar, V., Setyati, A. & Triasih, R. Cough Sound Analysis Can
- 472 Rapidly Diagnose Childhood Pneumonia. Ann. Biomed. Eng. 41, 2448–2462 (2013).
- 473 30. Xu, X. et al. Listen2Cough: Leveraging End-to-End Deep Learning Cough Detection
- 474 Model to Enhance Lung Health Assessment Using Passively Sensed Audio. *Proc.*
- 475 *ACM Interactive, Mobile, Wearable Ubiquitous Technol.* **5**, 1–22 (2021).
- 476 31. Klco, P., Kollarik, M. & Tatar, M. Novel computer algorithm for cough monitoring
 477 based on octonions. *Respir. Physiol. Neurobiol.* 257, 36–41 (2018).
- 478 32. Laguarta, J., Hueto, F. & Subirana, B. COVID-19 Artificial Intelligence Diagnosis
- 479 Using only Cough Recordings. *IEEE Open J. Eng. Med. Biol.* 1, 275–281 (2020).
- 480 33. Pahar, M., Klopper, M., Warren, R. & Niesler, T. COVID-19 cough classification
- 481 using machine learning and global smartphone recordings. *Comput. Biol. Med.* 135, 1–
- 482 10 (2021).

483

484 **Table 1**: Table showing mean values of the Zero crossing rate (ZCR), spectral centroid and

Disease	ZCR	Spectral centroid	Dominant Frequency
Conditions	Mean values	mean values	mean values
Normal	0.169	2809	2809
ILD	0.099	2053	2053
COPD	0.08	1947	1947
Asthma	0.112	2093	2093
Pneumonia	0.118	2249	2249
COVID	0.216	3135	3135
ТВ	0.178	2867	2867

485 dominant frequency of various disease conditions.

486

487 **Table 2**: List of different respiratory diseases showing characteristic cough signature, cough

488 spectrograms and related LIME maps.

Disease	Cough Signature	Spectrogram	LIME maps
РТВ		10000 1000	
Asthma		1000 - 1000 - 10	
Normal	Anther Anno	10000	

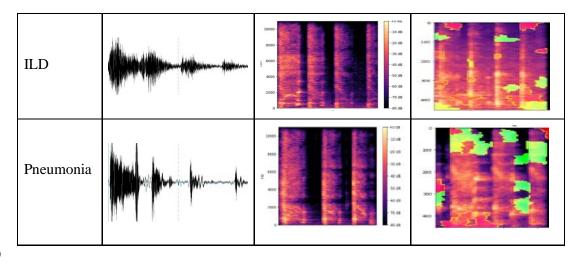


Table 3: Data distribution into train data and test data along with final confusion matrix for

491 the test data	in derivation phase
-------------------	---------------------

Records	Train (cough records)	Test (cough records)	Total (cough records)
TB Likely - Yes	475	122	527
TB Likely - No	853	150	1003
Total	1328	272	1600
Percentage	83%	17%	100%

	TB Likely- Yes	TB Likely- No
TB- Yes	102 (TP)	20 (FN)
TB- No	22 (FP)	128 (TN)

Table 4: Confusion matrix for the validation phase

	TB Likely- Yes	TB Likely- No
TB- Yes	75 (TP)	8 (FN)
TB- No	21 (FP)	116 (TN)

Table 5: Performance metrics of the validation phase

Statistic	Value	95% CI
Sensitivity	90.36%	81.89% to 95.75%
Specificity	84.67%	77.53% to 90.25%

Positive Likelihood Ratio	5.90	3.95 to 8.79
Negative Likelihood Ratio	0.11	0.06 to 0.22
Disease Prevalence	37.73%	31.30% to 44.49%
Positive Predicate Value	78.12%	70.54% to 84.19%
Negative Predicate Value	93.55%	88.20% to 96.57%
Accuracy	86.82%	81.62% to 90.99%

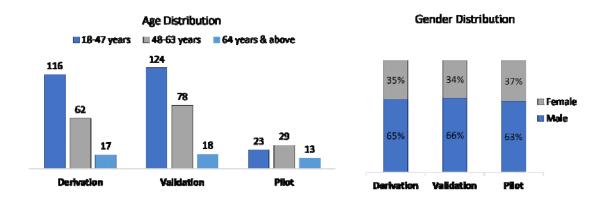
497

498 **Table 6**: Confusion matrix for the pilot testing phase

	TB Likely- Yes	TB Likely- No
TB- Yes	15 (TP)	5 (FN)
TB- No	9 (FP)	36 (TN)

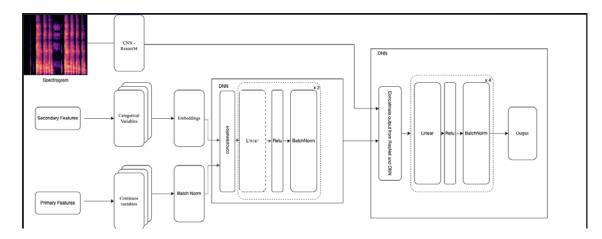
499

Figure 1: Data distribution in the derivation phase, validation phase and pilot testing.

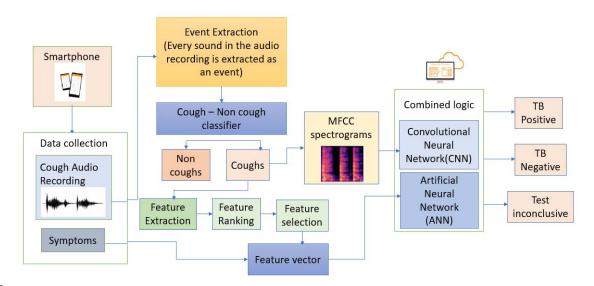


501

- 502 Figure 2: Illustration of the combined logic combining Feedforward Artificial Neural
- 503 Network (FFANN) model and Convolutional Neural Network (CNN) outputs



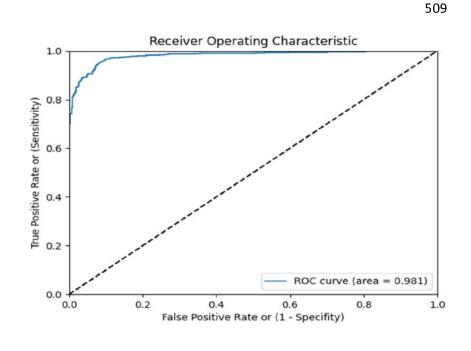
504 Figure 3: Block Diagram illustrating the flow of the TB prediction model



505

506

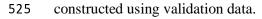
Figure 4: The representative graph for ROC curve, best among 10-fold validation of TBprediction model built using derivation data.

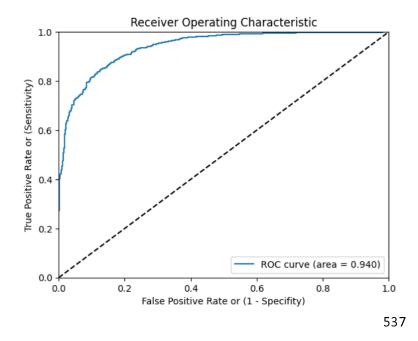


522

523

Figure 5: The provided graph shows the best ROC curve of a TB prediction model





538

539 **Figure 6:** The provided ROC curve illustrates the performance of a TB prediction model

540 constructed using pilot data

