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Abstract 16 

Acoustic signal analysis has been employed in various medical devices. However, studies 17 

involving cough sound analysis to screen the potential Pulmonary Tuberculosis (PTB) 18 

suspects are very few. The main objective of this cross-sectional validation study was to 19 

develop and validate the Swaasa AI platform to screen and prioritize at risk patients for PTB 20 

based on the signature cough sound as well as symptomatic information provided by the 21 

subjects. The voluntary cough sound data was collected at Andhra Medical College-India. An 22 

Algorithm based on multimodal Convolutional Neural Network (CNN) architecture and 23 

Feedforward Artificial Neural Network (FFANN) (tabular features) was built and validated 24 

on a total of 567 subjects, comprising 278 positive and 289 negative PTB cases. The output 25 

from these two models was combined to detect the likely presence (positive cases) of PTB. In 26 

the clinical validation phase, the AI-model was found to be 86.82% accurate in detecting the 27 

likely presence of PTB with 90.36% sensitivity and 84.67% specificity. The pilot testing of 28 

model was conducted at a peripheral health care centre, RHC Simhachalam-India on 65 29 

presumptive PTB cases. Out of which, 15 subjects truly turned out to be PTB positive with a 30 

Positive Predictive Value of 75%. The validation results obtained from the model are quite 31 

encouraging. This platform has the potential to fulfil the unmet need of a cost-effective PTB 32 

screening method. It works remotely, presents instantaneous results, and does not require a 33 

highly trained operator. Therefore, it could be implemented in various inaccessible, resource-34 

poor parts of the world. 35 

 36 

 37 
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Introduction 38 

Tuberculosis (TB) is the world’s second leading airborne infectious disease after COVID-19. 39 

Unlike COVID the causative agent of TB is a bacterium, Mycobacterium tuberculosis 40 

(MTB). However, both the infections mainly affect the respiratory system. Although the 41 

bacteria have the capability to cause infection in various body parts. Pulmonary Tuberculosis 42 

(PTB) along with Extra pulmonary tuberculosis (EPTB) are the active form of infection, 43 

which displays symptoms such as fever, night sweat, weight loss and cough 1,2. In 2020, the 44 

World Health Organization globally reported nearly 10 million active TB cases and 1.5 45 

million TB related mortalities. Although, TB is curable and preventable, the number of active 46 

cases is still high in various low income, developing countries including India. An active 47 

PTB patient can infect nearly ten to fifteen people every year 3. Currently there are several 48 

methods for diagnosing presumptive as well as active PTB cases, such as sputum staining, 49 

chest X-ray (CXR) and sputum cartridge based nucleic acid amplification test (CB-NAAT) or 50 

sputum GeneXpert test. However, all these methods are very expensive, require proper lab 51 

setting and trained technicians. Therefore, quick, and inexpensive mass screening methods 4 52 

are required for reducing the transmission of infection by providing timely diagnosis 53 

followed by appropriate treatment regime 5,6. 54 

Cough is a common symptom of respiratory disease and is caused by an explosive expulsion 55 

of air to clear the airways 7. It is a significant feature of pulmonary tuberculosis and results in 56 

the release of airborne particles into the environment 8,9. There are commonly two types of 57 

coughs i.e., wet and dry. Coughs are classified as wet when they have auditory characteristics 58 

that are suggestive of mucus, and dry when there is no discernible wetness 10. It has also been 59 

postulated that the glottis behaves differently under different pathological conditions, which 60 

makes it possible to distinguish coughs originating from different underlying conditions such 61 

as asthma, bronchitis, and pertussis (whooping cough) 11. Since coughing is a dominant 62 
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symptom of PTB, there are reports which suggest that the coughing sound of an individual 63 

with pulmonary TB has some unique characteristic features that distinguish the diseased 64 

condition from the normal scenario 12–14. Still, a lot of research is needed to fully explore and 65 

decode the information contained in the cough sound to use it as an indicator of the 66 

underlying disease. 67 

The recent application of Artificial Intelligence (AI) and advances of ubiquitous computing 68 

for respiratory disease prediction has created an auspicious trend and myriad of future 69 

possibilities in the medical domain 15–17. There is an expeditiously emerging trend of 70 

Machine learning (ML) and Deep Learning (DL)-based algorithms exploiting cough 71 

signatures 18. Cough analysis approaches are primarily subjective and are affected by the 72 

limitations of human perception. Audiometric analysis of cough (digital signal) provides 73 

essential information about characteristics of cough sounds in different respiratory 74 

pathological conditions. Several studies have been conducted in the past to collect and 75 

analyse cough sound data for PTB pre-screening and triaging using mobile devices. 76 

However, there are some missing links in terms of selecting the subjects, collecting the cough 77 

data and lack of proper technical/ clinical validations to scale up these tools for mass 78 

screening of PTB subjects 8,9,13,19,20. 79 

Our study provides a holistic approach by developing, validating, and testing the “Swaasa AI 80 

platform” to screen and prioritize the potential PTB cases. It is a SaMD (Software as a 81 

Medical Device) that evaluates respiratory health using a 10-second cough sound recording, 82 

serving as a quick Point of Care tool. It effectively prioritizes at-risk patients for molecular 83 

testing when used as a screening and triaging tool. As opposed to majority of the previous 84 

reports that utilized the crowdsource cough sound database for training their model, we have 85 

conducted the data collection from 567 unique subjects for our model derivation as well as 86 

validation phase in a proper clinical setting. Hence, our data have cough recordings collected 87 
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from various unique subjects to build a robust model. Unlike others, we have trained two 88 

parallel models i.e., Convolutional Neural Network (CNN) model with Mel spectrograms and 89 

Feedforward Artificial Neural Network (FFANN or tabular) model with primary as well as 90 

secondary features and merged the final layer to build a combined logic. In the validation 91 

phase, the AI-model was found to be 86.82% accurate in detecting the likely presence of PTB 92 

with 90.36% sensitivity and 84.67% specificity. Therefore, it satisfies the specificity (70%) 93 

and sensitivity (90%) criteria set by the World Health Organisation (WHO) for a community-94 

based mass TB screening test 14. The results obtained by the model are very promising with a 95 

scope to make it scalable for quick, cost-effective, and non-invasive screening of PTB cases. 96 

A large-scale study will further help us to improvise the accuracy of the platform for making 97 

it more reliable for screening genetically diverse subjects under different environmental 98 

conditions. 99 

Materials and Methods 100 

Sample size estimation  101 

To calculate the adequate sample size for our study, we used a simple formula that required 102 

us to select appropriate values for several assumptions. The formula used was 103 

n=Z2*P(1−P)/d2, where n represented the sample size, Z was the statistic corresponding to the 104 

level of confidence, P was the expected prevalence, and d was the precision corresponding to 105 

the effect size 21. By using this formula, we were able to determine an appropriate sample 106 

size for our study. These many number of subjects were appropriate for validating if the 107 

device could detect PTB respiratory conditions with a 90% sensitivity on considering a 1% 108 

error for a 95% confidence interval (CI) and a prevalence of 0.75% as the highest prevalence 109 

of PBT in India is 0.747% (747 per 100,000 population) 22. In total 567 subjects were 110 

recruited, out of which 50.9% subjects were classified as controls. The control group 111 
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consisted of both healthy individuals and those who displayed respiratory disease symptoms 112 

but tested negative for PTB via CB-NAAT. These respiratory conditions included asthma, 113 

Chronic Obstructive Pulmonary Disease (COPD), Interstitial lung disease (ILD), and 114 

pneumonia. The number of TB records were calculated based on disease prevalence. In order 115 

to avoid potential bias in the model, it was trained using an equal number of TB and non-TB 116 

records. 117 

Data Collection 118 

The cough data has been collected at Andhra Medical College (AMC), Visakhapatnam, India 119 

as part of the clinical study “Swaasa Artificial Intelligence Platform for detecting the likely 120 

presence of Pulmonary Tuberculosis”. The study was registered with Clinical Trials Registry- 121 

India (CTRI/2021/09/036609) on 17th September 2021. The methods were performed in 122 

accordance with relevant guidelines and regulations and approved by AMC- Institutional 123 

Ethics Committee (IEC). Written informed consent was taken from all the enrolled subjects. 124 

After getting the informed consent, the patient's demographic details and vitals were 125 

collected. The patients were also interviewed as per the Part I of the St. George's Respiratory 126 

Questionnaire (SGRQ) 23, which primarily covers the symptoms they've had experienced 127 

within the past few months or year. This was followed by cough sound collection by trained 128 

health care personnel via a smartphone (Android or iPhone). To ensure the highest quality 129 

data for analysis, several factors were taken into consideration before recording. The person 130 

being recorded was given specific instructions to sit comfortably in a quiet place, hold the 131 

recording device (which included smartphones and tablets from various manufacturers) 4-8 132 

inches away from their mouth, and maintain a 90-degree angle with their face. They were 133 

also instructed to take a deep breath and cough 2-3 times until the recording stopped, which 134 

lasted for 10 seconds. However, since the collected data was from varying environments and 135 

a variety of devices, it was important to control as many potential variables as possible. 136 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 22, 2023. ; https://doi.org/10.1101/2022.09.19.22280114doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.19.22280114
http://creativecommons.org/licenses/by-nd/4.0/


Therefore, noise filtering was applied using a noise reduction algorithm. This algorithm 137 

calculated the ratio of the power of observed signals at two microphones for smartphones 138 

with two or more built-in microphones, and then calculated the spectral gain function based 139 

on the power level ratio using the sigmoid function. The result was a denoised audio 140 

recording. For smartphones with a single built-in microphone, noise filtering was not applied 141 

during the recording. Instead, a noise removal technique was applied during pre-processing. 142 

This involved subtracting the noise audio clip (which contained background noise such as 143 

electronic noise, multiple people talking, and fan sound) from the signal audio clip (which 144 

contained the cough). The noise removal technique isolated the signal using Fast Fourier 145 

Transform, removing the background noise and resulting in a cleaner recording. Valid coughs 146 

were detected using a cough/non-cough classifier, which screened the dataset for coughs with 147 

high background noise. If a recording did not meet the minimum required valid coughs, a 148 

message would appear on the mobile screen instructing the person to give another recording 149 

following the instructions. Overall, these processes standardized the dataset, making it 150 

suitable for analysis. 151 

During the audio recording process, we implemented several safety measures to prevent the 152 

transmission of disease. All subjects were required to wear a surgical mask while providing 153 

the audio recordings, in order to limit the spread of germs through water droplets during 154 

coughing. After each recording, the phone used for recording was cleaned using one of three 155 

methods. A disinfectant wipe was used to clean the phone, or alternatively, a damp 156 

microfiber cloth dipped in soapy water was used if the phone was waterproof. Another option 157 

was to use a mobile sanitizer to clean the phone. These measures helped to maintain a clean 158 

and safe environment during the data collection process. 159 

Following the cough sample collection, patients were subjected for CB-NAAT and chest X-160 

Ray (CXR P/A) view for diagnosis of PTB. The data distribution across different gender and 161 
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age groups is presented in Figure 1. The inclusion criteria were that a patient must be of (a) 162 

age ≥ 18 years and should display (b) symptoms suggestive of PTB (presumptive PTB). 163 

Whereas patients with (a) age ≤  18 years and who were (b) on ventilators support were 164 

completely excluded from the current study. COVID precautionary and infection control 165 

measures were followed strictly. 166 

Model development and training 167 

In the Phase 1 (Derivation phase) of the study, we aimed to develop and train a machine 168 

learning-based model for the detection of pulmonary tuberculosis (PTB) using cough sounds. 169 

The objective of this phase was to quantify the technical as well as analytical performance of 170 

the device by establishing a unique cough signature for PTB. A total of 195 PTB positive 171 

cases were recruited for the derivation phase, and audio cough recordings were collected. In 172 

addition, 152 non-PTB subjects were also included to train the model to distinguish between 173 

PTB condition and normal healthy subjects as well as other respiratory disease scenarios.  174 

Event extraction was carried out from the collected audio cough records using the moving 175 

window signal standard deviation technique 24. A cough/non-cough classifier was used to 176 

segregate the events into actual coughs and non-coughs such as silence, speech, fan sounds, 177 

vehicle sounds like horn, and noise. A total of 3102 cough events were extracted at this step. 178 

The features were extracted from the time as well as frequency domain of each cough event. 179 

The important time domain features that were taken into consideration were Zero crossing 180 

rate (ZCR) and Energy. The frequency domain features which were utilized for data analysis 181 

are MFCC, Spectral centroid, Spectral bandwidth, and Spectral roll-off 25. The features were 182 

extracted for each frame within the cough signal. Each frame was typically about 20 ms in 183 

duration. The cough event duration can vary from anywhere between 200 ms to 700 ms.  184 
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The total features extracted were 209, that includes age, gender, 120 Mel Frequency Cepstral 185 

coefficients (40 MFCC, 40 first derivatives of MFCC, 40 second order derivatives of 186 

MFCC), 9 spectral features (spectral centroid, spectral roll-off, spectral bandwidth, dominant 187 

frequency, spectral skewness, spectral kurtosis, spectral crest, spectral spread and spectral 188 

entropy), 33 chroma features (11 chroma, 11 first derivatives of chroma, 11 second 189 

derivatives of chroma), 18 contrast features (6 contrast, 6 first derivatives of contrast, 6 190 

second derivatives of contrast), 15 tonnentz features (5 tonnentz, 5 first derivatives of 191 

tonnentz, 5 second derivatives of tonnentz), 3 Zero-crossing rate (ZCR, first derivatives of 192 

ZCR, second derivatives of ZCR), 3 Energy (Energy, first derivatives of energy, second 193 

derivatives of energy), 3 skewness (skewness, first derivatives of skewness, second 194 

derivatives of skewness), 3 kurtosis (kurtosis, first derivatives of  kurtosis, second derivatives 195 

of kurtosis). On these features, we did correlation analysis and recursive feature elimination 196 

(RFE) to rank the feature according to their importance. Correlation-based feature selection 197 

was used to reduce the feature size from 209 to 170, and highly correlated features were 198 

removed to prevent overfitting and improve the performance of the model. Primary features 199 

include all the 170 features. The secondary features included age (categorized), gender, 200 

symptoms, cough type (dry/wet), and cough duration. The cough type is derived from the 201 

primary features and cough duration is derived from audio signal. The CNN model is trained 202 

with the Mel spectrograms of cough sounds. Whereas, both secondary and primary features 203 

were used to train the FFANN model.  204 

The CNN model used in the study was based on transfer learning using Resnet-34 with 205 

imagenet for training on spectrograms. Whereas, the FFANN was utilized to process the 206 

tabular data. The FFANN consisted of two hidden layers, with 400 and 300 neurons, 207 

respectively. Each layer was followed by batch normalization. The selection of the number of 208 

layers, number of neurons in each layer, and the activation functions were determined using 209 
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the Bayesian optimization method. The last fully connected layers of both models were 210 

removed, and a new fully connected layer (merged layer) was added to predict the final 211 

output. The merged layer consists of activation layers (Figure 2). This merging approach of 212 

the last layers of the two models was named the combined logic. When the model is uncertain 213 

about the likely detection of PTB as yes/no, it provides the output as inconclusive as 214 

displayed in the block diagram in Figure 3, wherein PTB likely indicates TB positive and 215 

PTB unlikely indicates TB negative condition. 216 

Overall, the primary and secondary features were used to train feedforward neural network 217 

models (tabular) and Mel spectrograms were used to train CNN and the combined logic 218 

approach was used to merge the outputs of the two models. The correlation-based feature 219 

selection was also used to improve the performance of the model. 220 

During our study, we split the initial dataset into 80% training and 20% testing sets to assess 221 

the performance of the machine learning model. In addition, we used the k-fold (K=10) 222 

cross-validation approach to divide the training dataset into k subsets of data, which allowed 223 

us to obtain a more robust estimate of the model's performance.  224 

Clinical validation of the Model  225 

After training the model, it was tested in the Phase 2 i.e., Clinical validation phase. A total of 226 

220 presumptive PTB cases were recruited and subjected to the screening test using the 227 

model. The results were compared with diagnosis based on sputum CB-NAAT test or 228 

radiological diagnosis, which are considered classical gold standard diagnostic methods. A 229 

total of 98% of the subjects underwent sputum CB-NAAT testing for the diagnosis of TB. In 230 

cases where the results of CB-NAAT testing were unclear for the remaining 2% of subjects, a 231 

repeat test was performed. If the results remained inconclusive after the second test, fresh 232 
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sputum samples were collected. Additional tests such as acid-fast bacilli (AFB) staining, and 233 

chest X-ray (CXR) were performed to confirm the TB status of the patients. 234 

The consolidated test summary sheet was generated, which contained the results obtained 235 

from the classical gold standard diagnosis methods along with the model's output. Both the 236 

results were then compared by a statistician.  237 

External validation of the Model 238 

In Phase 3 (Pilot Phase), the model was externally validated to evaluate its effectiveness as a 239 

screening tool for PTB detection prior to clinical diagnosis. The sample size for this phase 240 

consisted of 65 individuals who were identified as presumptive PTB cases and recruited from 241 

a peripheral healthcare center, RHC Simhachalam. The effectiveness of the model was 242 

measured by calculating the ratio of patients truly diagnosed as PTB positive via standard 243 

lab-based diagnostic techniques to all those who were predicted to be PTB positive via the 244 

AI-based model. The diagnostic performance of the model was evaluated using metrics such 245 

as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 246 

and accuracy. To assess the effectiveness of the model, a data analysis strategy similar to that 247 

used in phase 2 was employed. The AI-based model was compared with classical gold 248 

standard diagnostic methods, such as sputum CB-NAAT testing or radiological diagnosis, 249 

and the results were analysed using statistical methods.  250 

LIME Representation 251 

In Local interpretable model-agnostic explanations (LIME) representation 26, the green part 252 

shows where the model reacted positively for a particular class and red parts highlights where 253 

it reacted negatively. It explains the prediction by presenting textual or visual artefacts that 254 

provide qualitative understanding of the relationship between the instance's components (e.g., 255 

words in text, patches in an image) and the model's prediction. 256 
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Statistical analysis 257 

The comprehensive evaluation of the model performance on the test set includes accuracy 258 

sensitivity, specificity, positive prediction value (PPV), negative predictive values (NPV) and 259 

ROC. To measure the variability around these parameters, we used 95% confidence intervals 260 

using the Clopper–Pearson method 27. To better understand the performance of the model in 261 

screening PTB subjects, we also calculated confusion metrics on the entire test set. 262 

Results: 263 

Patient population in Model derivation phase 264 

Cough sound data was collected from 195 subjects PTB positive subjects and 152 PTB 265 

negative subjects in the derivation phase. Among 195 subjects, 65% were male and 35% 266 

were female, with age ranging from 18 years to 64 & above. Subjects were confirmed with 267 

TB by standard diagnosis methods. In this phase multiple data points were collected from the 268 

subjects. Each data point was called a record. A total of 597 cough records were collected 269 

from 195 patients. The data was annotated with disease condition as PTB i.e., PTB likely as 270 

“yes”.  For PTB unlikely, data representing other respiratory disease conditions was added 271 

from the pre-existing labelled datasets (collected as a part of earlier studies) in appropriate 272 

propositions 25. 273 

The features listed in Table 1 depicts the mean value of the features extracted from individual 274 

frames, where we have considered normal as well as respiratory diseases data other than PTB 275 

from our previous validation study conducted at Apollo Hospitals, Hyderabad 25. 276 

LIME data comparison 277 

Spectral content is the distribution of audio signal based on its frequency w.r.t time, where 278 

high spectral content emphasizes that the energy of the cough bout remains same throughout 279 
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the signal, whereas low spectral content corresponds to the conditions where the energy of 280 

the cough decreases with time. We observed that conditions like COPD and ILD carried very 281 

low spectral frequencies as compared to Asthma, which has a medium spectral frequency. On 282 

the other hand, we detected a very high spectral content for diseases where mucus 283 

accumulation in the airways and fluid accumulation in parenchyma region was present such 284 

as, PTB. Features like high spectral content brought uniqueness in the PTB cough, which 285 

differentiates it from the other respiratory diseases. 286 

Thorough feature analysis of the cough sounds highlighted that the cough sounds could 287 

distinguish diseases. Variation in the cough duration and frequency distribution alters with 288 

the pathological conditions of the respiratory system 9,28. 289 

We have enlisted a few examples of cough signatures, cough spectrograms and related LIME 290 

maps for different respiratory diseases, including PTB in Table 2. It is evident from the LIME 291 

maps that frequency distribution of the coughs is unique for each disease. To be specific, both 292 

Asthma & ILD have negative reactions in high frequency regions. TB has a positive reaction 293 

in the high frequency region and in the low frequency region. Normal cough signature is 294 

widely spread. However, it is not like other diseased conditions, where it has a strong patch 295 

around a given region. Similarly in the first column of the table, the variation of the 296 

amplitudes of the cough from bout to bout is different in coughs related to different diseases. 297 

As amplitudes vary, energy also varies from bout to bout.   298 

From the feature analysis we conclude that PTB related cough has a unique signature, and it 299 

is captured by the features extracted from the cough, which can be identified by a machine 300 

learning model.   301 

Performance of Combined logic Model 302 
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Initially, the training data i.e., 3102 coughs which were extracted from 597 records collected 303 

from 195 subjects was internally divided into training and validation as required to build as 304 

well as optimize the model performance based on K-fold cross validation technique. The 305 

performance of our model was evaluated using k-fold cross validation, with k set to 10. The 306 

metric used for evaluation was the Area Under the Curve of the “Receiver Operating 307 

Characteristic (AUCROC) curve, which provides a measure of the model's ability to 308 

distinguish between positive and negative samples. The obtained AUC score was 0.98, 309 

indicating that our model is highly effective in making accurate predictions. Figure 4 shows 310 

the representative ROC curve of the best performing fold among the 10 cross validation 311 

folds. In machine learning model, attribute like learning function, activation function were 312 

fixed for learning. Hence, the dataset was divided into subsets and the model was trained with 313 

each subset to validate the model.  314 

Further, the data collected in the derivation phase have been divided into 80% train and 20% 315 

test, when the test data was run through the classifier. We obtained four outcomes as enlisted 316 

in Table 3 i.e., 102 True positives (TP), 20 False Negatives (FN); 22 False Positives (FP) and 317 

128 True Negatives (TN), that corresponds to 85% accuracy, 84% sensitivity and 85% 318 

specificity. 319 

A total of 220 subjects participated in the validation phase, out of which 83 subjects were 320 

found to be PTB positive and 137 subjects PTB negative by standard diagnostic methods. 321 

Only one cough record was collected from each subject in this phase. We achieved an AUC 322 

(Area Under the ROC Curve) of 0.94 (Figure 5). Confusion matrix for validation phase of the 323 

model is illustrated in Table 4, where the row represents the actual label, and the column 324 

represents predicted label. For the Validation phase we achieved an accuracy of 86.82% with 325 

90.36% sensitivity and 84.67% specificity (Table 5). 326 
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Model Output in the Pilot phase 327 

Pilot testing was done on a total of 65 subjects. The patients approaching the testing centre 328 

with symptoms of cough suggestive of possible pulmonary tuberculosis are assessed for 329 

eligibility. Patient’s demographic details and vitals were collected and interviewed as per the 330 

SGRQ questionnaire. This is followed by cough sound collection by trained health care 331 

personnel. 332 

Among 65 subjects, the model was able to identify 20 subjects as having a likely presence of 333 

TB.  Out of these 20 subjects, 15 truly turned out to be TB positive with a Positive predictive 334 

value (PPV) of 75%. The confusion matrix for pilot testing phase is listed in Table 6. The 335 

model obtained a high AUC score of 0.90. Figure 6 shows the ROC curve of the  model's 336 

ability to distinguish between positive and negative samples. 337 

When compared to the existing classical methods, screening of PTB patients by the model 338 

saved a significant amount of time. Additionally, it does not require any trained 339 

professionals, the testing can be done by a community healthcare worker. The worker did not 340 

require any specific hardware or any other consumables. A smartphone with an internet 341 

connection is enough to conduct the test.  342 

Discussion   343 

Several studies have been conducted in the past to deploy the information contained in the 344 

cough sound to detect and predict different disease outcomes such as Asthma, Pneumonia, 345 

COPD, bronchitis, and lung-cancer 10,29–31.  Nowadays, due to the increasing COVID-19 346 

cases, there has been a tremendous boost in the use of ML/DL frameworks to determine the 347 

presence of SARS-CoV-2 infection via cough sample analysis. This is because cough is one 348 

of the most prominent symptoms for the diseases that primarily affect the respiratory system. 349 

Numerous studies have shown that cough analysis can accurately predict COVID-19 32,33. 350 
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However, there are only a handful of clinical trials that emphasise the association of cough to 351 

the underlying Pulmonary TB condition 12–14,20. Most of the previously developed tools were 352 

utilizing the logistic regression methods to build the model. However, in the current study, 353 

we developed the model by combining the final output layers of the two separate models i.e., 354 

FFANN model (training input: primary and secondary features) and CNN model (training 355 

input: Mel spectrograms) because it gave us far better prediction outcome as compared to the 356 

either logical regression or CNN model used alone by other groups 13,14,20. We conducted the 357 

pilot screening on a comparatively large cohort, whereas previous studies were performed on 358 

a smaller scale. A pilot study conducted in Peru focused on analysing cough sounds for 359 

providing a foundation to support larger-scale studies of coughing rates over time for TB 360 

patients undergoing treatment 20. A similar cough sound analysis study was undertaken in 361 

South Africa for automatically classifying coughing sounds, which could be a viable low-cost 362 

and low-complexity screening method for PTB 13. 363 

The approach of the current study is different with respect to the previously published data in 364 

terms of the amount of data collected to build and train the model. As compared to the 365 

maximum AUC of 0.94 achieved in a similar study upon utilizing only 23 features and with 366 

less dataset, we have utilized 170 features while training the model and achieved an AUC of 367 

0.84 on a dataset comprising TB and non-PTB, where non-PTB includes other important 368 

diseases like Asthma, COPD, COVID-19, Pneumonia as well as healthy subjects 14. Having a 369 

greater number of latent features helps in distinguishing the signature better. Our model 370 

achieved an accuracy of 86.82% with 90.36% sensitivity and 84.67% specificity in the 371 

clinical validation phase. We conducted the pilot testing in a real primary care setting to test 372 

the accuracy of the tool. Upon deployment as a screening and triaging tool prior to molecular 373 

testing, the model was proven statistically effective in prioritizing at-risk patients for 374 
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confirmatory testing. In the pilot phase also, the model achieved a positive prediction value 375 

of 75% in a clinical setup at a tertiary care hospital. 376 

Considering the performance of the present diagnostic tests for PTB, our model’s technical 377 

and clinical validation results are quite encouraging, given the device is primarily intended to 378 

be used as a screening tool and helps in prioritizing and fast tracking the patients for 379 

subjecting them to the standard reference tests for confirmation of diagnosis of PTB.  380 

During our study we observed that on an average 10 to 12 patients are diagnosed with 381 

extensive PTB with severe parenchymal damage, respiratory failure and poor lung function 382 

every month at a remote community health centre in India. Most of these patients belong to 383 

tribal areas. The delay in diagnosis is mainly due to lack of awareness, and social inhibitions 384 

in reaching a doctor or a peripheral health worker. We believe that this model will help in 385 

reducing the gap in accessibility for the much-needed population. 386 
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Table 1: Table showing mean values of the Zero crossing rate (ZCR), spectral centroid and 484 

dominant frequency of various disease conditions. 485 

Disease 

Conditions 

ZCR 

Mean values 

Spectral centroid 

mean values 

Dominant Frequency 

mean values 

Normal 0.169 2809 2809 

ILD 0.099 2053 2053 

COPD 0.08 1947 1947 

Asthma 0.112 2093 2093 

Pneumonia 0.118 2249 2249 

COVID 0.216 3135 3135 

TB 0.178 2867 2867 

 486 

Table 2: List of different respiratory diseases showing characteristic cough signature, cough 487 

spectrograms and related LIME maps. 488 

Disease Cough Signature Spectrogram LIME maps 

 
 
PTB 

 
  

 

 
 
Asthma 

 
  

 
 
Normal 
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ILD 

 

 
   

 
 
Pneumonia 

 

 
   

 489 

Table 3: Data distribution into train data and test data along with final confusion matrix for 490 

the test data in derivation phase 491 

Records Train (cough records) Test (cough records) Total (cough records) 

TB Likely - Yes 475 122 527 

TB Likely - No 853 150 1003 

Total 1328 272 1600 

Percentage 83% 17% 100% 

 492 

 TB Likely- Yes TB Likely- No 

TB- Yes 102 (TP) 20 (FN) 

TB- No 22 (FP) 128 (TN) 

 493 

Table 4: Confusion matrix for the validation phase 494 

 TB Likely- Yes TB Likely- No 

TB- Yes 75 (TP) 8 (FN) 

TB- No 21 (FP) 116 (TN) 

 495 

Table 5: Performance metrics of the validation phase 496 

Statistic Value 95% CI 

Sensitivity 90.36% 81.89% to 95.75% 

Specificity 84.67% 77.53% to 90.25% 
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Positive Likelihood Ratio 5.90 3.95 to 8.79 

Negative Likelihood Ratio 0.11 0.06 to 0.22 

Disease Prevalence 37.73% 31.30% to 44.49% 

Positive Predicate Value  78.12% 70.54% to 84.19% 

Negative Predicate Value 93.55% 88.20% to 96.57% 

Accuracy 86.82% 81.62% to 90.99% 

 497 

Table 6: Confusion matrix for the pilot testing phase 498 

 TB Likely- Yes TB Likely- No 

TB- Yes 15 (TP) 5 (FN) 

TB- No 9 (FP) 36 (TN) 

 499 

Figure 1: Data distribution in the derivation phase, validation phase and pilot testing. 500 

 501 

Figure 2: Illustration of the combined logic - combining Feedforward Artificial Neural 502 

Network (FFANN) model and Convolutional Neural Network (CNN) outputs  503 
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Figure 3: Block Diagram illustrating the flow of the TB prediction model  504 

 505 

 506 

Figure 4: The representative graph for ROC curve, best among 10-fold validation of TB 507 

prediction model built using derivation data. 508 

 509 
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 511 

 512 
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 514 

 515 
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 517 

 518 

 519 

 520 

 521 

 522 

 523 

Figure 5: The provided graph shows the best ROC curve of a TB prediction model 524 

constructed using validation data. 525 
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 537 

 538 

Figure 6: The provided ROC curve illustrates the performance of a TB prediction model 539 

constructed using pilot data 540 

 541 

 542 
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