1 TITLE PAGE

- 2 **Title:** The impact of prior COVID-19 on vaccine response and the resultant hybrid
- 3 immunity are age-dependent
- 4 **Running Title:** Age-dependent impact of prior COVID-19 on vaccine response
- 5 Keywords: SARS-CoV-2 infection, vaccination, humoral immunity, antibody, hybrid
- 6 immunity
- 7 Authors: Sachie Nakagama,^{a,b} Yu Nakagama,^{a,b,#} Yuko Komase,^c Masaharu Kudo,^d
- 8 Takumi Imai,^d Yuko Nitahara,^{a,b} Natsuko Kaku,^{a,b} Evariste Tshibangu-Kabamba,^{a,b}
- 9 Yasutoshi Kido^{a,b}
- 10 Affiliations:
- ^a Department of Virology & Parasitology, Graduate School of Medicine, Osaka
- 12 Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- 13 ^b Research Center for Infectious Disease Sciences, Graduate School of Medicine,
- 14 Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- ^c Department of Respiratory Internal Medicine, St.Mariannna University, Yokohama
- 16 Seibu Hospital, 1197-1 Yasashi-cho, Asahi-ku, Yokohama, 241-0811, Japan
- ^d Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan
- 18 University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

- 19 [#]Corresponding author
- 20 **Type of manuscript:** Major article
- 21 Address for correspondence: Yu Nakagama, MD, PhD, Department of Virology &
- 22 Parasitology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3
- 23 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; E-mail: nakagama.yu@omu.ac.jp;
- 24 Phone: +81-06-6645-3761, Fax: +81-06-6645-3762
- 25 Word counts: Abstract 200, Text 2671

27 ABSTRACT

- 28 Background
- 29 More people with a history of prior infection are receiving SARS-CoV-2 vaccines.
- 30 Understanding the magnitude of protectivity granted by 'hybrid immunity', the combined
- 31 response of infection- and vaccine-induced immunity, may impact vaccination
- 32 strategies.
- 33 Methods
- 34 A total of 36 synchronously infected ('prior infection') and, 33 SARS-CoV-2 naïve
- 35 ('naïve') individuals participated. Participants provided sera six months after completing
- 36 a round of BNT162b2 vaccination, to be processed for anti-spike antibody
- 37 measurements and neutralization assays. The relationships between antibody titer,
- 38 groups and age were explored.
- 39 Results
- 40 Anti-spike antibody titers at 6 months post-vaccination were significantly higher,
- 41 reaching 13- to 17-fold, in the 'prior infection' group. Linear regression models showed
- 42 that the enhancement in antibody titer attributable to positive infection history increased
- 43 from 8.9- to 9.4- fold at age 30 to 19- to 32-fold at age 60. Sera from the 'prior infection'

- 44 group showed higher neutralizing capacity against all six analyzed strains, including the
- 45 Omicron variant.
- 46 Conclusions
- 47 Prior COVID-19 led to establishing enhanced humoral immunity at 6 months after
- 48 vaccination. Antibody fold-difference attributed to positive COVID-19 history increased
- 49 with age, possibly because older individuals are prone to symptomatic infection
- 50 accompanied by potentiated immune responses. Durable protection of hybrid immunity
- 51 deserves reflection in vaccination campaigns.

53 **TEXT**

54 Introduction

55	As the cumulative incidence of COVID-19 increases worldwide, more people
56	with a history of prior infection are now receiving SARS-CoV-2 vaccines. With the
57	infection-induced and vaccine-induced immune responses having different protective
58	characteristics, ¹ the acquisition of such a combined immune response is drawing
59	attention as 'hybrid immunity'. Understanding the magnitude of protectivity against
60	SARS-CoV-2 granted by hybrid immunity and its role in the establishment of herd
61	immunity may impact future vaccination strategies.
62	With immunopotentiation through repeat vaccinations becoming a pivotal
63	strategy, a consensus ought to be reached on the target population, optimal interval,
64	and dosing regimen for the repeated boosters. To accomplish this, it is becoming
65	increasingly important to understand the longitudinal evolution of the antibody response
66	and the resulting 'residual immunity' following vaccination dose(s). The impact of prior
67	infection on the acquisition of protective immunity in vaccinated individuals has been
68	actively studied since the introduction of the SARS-CoV-2 vaccines. ² However,
69	possibly due partly to adherence challenges, many studies have focused on the
70	differences in the early-phase post-vaccine response between naïve and previously

71 infected individuals,^{3,4} whereas fewer studies have described this in the mid- to long-

72 term.

73	We previously carried out a SARS-CoV-2 seroprevalence survey targeting
74	healthcare workers (HCWs) from a tertiary care hospital in Japan. This revealed a
75	nosocomial cluster infection of which the burden had been underestimated,
76	accumulating up to 15.5% overall seroprevalence. ^{5,6} Through longitudinal follow-up and
77	further serological description of the cohort of HCWs, ⁷ we took advantage of the
78	opportunity to investigate a uniformly conditioned population endowed with hybrid
79	immunity: those synchronously infected through a nosocomial cluster infection, and
80	again synchronously administered the BNT162b2 vaccine through the nation's mass
81	vaccination campaign. The incremental effect of hybrid immunity on an individual's
82	long-term residual antibody titers was analyzed. These observations suggest the need
83	to rethink our vaccination campaign strategies that currently recruit and treat those with
84	prior infections and those without equally.
85	

- 86 Materials and Methods
- 87 Participants and serum sampling

88	The participants in this study were HCWs at the St.Mariannna University,
89	Yokohama Seibu Hospital, Kanagawa, Japan, where we previously conducted an anti-
90	SARS-CoV-2 seroprevalence survey. ⁵ In the previous study, 64 COVID-19-affected
91	HCWs and 350 non-infected individuals were identified following an outbreak having
92	occurred in the hospital during April-May 2020. From the cohort, 36 individuals who
93	had tested positive ('prior infection') and 33 individuals who had tested negative
94	('naïve') on Roche Elecsys anti-SARS-CoV-2 (Roche Diagnostics, Rotkreuz,
95	Switzerland) antibody testing agreed to participate in this follow-up study. The 'naïve'
96	individuals were further confirmed to have negative anti-nucleocapsid serology upon
97	study entry. Those categorized as the 'prior infection' group, as HCWs, were kept
98	under continuous health monitoring and were confirmed to have had no signs or
99	symptoms indicative of COVID-19 re-infection since completion of the previous survey
100	until their enrollment in this present study.
101	All participants received two doses of the BNT162b2 vaccine at the standard
102	three-week interval, according to the recommended vaccination schedule in Japan.
103	Participants provided their sera six months after completion of their second BNT162b2
104	dose, during the period of November 15-24, 2021 (with only two exceptions, each

medRxiv preprint doi: https://doi.org/10.1101/2022.09.19.22280079; this version posted September 19, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a	CC-BA-NC	4.0 International	license .

105	providing their sera four and five months after completion). The donated sera were
106	processed for anti-spike antibody titer measurements and neutralization assays.
107	The study was approved by the Osaka Metropolitan University Institutional
108	Ethics Committee [#2020-003]. Written consent for participation was obtained from
109	every participant.
110	
111	Assessment of anti-spike humoral immunity
112	The anti-spike antibody titer was measured using two fully automated,
113	commercially available immunoassay platforms. The chemiluminescence
114	immunoassay, Abbott SARS-CoV-2IgG II Quant (Abbott Laboratories, IL, USA), was
115	designed to detect serum IgG antibodies targeting the spike protein of SARS-CoV-2.
116	The electrochemiluminescence (ECL) immunoassay, Roche Elecsys anti-SARS-CoV-2
117	S (Roche Diagnostics, Rotkreuz, Switzerland), was designed to detect serum total
118	antibodies targeting the spike protein. The assays were performed according to the
119	manufacturers' instructions.
120	

121 Evaluation of the neutralizing capacity of anti-SARS-CoV-2 antibodies

122	1:10 diluted serum samples were tested with the Meso Scale Discovery
123	neutralization assay, an ECL-labeled competition immunoassay. The V-PLEX SARS-
124	CoV-2 Panel 22 (ACE2) Kit (K15562U) (Meso Scale Diagnostics LLC, MD, USA),
125	containing spots coated with Wuhan, Alpha, Beta, Delta, Gamma, and Omicron
126	antigens, evaluated the capacity of serum anti-SARS-CoV-2 antibodies to inhibit the
127	receptor binding domain-ACE2 binding. The ECL signal, negatively proportional to the
128	concentration of neutralizing antibodies in the sample, was read on the MESO
129	QuickPlex SQ 120MM instrument (Meso Scale Diagnostics LLC). Neutralizing capacity
130	was calculated from the following formula and was expressed as 'Inhibition rate
131	(%Inhibition)': %Inhibition = {1 – (ECL signal of sample) / (ECL signal of blank)} × 100
132	[%].
133	
134	Statistical Analysis
135	Participants' demographics were described as numbers (and/or percentages)
136	for categorical variables and as means ± standard deviation for continuous variables,
137	and were compared between 'naïve' and 'prior infection' groups by the chi-square test
138	or the Mann-Whitney's U test. The antibody titer was expressed as geometric mean
139	titer (GMT) [95% confidence interval] and compared between groups by the t-test on a

140	logarithmic scale. The relationships between antibody titer, groups ('naïve' and 'prior
141	infection') and age were explored using linear regression models. The age-specific
142	ratios of GMT were estimated based on t-distribution. The dimorphism of age effect on
143	the log-transformed post-vaccination antibody titer was examined by ANCOVA, testing
144	for interaction between groups and age. The distributions of %Inhibition in 'naïve' and
145	'prior infection' groups were expressed as medians [interquartile ranges] and compared
146	by the Mann-Whitney's U test. P-values less than 0.05 were considered statistically
147	significant.
148	
149	Results
150	A total of 69 participants (33 categorized as the 'naïve' group and 36 as the
150 151	A total of 69 participants (33 categorized as the 'naïve' group and 36 as the 'prior infection' group) were included in the analysis (Table 1). The cohort had a sex
150 151 152	A total of 69 participants (33 categorized as the 'naïve' group and 36 as the 'prior infection' group) were included in the analysis (Table 1). The cohort had a sex ratio of 87% female (88% in naïve vs. 86% in 'prior infection'; P = 0.83) and a mean
150 151 152 153	A total of 69 participants (33 categorized as the 'naïve' group and 36 as the 'prior infection' group) were included in the analysis (Table 1). The cohort had a sex ratio of 87% female (88% in naïve vs. 86% in 'prior infection'; P = 0.83) and a mean age of 42 ± 12 years (47 ± 9 years in 'naïve' vs. 37 ± 12 years in 'prior infection'; P =
150 151 152 153 154	A total of 69 participants (33 categorized as the 'naïve' group and 36 as the 'prior infection' group) were included in the analysis (Table 1). The cohort had a sex ratio of 87% female (88% in naïve vs. 86% in 'prior infection'; P = 0.83) and a mean age of 42 ± 12 years (47 ± 9 years in 'naïve' vs. 37 ± 12 years in 'prior infection'; P = 0.0005). Participants self-reported no pre-existing medical conditions known to critically
150 151 152 153 154 155	A total of 69 participants (33 categorized as the 'naïve' group and 36 as the 'prior infection' group) were included in the analysis (Table 1). The cohort had a sex ratio of 87% female (88% in naïve vs. 86% in 'prior infection'; P = 0.83) and a mean age of 42 ± 12 years (47 ± 9 years in 'naïve' vs. 37 ± 12 years in 'prior infection'; P = 0.0005). Participants self-reported no pre-existing medical conditions known to critically affect antibody response towards any vaccine (i.e. diabetes mellitus, malignant
150 151 152 153 154 155 156	A total of 69 participants (33 categorized as the 'naïve' group and 36 as the 'prior infection' group) were included in the analysis (Table 1). The cohort had a sex ratio of 87% female (88% in naïve vs. 86% in 'prior infection'; $P = 0.83$) and a mean age of 42 ± 12 years (47 ± 9 years in 'naïve' vs. 37 ± 12 years in 'prior infection'; $P =$ 0.0005). Participants self-reported no pre-existing medical conditions known to critically affect antibody response towards any vaccine (i.e. diabetes mellitus, malignant disease, chronic kidney disease). Within the 'prior infection' group, the previous

158	severe disease.	Anti-nucleocapsio	d antibodies	remained	negative in all	'naïve'
100	001010 01000000.			romanioa	nogauvo m an	110110

- throughout and remained above the positivity threshold in all of those with 'prior
- 160 infection' except one who sero-reverted during the 20-month follow-up period.
- 161 Compared with the 'naïve' group, anti-spike antibody titers at 6 months post-
- 162 vaccination were significantly higher in the 'prior infection' group (Figure 1) (Abbott
- 163 Architect anti-spike IgG titer 710 [537–939] vs. 9123 [6982–11921] AU/mL; P < 0.0001,
- 164 Roche Elecsys anti-spike total antibody titer 480 [345–669] vs. 8168 [5945–11222]
- 165 U/mL; P < 0.0001). For each immunoassay, there was an approximate 13- and 17-fold
- 166 change, respectively, in the GMT ratio between groups.

Age was negatively associated with post-vaccination antibody titer in the

- 168 'naïve' group, whereas it was positively associated in the 'prior infection' group
- 169 (Spearman's correlation coefficients for Abbott and Roche titers, respectively: -0.20
- and -0.25 in 'naïve', 0.38 and 0.52 in 'prior infection'). Therefore, the impact of age on
- 171 the differences in post-vaccination antibody titers was compared between the groups.
- 172 Evaluated from linear regression models (Figure 2), the dimorphic effect of age on the
- 173 log-transformed post-vaccination antibody titer was significant (P = 0.049 and 0.007,
- 174 for Abbott and Roche titers, respectively). Interpolation from the regression models
- 175 showed that the fold change in the GMT ratio increased from 8.9-fold at age 30 years

to 19-fold at age 60 years for the Abbott IgG titer, and 9.4-fold at age 30 years to 32-

- 177 fold at age 60 years for the Roche total antibody titer (Table 2).
- 178 In the neutralization assay (Figure 3), sera of participants from the 'prior
- 179 infection' group showed higher neutralizing capacity against all six strains, including the
- 180 wild type (81.1 [61.1–91.5] vs. 99.8 [99.7–99.9] %; P < 0.0001), and the Alpha (68.1
- 181 [54.4–84.8] vs. 99.8 [99.6–99.8] %; P < 0.0001), Beta (38.4 [6.9–55.1] vs. 99.2 [97.0–
- 182 99.5] %; P < 0.0001), Gamma (51.1 [38.1–68.7] vs. 99.6 [98.4–99.8] %; P < 0.0001),
- 183 Delta (78.2 [57.8–83.9] vs. 99.8 [99.7–99.9] %; P < 0.0001), and Omicron variants (0.0
- 184 [0.0–18.3] vs. 74.1 [39.4–84.9] %; P < 0.0001).
- 185

186 Discussions

187 The present study showed that prior infection was predictive of enhanced and 188 durable residual immunity against SARS-CoV-2 at 6 months after vaccination. The 189 magnitude of the difference in the antibody titer between the 'prior infection' and 'naïve' 190 groups was age-specific and increased with older age. The superiority of 'prior 191 infection' maximized at age 60 years, showing 19- and 32-fold higher Abbott and 192 Roche antibody titers, respectively.

193	The IgG response following SARS-CoV-2 BNT162b2 vaccination (i) peaks
194	rapidly within the first 2 months from the initial dose and then (ii) enters a subsequent
195	stage of gradual decay. ⁸ The initial studies reporting the effect of prior infection on
196	BNT162b2 post-vaccination antibody titers had often targeted the peak response. At 2
197	months and 3 months after the initial dose, 3.7-fold and 2.7-fold increases,
198	respectively, were observed in vaccinees with prior COVID-19 infection compared with
199	the naïve group. ^{3,4} While potentiation of the peak response to BNT162b2 vaccination
200	by 'prior infection' has been well supported by abundant real-world data, the stage of
201	IgG decay has been less addressed. Recently, a modeling study of post-vaccination
202	'waning immunity' showed that the anti-SARS-CoV-2 IgG levels of vaccinees with prior
203	infection decreased at a slower rate compared to the non-previously infected. ⁹ Another
204	study also suggested a slower decay of antibody titers in the prior-infection group,
205	resulting in a further exaggerated fold change in titer during the decay phase of
206	antibodies. ¹⁰ The here observed unexpectedly large 13- to 17-fold change in antibody
207	titers, attributed to prior infection status, is thus fully interpretable considering the
208	biphasic kinetics of the post-vaccination immune evolution.
209	Interestingly, age had dimorphic effects on post-vaccination immune evolution
210	depending on prior infection status. Older age was associated with a higher level of IgG

211	in previously infected individuals, whereas it was associated with a lower level of IgG in
212	the naïve group. This can be explained by the fact that older individuals are more prone
213	to symptomatic, and possibly more severe, SARS-CoV-2 infection, which in turn is
214	often accompanied by a potentiated circulating IgG response. ⁵ To support this idea, the
215	present cohort of vaccinees with prior infection showed a strong positive correlation
216	between the peak anti-spike antibody response following their COVID-19 diagnosis (at
217	2 months' convalescence) and the residual antibody titer at 6 months post-vaccination
218	(Pearson's correlation coefficient: 0.71 and 0.77 for Abbott and Roche titers,
219	respectively).
220	Immunopotentiation through repeated boosters is an affordable strategy only
221	when the risk-benefit balance is optimized and deemed favorable. For the influenza
222	vaccine, prior-year vaccination has shown to have negative effects on the current
223	year's vaccine effectiveness. ¹¹ Further, a frequent vaccination history was associated
224	with 41% and 27% decreases in vaccine effectiveness against type A influenza and
225	type B influenza, respectively. ¹² This phenomenon has been explained as 'antibody
226	feedback'. ¹³ Potential 'antibody feedback' has also been suggested with the SARS-
227	CoV-2 vaccines. ¹⁴ An extended 3-month interval regimen has resulted in, on average,
228	3.5-fold higher IgG titers. ¹⁵ A longer interval between prior infection and boosting of the

229	immune response with a vaccine has been associated with more enhanced and
230	durable immune responses. ¹⁶ As shown in the present study, the evolution of post-
231	vaccine immune responses is not even remotely close between those having
232	experienced prior infection and the naïve. Non-stratified strategies for repeated
233	boosters may lead to unexpected harms or attenuated performance through the
234	'antibody feedback' mechanism. Thus, when and whom to target with the repeated
235	booster vaccinations remains a crucial question to all future vaccination campaigns. As
236	long as rather young and/or healthy HCWs are targeted, it was shown in a preceding
237	study from Israel that a third-dose vaccine was sufficient enough for totally preventing
238	severe disease. The evidence here provided, that a fourth dose was only associated
239	with a scaled-down additive protection of 39% reduction in infection risk, further
240	prompts addressing this impending issue. ¹⁷
241	The limitation of the study is the limited number of individuals evaluated. The
242	observed immune response may not represent that of the overall population. The
243	immune response of individuals from older age categories and at utmost risk of severe
244	disease would have been highly intriguing, although not covered in the present study.
245	The extreme elderly and multi-morbid population has been shown to exhibit aberrant
246	immune responses. ¹⁸

247	Hybrid immunity is becoming increasingly common. The benefits of boosting
248	the infection-acquired immunity by vaccination has been shown 'clinically' to enhance
249	the degree and duration of protection (protection rate persistently above 90% for 18
250	months or longer). ¹⁶ The present study, in turn with robust indices of protective
251	antibody response, further enriches the evidence for and provides an immunological
252	basis to this highest and most durable protection achieved by those vaccinated on top
253	of a primary infection. With hybrid immunity becoming increasingly prevalent, delayed
254	boosters or reduced dosing regimens may become a realistic consideration when
255	reshaping the future SARS-CoV-2 vaccination campaigns.
256	
257	Acknowledgments
258	The authors would like to thank all HCWs participating in the study. We would
259	also like to thank Mrs. Mika Oku and Mrs. Takako Kobayashi from the Department of
260	Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University,
261	for technical assistance in analyzing the specimens. Tomoyo Tominaga, Hiroko
262	Tanaka, Tomoaki Yokoya, and Minako Hosokawa, from the Department of Health
263	Management, St.Mariannna University, Yokohama Seibu Hospital, integrally supported
	······································
264	the sample and data collection. Data acquisition with the microplate reader was

265 performed at the Research Support Platform, Graduate School of Medicine, Osaka

- 266 Metropolitan University.
- 267

268 Funding

- 269 This research was supported by the Japan Agency for Medical Research and
- 270 Development [JP20jk0110021, JP20he1122001, and JP20wm0125003], Japan Society
- 271 for the Promotion of Science KAKENHI [21K09078 and 22K15927], Osaka City
- 272 University Strategic Research Grant [OCU-SRG2021 YR09], and the Osaka
- 273 Metropolitan University Special Reserves Fund for COVID-19.
- 274

275 **Conflicts of Interest**

- 276 Yu Nakagama and Yasutoshi Kido have received financial support from Abbott
- 277 Japan LLC, Japan, outside the work.

279 References

- 280 1. Nitahara Y, Nakagama Y, Kaku N, Candray K, Michimuko Y, Tshibangu-Kabamba
- 281 E, et al. High-resolution linear epitope mapping of the receptor binding domain of
- 282 SARS-CoV-2 spike protein in COVID-19 mRNA vaccine recipients. Microbiol Spectr
- 283 2021; 9: e0096521.
- 284 2. Ebinger JE, Fert-Bober J, Printsev I, Wu M, Sun N, Prostko JC, et al. Antibody
- 285 responses to the BNT162b2 mRNA vaccine in individuals previously infected with
- 286 SARS-CoV-2. Nat Med 2021; 27: 981–4.
- 287 3. Ontañón J, Blas J, de Cabo C, Santos C, Ruiz-Escribano E, García A, et al.
- 288 Influence of past infection with SARS-CoV-2 on the response to the BNT162b2
- 289 mRNA vaccine in health care workers: Kinetics and durability of the humoral
- immune response. EBioMedicine 2021; 73: 103656.
- 291 4. Havervall S, Marking U, Greilert-Norin N, Gordon M, Ng H, Christ W, et al. Impact
- of SARS-CoV-2 infection on vaccine-induced immune responses over time. Clin
- 293 Transl Immunology 2022; 11: e1388.
- 5. Nakagama Y, Komase Y, Candray K, Nakagama S, Sano F, Tsuchida T, et al.
- 295 Serological testing reveals the hidden COVID-19 burden among health care

296	workers experiencing	a SARS-CoV-2 nosocomial outbreak. M	licrobiol Spectr 2021;

297 9: e0108221.

- 298 6. Nakagama Y, Komase Y, Kaku N, Nitahara Y, Tshibangu-Kabamba E, Tominaga T,
- et al. Detecting waning serological response with commercial immunoassays: 18-
- 300 month longitudinal follow-up of anti-SARS-CoV-2 nucleocapsid antibodies.
- 301 Microbiol Spectr 2022; 10: e0098622.
- 302 7. Tsuchida T, Nitahara Y, Suzuki S, Komase Y, Candray K, Kido Y, et al. Back to
- 303 normal; serological testing for COVID-19 diagnosis unveils missed infections. J
- 304 Med Virol 2021; 93: 4549–52.
- 305 8. Matsuura T, Fukushima W, Nakagama Y, Kido Y, Kase T, Kondo K, et al. Kinetics
- 306 of anti-SARS-CoV-2 antibody titer in healthy adults up to 6 months after BNT162b2
- 307 vaccination measured by two immunoassays: A prospective cohort study in Japan.
- 308 Vaccine 2022; 40: 5631–40.
- 309 9. Pérez-Alós L, Armenteros JJA, Madsen JR, Hansen CB, Jarlhelt I, Hamm SR, et al.
- 310 Modeling of waning immunity after SARS-CoV-2 vaccination and influencing
- 311 factors. Nat Commun 2022; 13: 1614.
- 312 10. Dyer AH, Noonan C, McElheron M, Batten I, Reddy C, Connolly E, et al. Previous
- 313 SARS-CoV-2 infection, age, and frailty are associated with 6-month vaccine-

- 314 induced anti-spike antibody titer in nursing home residents. J Am Med Dir Assoc
- 315 2022; 23: 434–9.
- 316 11. Ohmit SE, Thompson MG, Petrie JG, Thaker SN, Jackson ML, Belongia EA, et al.
- 317 Influenza vaccine effectiveness in the 2011-2012 season: protection against each
- 318 circulating virus and the effect of prior vaccination on estimates. Clin Infect Dis
- 319 2014; 58: 319–27.
- 320 12. McLean HQ, Thompson MG, Sundaram ME, Meece JK, McClure DL, Friedrich TC,
- 321 et al. Impact of repeated vaccination on vaccine effectiveness against influenza

322 A(H3N2) and B during 8 seasons. Clin Infect Dis 2014; 59: 1375–85.

- 323 13. McNamara HA, Idris AH, Sutton HJ, Vistein R, Flynn BJ, Cai Y, et al. Antibody
- 324 feedback limits the expansion of B Cell responses to malaria vaccination but drives
- diversification of the humoral response. Cell Host Microbe 2020; 28: 572–85.e7.
- 326 14. Garg AK, Mittal S, Padmanabhan P, Desikan R, Dixit NM. Increased B cell
- 327 selection stringency in germinal centers can explain improved COVID-19 vaccine
- 328 efficacies with low dose prime or delayed boost. Front Immunol 2021; 12: 776933.
- 329 15. Parry H, Bruton R, Stephens C, Bentley C, Brown K, Amirthalingam G, et al.
- 330 Extended interval BNT162b2 vaccination enhances peak antibody generation. NPJ

331 Vaccines 2022; 7: 14.

332	16. Hall V, Foulkes	S. Insalata F.	Kirwan P. S	Saei A, Atti A,	et al. Protection	against
	,	, , ,	,	, , ,		

- 333 SARS-CoV-2 after Covid-19 vaccination and previous infection. N Engl J Med
- 334 2022; 386: 1207–20.
- 17. Cohen MJ, Oster Y, Moses AE, Spitzer A, Benenson S; Israeli-Hospitals 4th
- 336 Vaccine Working Group. Association of receiving a fourth dose of the BNT162b
- 337 vaccine with SARS-CoV-2 infection among health care workers in Israel. JAMA
- 338 Netw Open 2022; 5: e2224657.
- 339 18. Takita M, Yoshida T, Tsuchida T, Nakagama Y, Kido Y, Suzuki S, et al. Low SARS-
- 340 CoV-2 antibody titers may be associated with poor clinical outcomes for patients
- 341 with severe COVID-19. Sci Rep 2022; 12: 9147.
- 342
- 343

344 Tables

Variable Naïve (n = 33) Prior infection (n = 36)Age, y [SD]^a 47 [9] 37 [12] Sex, female [%] 29 [88] 31 [86] Medical history, n [%] 0 [0] 0 [0] Previous COVID-19, n [%] Mild 30 [-] [83] -Moderate [-] 5 [14] -[-] Severe 1 [3] -

345 Table 1. Descriptive characteristics of participants

346 ^a standard deviation

348 Table 2. Age-specific differences in Abbott Architect anti-spike IgG titers attributable to

349 prior infection status

Age, y	Ratio of GMT ^a , 'prior infection' to 'naïve'	[95% CI] ^b	P-value
Overall	12.8	[8.7–18.9]	< 0.001
30	8.9	[4.7–16.8]	< 0.001
40	11.5	[6.2–21.3]	< 0.001
50	14.8	[7.6–29.2]	< 0.001
60	19.1	[8.7–42.3]	< 0.001
^a geometric mean c	of titer		

350 ^a geometric mean of 351 ^b confidence interval

353 Table 3. Age-specific differences in Roche Elecsys anti-spike total antibody titer

Age, y	Ratio of GMT ^a , 'prior infection' to 'naïve'	[95% CI] ^b	P-value
Overall	17.0	[10.8–26.9]	< 0.001
30	9.4	[4.6–19.5]	< 0.001
40	14.1	[7.0–28.6]	< 0.001
50	21.1	[9.7–45.7]	< 0.001
60	31.5	[12.7–78.0]	< 0.001

354 attributable to prior infection status

355 ^a geometric mean of titer ^b confidence interval

356

357

358 **Figure Legends**

359

361

362 Figure 1. Anti-spike antibody titers after BNT162b2 vaccination. For comparison by

363 prior infection status, the (A) Abbott Architect anti-spike IgG titers, and the (B) Roche

364 Elecsys anti-spike total antibody titers at 6 months post-vaccination are shown with

365 their respective geometric means (Solid lines).

Figure 2. Age-dependent increase in the between-group ('prior infection' vs. 'naïve') differences in post-vaccination anti-spike antibody titer. The impact of age on the logtransformed anti-spike antibody titer is fitted with linear regression models. Solid and dashed lines represent the predicted anti-spike antibody titer calculated by the model for the (A) Abbott Architect anti-spike IgG assay and the (B) Roche Elecsys anti-spike total antibody assay. Shadowed areas represent the 95% confidence interval.

379 status, neutralizing capacity against the wild type and the variant SARS-CoV-2 spike

- 380 antigen was assessed at 6 months post-vaccination. The bars (error bars) indicate
- 381 medians (interquartile ranges). %Inhibition, inhibition rate.

Abbott Architect anti-spike IgG titer [AU/mL]

