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ABSTRACT 
Semicontinuous data, characterized by an excess of zeros followed by a non-negative and right-

skewed distribution, are frequently observed in biomedical research. Different statistical models have 

been proposed to investigate the association of covariates with such outcome. Motivated by the search 

of genetic factors associated with Neutrophil Extracellular Traps (NETs), a semicontinuous biomarker 

involved in thrombosis, we here investigated the impact of the selected model for semicontinuous 

traits in the context of a Genome Wide Association Study (GWAS). We compared three models that 

jointly model zero and positive values while allowing the estimation of a single association parameter 

of covariates with the global mean: Tobit, Negative Binomial and Compound Poisson-Gamma. We 

assessed the fit of these models to a sample of 657 participants of the FARIVE study measured for 

NETs plasma levels. For each of these three models, we performed a GWAS on NETs in FARIVE 

participants and results were compared. A simulation study was also conducted to evaluate the control 

of the type I error. Compound Poisson-Gamma and Negative Binomial models fitted NETs data 

observed in FARIVE better than the Tobit model. However, the Negative Binomial model suffered 

from an inflation of its type I error, attributable to extreme positive values of the NETs and low 

frequency variants. Conversely, the Compound Poisson-Gamma model was robust to both phenomena. 

Using the latter model, a GWAS identified a genome wide significant locus on chr21q21.3. The lead 

variant was rs57502213, a deletion of two nucleotides located ~40kb upstream the non-coding RNA 

(miR155HG) hosting the miR-155 that was recently highlighted to have a role in NETs formation. 

This work indicates that the modeling strategy for a semicontinuous outcome in the framework of 

GWAS studies is crucial. The choice of the model should take into account the nature of the process 

generating zero values and the presence of extreme values. Our work also suggests that the Compound 

Poisson-Gamma model, while still marginally employed, can be a robust modeling strategy for GWAS 

analysis on a semicontinuous trait.  

 

Key-words: Semicontinuous outcome / Compound Poisson-Gamma / Negative Binomial / Genome 

Wide Association Study / Neutrophil Extracellular Traps 
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INTRODUCTION 
Semicontinuous data, characterized by an excess of zeros followed by a non-negative and right-

skewed distribution, are frequently observed in biomedical research1. When the study aims at 

identifying determinants of such a semicontinuous biomarker, it must be handled as the outcome 

variable and due to the inflation of zeros, classical models such as linear regression cannot be applied 

without violating the Gaussian assumptions, even with a logarithmic or rank-based inverse-normal 

transformation. For instance when the interest specifically lies in the identification of molecular 

determinants associated with a disease semicontinuous biomarker, as it is encountered in the omics era 

in order to identify/characterize new biological pathways, inform about drug discovery and help in 

individual risk prediction2, the problem of how to model its distribution arises. 

Over the past decades several statistical models have been developed to model semicontinuous data by 

taking into account the mass of zeros. Among the most commonly used models are the Tobit and the 

two-part models3,4.  

The two-part model and its extensions5,6 rely on the use of a logistic regression model to predict the 

probabilities of occurrence of zero values and of a linear regression model for the analysis of the 

strictly continuous outcome. The main assumption of this model is that the values of the outcome are 

derived from two different generating processes. This model has been used in various applications 

including the modeling of tumor size in cancer, food intake, microbiome abundance or individual costs 

of chronic kidney disease7–11. The two-part model, does not make possible the estimation of a single 

parameter that represents the association of an explanatory variable on the outcome. In contrast to the 

two-part model, Tobit models consider a single distribution of the outcome. In the case of zero-

inflated data, the Tobit model assumes that the semicontinuous variable is a truncated observation of a 

Gaussian variable. This modeling is mainly used to account for floor or ceiling effect of the outcome 

variable that could be due to technical measurement limits12–15.  

Another possibility is to consider the outcome variable as quantitative discrete, which can be done in 

some cases by changing the unit of measurement through the use of a multiplicative factor, without 

losing precision. In this case, models for count data such as the Poisson model or the Negative 

Binomial model in presence of overdispersion can be used. These models are relevant as long as the 

proportion of zeros is not too high16,17. As the Tobit model, these models allow for a simple 

interpretation of the results since only one coefficient is estimated per explanatory variable. Extensions 

of these models have been developed to account for the zero mass (also known as ZIP for Zero-

Inflated Poisson and ZINB for Zero-Inflated Negative Binomial) but they make the assumption that 

the distribution of the outcome is composed of two generating processes, like the two-part models.   

New models based on so-called Tweedie distributions18–20 have recently emerged for the analysis of 

semicontinuous data but their use remains marginal21. The Compound Poisson-Gamma model belongs 

to this Tweedie family. It assumes that the semicontinuous outcome is defined as a Poisson sum of 
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gamma random variables. Semicontinuous data are then modeled through the use of a single 

distribution. 

The choice between these different models is not obvious as each semicontinuous outcome has its own 

properties. As there is no established decision tool, the model to be applied should be chosen 

according to the distribution of the outcome and the clinical context22.  

In this work, we show the impact of the adopted model on the results of a Genome Wide Association 

Study (GWAS) that aimed at identifying genetic factors associated with plasma levels of Neutrophil 

Extracellular Traps (NETs), a semicontinuous biomarker involved in thrombosis. We highlight the 

differences between the models with respect to the flexibility of the underlying assumptions, the 

robustness to outliers and low allele frequency that can help to select the most appropriate model for 

future studies. 

NETs are one of the emerging biomarkers with a key role in thrombosis23. In the event of a vascular 

breach, neutrophils and platelets are the first cells to be recruited and activated24. When neutrophils are 

activated by platelets, they have pro-inflammatory properties that can enhance tissue damage and 

induce thrombus formation in particular when they evolve towards a certain form of cell death leading 

to the release of their decondensed chromatin as a network of fibres also called NETs. NETs are 

composed of DNA fibres comprised of antimicrobial proteins and histones which promote 

coagulation, platelets activation and thus thrombus formation25,26. NETs are involved in many other 

biological mechanisms such as immune response to viruses, diabetes, cystic fibrosis, cancer tumor 

growth, progression and metastasis27–31.  

NETs plasma levels were here measured in 657 participants of the « FActeurs de RIsque et de 

récidives de la maladie thromboembolique Veineuse » (FARIVE) study32. Genome wide genotype 

data were also available for these participants and then used to conduct a GWAS on NETs levels. We 

illustrate how the results of this GWAS are impacted by the statistical approach adopted to model 

NETs plasma levels. 

METHODS 

The FARIVE study  

The FARIVE study is a multicenter case-control study conducted between 2003 and 2007. The sample 

includes 607 patients with a documented episode of deep vein thrombosis and/or pulmonary embolism 

and 607 healthy individuals. A detailed description of the study can be found elsewhere32. Briefly, 

patients were not eligible if they were younger than 18 years, had previous venous thrombosis (VT) 

event, active cancer or recent history of malignancy (within 5 years). Controls were recruited over the 

same period and matched to cases according to age and sex. They did not have any history of venous 

and arterial thrombotic disease as well as cancer, liver or kidney failure. 
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1. NETs measurements 

Neutrophil Extracellular Traps (NETs) were quantified by measuring myeloperoxidase (MPO)-DNA 

complexes using an in-house capture ELISA already described33 in a subsample of 410 VT patients (7 

months after their inclusion in the study once the anticoagulant treatment has stopped) and 327 

controls (at their time of inclusion in the study). Briefly, microtiter plates were coated with anti-human 

MPO antibody. After blocking, serum samples were added together with a peroxidase-labeled anti-

DNA antibody. After incubation, the peroxidase substrate was added and absorbance measured at 405 

nm in a spectrophotometer. 

2. Genotyping and Imputation   

FARIVE participants were genotyped using the Illumina Infinium Global Screening Array v3.0 

(GSAv3.0) microarray at the Centre National de Recherche en Génomique Humaine (CNRGH). 

Individuals with at least one of the following criteria were excluded: discordant sex information, 

relatedness individuals identified by pairwise clustering of identity by state distances (IBS), 

genotyping call rate lower than 99%, heterozygosity rate higher/lower than the average rate ± 3 

standard deviation or of non-European ancestry. After applying these criteria, the final sample was 

composed of 1,077 individuals. Among the 730,059 variants genotyped, 145,238 variants without a 

valid annotation were excluded as well as 656 variants deviating from Hardy-Weinberg equilibrium in 

controls at P<10-6, 47,286 variants with a Minor Allele Count (MAC) lower than 20 and 1,774 variants 

with a call rate lower than 95%. This quality controls procedure was conducted using Plink v1.934 and 

the R software v3.6.2. Finally, there were 535,105 markers left for imputation which was then 

performed with Minimac4 using the 1000 Genomes phase 3 version 5 reference panel35. 

3. Genome Wide Association Study of NETs plasma levels 

The present study relies on a subsample of 657 individuals (372 VT cases and 285 controls) with both 

NETs measurements and imputed genetic data. All single nucleotide polymorphisms (SNPs) with 

minor allele frequency (MAF) greater than 0.01 and imputation quality score greater than 0.3 were 

tested for association with NETs plasma levels. As shown in the next section, 3 different statistical 

models were deployed. In all, associations were tested on imputed allelic doses and adjusted for 

potential confounders that is age, sex, smoking, case-control status and the four first principal 

components derived from genome wide genotype data36–38. The standard genome-wide statistical 

threshold of 5x10-8 was used to consider SNPs as significantly associated with NETs plasma levels. 

Statistical modeling for GWAS analysis of NETs plasma levels 

Since we were interested in identifying genetic factors that influence mean NETs plasma levels, any 

statistical approach that treats independently the zeros mass and the distribution of positive values, 

such as the two-part, ZIP and ZINB models, was deemed not adapted to our application. As a 
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consequence, only three models were compared in this study: the Tobit, Compound Poisson-Gamma, 

and Negative Binomial models. The Poisson model was not investigated because NETs plasma data 

presented a large overdispersion (see Results section), a situation where Negative Binomial model is 

preferable. 

In this study, we aimed to identify the most suitable model for semicontinuous data in order to conduct 

a GWAS on NETs and highlight the difference between the three models. 

1. Tobit model 

In the Tobit model, the observed variable Y is assumed to be a right or left truncated observation of an 

underlying Gaussian latent variable (���. Let � the constant threshold for truncation which needs to be 

known and is equal to zero in the context of zero-inflated data. Therefore, the Tobit model assumes 

that zero values are due to censoring or measurement limits and so they do not represent the true 

absence of the variable. In the case of a left truncation at 0 the values of the observed variable are:  

 � �  � ��      �� � 	  0  0        ��������� 
The subsequent regression model is:  ����| �� �  �� 

where ����| �� is the expected value of the underlying Gaussian variable �� conditioned on the 

explanatory variables �, and where � represents the regression parameters associated to �. The Tobit 

model is available in the VGAM R package39. 

2. Compound Poisson-Gamma model 

An Exponential Dispersion Model (EDM) is a two-parameter family of distributions composed of a 

linear exponential family with an additional dispersion parameter40. EDMs are characterized by their 

variance function ��. � that is an exponential function used to describe the relationship between the 

mean and the variance. If � follows an EDM, then ���� � � and ������ � ����� with � a 

dispersion parameter. Tweedie models are a class of EDMs characterized by a power variance 

function: ���� � �� with � the index parameter41,42. Most of the usual distributions are included in the 

class of Tweedie models such as the normal �� � 0�, Poisson �� � 1�, gamma �� � 2� and the 

inverse Gaussian �� � 3�43. 

The probability density function of a Tweedie model is defined as40: 

��"|�, �, �� �  ��", �, �� exp '1( )" ����1 * � * ����2 * �+, 

where ��. � is a given function. 

The Compound Poisson-Gamma model belongs to the family of Tweedie models with � - .1; 20. It 
simultaneously models the occurrence and the intensity of the semicontinuous outcome44. The 
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distribution of a variable Y following a Compound Poisson-Gamma model may be defined as  a 

Poisson sum of 1 Gamma distributions:  

� �  20,                                           if 1 � 03� 4 3� 4 5 4 3� ,         if 1 	 0� 
where 1 ~ 7����8�,  3�  ~ 9�::��;, <� with ; the shape parameter and < the scale parameter, and 

where the values of 3� are ��= and independent on 1. 

The Compound Poisson-Gamma model is a Tweedie model with the following parametrisation:  

� � 8;< ; � � �����	
�����

���
 ; � � 
�


�
 - .1; 20 ; 

���� � � �  8;< ������ �  ��� �  8<�; > �1 4 ;� 

Thus, direct modeling of the global expectation ���� is possible using a generalized linear model with 

a logarithmic link function to insure positivity of the means:  ?�@���� | ��� �  �� 

We used the cplm R package to implement Compound Poisson-Gamma models45. 

3. Negative Binomial models 

We also attempted to use a model for count data by multiplying NETs’ values by 1,000 to ensure 

discreteness without creating new ex-aequos. Let � be a random variable following a Poisson 

distribution which depends on a single parameter 8 	 0: ���� � ������ � 8 

The Poisson model is adapted to model the expectation of a count variable using a generalized linear 

model with a logarithmic link function:  ?�@���� | ��� �  �� 

The Negative Binomial model is an extension to the Poisson model in the presence of over-dispersion 

of the outcome: ������ 	  A��� 46,47. In that case, the variance of Y is linked to its expectation 

through the following relationship: ������ �  ���� 4 B > ����� where B 	 0 is a dispersion 

parameter. This model is also part of generalized linear models and its link function is the logarithm. 

Negative Binomial model can also be represented as Poisson distributions with a Gamma distributed 

means where � ~ 7����8� and 8 ~ 9�::��;, <� 48. However, unlike the Compound Poisson-Gamma 

presented above, the two variables � and 8 are not independent from each other.  

Models’ comparison  

The three aforementioned tested models were applied to NETs data while adjusting for age, sex, 

smoking and case-control status.  
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The fit of these models to NETs data were assessed in two ways. First, we computed the Root Mean 

Square Error (RMSE) of each tested model defined as: 

C1DA �  E1F G�"H�  *  "����

���

 

where N is the sample size, "H� the prediction of the ���  individual according to its covariates provided 

by a given modeling approach and "�  the observed value. Instead of predicting "H�  by  ��� |�, �I � that cannot be equal to zero, we used simulated predictions. For each studied model, a 

random value was generated for each individual according to its explanatory variables and the 

estimated model parameters. This process was repeated 1,000 times and the mean of RMSEs over the 

1000 replicates was reported. As the Tobit model predicts negative values that are not observed in our 

semicontinuous outcome, these were imputed at zero to calculate the corresponding RMSE. 

Second, we graphically assessed the fit of models predictions using Quantile-Quantile plot (QQplot) of 

the observations and predictions for each tested model.  

Simulation Study 

A simulation study was conducted to evaluate the control of the type I error (α) of the Negative 

Binomial and Compound Poisson-Gamma models in the context of genetic association studies as well 

as their sensibility to outliers. From the observed NETs data distribution, we randomly generated D � 1, … ,10000 bootstrapped samples of size F � 657. For each bootstrapped sample, all individuals 

were randomly assigned 4 independent genotypes under the assumption of Hardy-Weinberg and 

corresponding to 4 SNPs with allele frequencies 0.01, 0.05, 0.10 and 0.20. The association of SNPs 

with the outcome was tested under the assumption of additive allele effects. This procedure was used 

to simulate semicontinuous data that mimic the NETs data observed in FARIVE and to allow the 

evaluation of the robustness of the two studied models (Negative Binomial and Compound Poisson-

Gamma models) to a deviation from their underlying distribution. To assess the robustness to outliers, 

each simulated dataset was also analysed after the exclusion of individuals with simulated trait higher 

than 0.5, a threshold corresponding on average to the exclusion of 3% of individuals with the highest 

NETs levels.  

 For each tested model, the number of times a SNP was found statistically significant at α=0.05, 

α=0.01, and α=0.001 was used to compute its empirical type I error.  
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RESULTS 

Population characteristics 

The main characteristics of the FARIVE participants used in this work are presented in Table 1. There 

is approximately 40% of men, 20% of current smokers and individuals are on average 53 years old. 

The distribution of NETs plasma levels observed in FARIVE is shown in Figure 1A. Approximately 

16% of exact zeros were observed with a higher proportion among VT cases compared to controls 

(20% and 10% respectively). To analyse NETs as count data, observed values were multiplied by 

1,000. This induced a large overdispersion (mean=78; variance=26,064) leading to the adoption of a 

Negative Binomial model for analysing such data. 

Clinical Variables & Goodness of fit 

Table 2 reports the association of clinical covariates with NETs plasma levels in each of the three 

studied model. The Tobit model assumes a linear association of the covariates on the expected mean 

of the latent variable, i.e. the true value of NETs. For example, each 10-year increase in age is 

associated with an increase of 0.005 on the expected mean of the latent variable of NETs plasma 

levels, given the other covariates are held constant. Regarding the two other models, as a logarithmic 

link function is used, the association of covariates on the expected mean of NETs is multiplicative. As 

a consequence, for the Compound Poisson-Gamma model, each 10-year increase of age is associated 

with an expected mean of NETs plasma levels multiplied by 1.05 (= ��.��). Similar interpretation 

holds for the Negative Binomial model that yielded regression parameters very close to those obtained 

via the Compound Poisson-Gamma models.  

RMSEs provided by the three models are shown in Table 2. The lowest RMSE was observed for the 

Compound Poisson-Gamma model while the Negative Binomial model exhibited the highest one. 

Graphically, the Compound Poisson-Gamma (Figure 1C) and the Negative Binomial (Figure 1D) 

showed similar distributions of their predicted values even if the right skewedness was slightly less 

pronounced for the Compound Poisson-Gamma distribution. These distributions were rather close to 

that observed for the original NETs data (Figure 1A). By contrast, the Tobit distribution (Figure 1B) 

substantially deviated from the original data and looked like a left-truncated Gaussian distribution.  

Quantile-Quantile plots of the observed vs predicted values did not visually show obvious deviation 

from the bisection line, except for high values (above 0.5 in the original NET scale), for the 

Compound Poisson-Gamma (Figure 2B) and the Negative Binomial (Figure 2C) models. Conversely, 

for the Tobit model (Figure 2A), the QQplot line deviated from the bisection line from the lower 

values. 

Altogether, these observations suggest that the Compound Poisson-Gamma model seems the most 

adequate to analyze FARIVE NETs data. Nevertheless, we conducted a GWAS on NETs plasma 
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levels using each of the three models discussed above in order to get additional elements of 

comparison between these models. 

GWAS analysis on NETs plasma levels 

A total of 9,670,724 autosomal SNPs were tested for association with NETs plasma levels using the 

Tobit, Negative Binomial and Compound Poisson-Gamma models. Quantile-Quantile plots for the 

observed and expected p-values summarizing the GWAS results for each model are shown in Figure 

3. While the whole set of association results was compatible with what was expected under the null 

hypothesis of no genetic association for the Compound Poisson-Gamma model (Figure 3B), strong 

deviations were observed for the Tobit (Figure 3A) and Negative Binomial (Figure 3C) models. By 

restricting the GWAS results to SNPs with MAF greater than 5%, inflation was no longer observed for 

the Tobit model (Supplementary Figure S1A, genomic inflation factor λ=0.96) while the Negative 

Binomial model remained strongly inflated (Supplementary Figure S1C, λ =1.46).  

To further explore the remaining inflation, we re-ran the GWAS under the Compound Poisson-

Gamma and Negative Binomial models after excluding 19 FARIVE participants (~3%) with NETs 

plasma levels higher than 0.5. Inflation in the Negative Binomial model was considerably decreased 

(Supplementary Figure S2B) and completely vanished when we additionally restricted the GWAS 

analysis on SNP with MAF >5% (Supplementary Figure S3B, λ=1.03). Finally, the simulation 

studies demonstrated that the test of SNP in the Negative Binomial model exhibited inflated type I 

error for α for the three nominal values of alpha considered (Supplementary Table S1) when data 

distribution fit the one here observed for NETs plasma levels in the FARIVE study. Type I error was 

rather well controlled in absence of extreme values (Supplementary Table S2). Of note, these 

simulations also show that the Compound Poisson-Gamma model generally controls the nominal type 

I error. All these observations add support for the use of the Compound Poisson-Gamma model for the 

GWAS analysis of NETs plasma levels.  

The corresponding Manhattan plot shown in Figure 4 revealed one genome-wide significant locus. 

The lead SNP rs57502213 is a deletion of two nucleotides (TC), mapping to the miR-155 hosting gene 

(MIR155HG). This variant had a MAF of ~7%, exhibited a good imputation quality (Rsq=0.92) and 

its minor allele was associated with a 2.53 fold increase (95% confidence interval [1.85 – 3.47], 

P=1.42x10-8) in NETs plasma levels. The average NETs plasma levels were higher in carriers of the 

deletion of the TC allele than in non-carriers (0.15 vs 0.07). This pattern of association was consistent 

in VT cases and in controls (Table 4).  Full GWAS summary statistics will be available on GWAS 

catalog49. 

DISCUSSION 
This work was motivated by the search of genetic factors associated with NETs plasma levels 

exhibiting a semicontinuous distribution. We compared three different modeling strategies, Tobit, 
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Negative Binomial and Compound Poisson-Gamma models, that handle the excess of zero and the 

asymmetric distribution while allowing the estimation of a single regression parameter for 

characterizing the association between an explanatory variable and the global mean of the 

semicontinuous outcome.  

Visual inspection showed that both the Negative Binomial and Compound Poisson-Gamma models fit 

better the observed NETs distribution than the Tobit model. Indeed, the underlying hypothesis of a 

left-truncated Gaussian distribution with only two parameters makes the Tobit model less-flexible than 

Compound Poisson-Gamma and Negative Binomial models. RMSE analysis provided further support 

for the use of Compound Poisson-Gamma model. Of note, the definition of this model matches quite 

well the biological mechanisms underlying NETs production as it is intuitively reasonable to assume 

that the number of dead neutrophils follows a Poisson distribution, and that each of these rejects a 

certain quantity of NETs that would follow a Gamma distribution. 

Our GWAS and simulation studies revealed that the Tobit and Negative Binomial models were prone 

to strong inflation of p-values. While this inflation could be attributable to SNPs with low allele 

frequency (MAF<5%) for the Tobit model, this inflation was due to both low allele frequency SNPs 

and extreme positive values of the outcome for the Negative Binomial model. The Compound 

Poisson-Gamma model was much more robust to these two phenomena.  

The Compound Poisson-Gamma based GWAS identified one significant locus on chr21q21.3 

associated with NETs plasma levels. This locus maps to miR155HG and the lead SNP was 

rs57502213, an intronic deletion in miR155HG. While several recent publications have highlighted the 

role of the associated miRNA in the NETs formation50–52, little information is available in public 

resources about the possible functional impact of rs57502213. This SNP is in moderate linkage 

disequilibrium (pairwise D’ > 0.50) with several other nearby variants located in MRPL39, GABPA 

and APP, the latter having also been reported to be involved in NETs formation53. Note that another 

GWAS on NETs plasma levels has recently been conducted in the Rotterdam study54. Despite the 

large sample size of this study (~5600 individuals), no significant genome-wide association was 

detected and the association of our lead SNP did not replicate there (P=0.14). However, different kits 

were used to measure NETs levels in the two studies and recent work has emphasized the need for 

standardized methods for NETs measurements55,56 

(https://cdn.ymaws.com/www.isth.org/resource/resmgr/ssc/ssc_subcommittee_project_mar.pdf). Of 

note, in the Rotterdam study, NETs were analyzed using a log-transformed model suggesting that no 

zero values (or little) were observed. This contrasts with FARIVE data and could contribute to the 

heterogeneity of findings between studies. Nevertheless, because of the increasingly recognized role of 

the chr21q21.3 locus in NETs biology, further works deserve to be conducted to clarify the genetic 

signal observed in the present study.  
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To conclude, our work indicates that the modeling strategy for a semicontinuous outcome is crucial, 

but not straightforward. The choice of the model should take into account the nature of the (biological) 

process generating zero values, the distribution of the outcome and, especially, the presence of 

extreme values. The Tobit model with only two parameters is less flexible than Compound Poisson-

Gamma and Negative Binomial models and our work suggests that the Compound Poisson-Gamma 

model, while still marginally used, is more robust than the Negative Binomial model to outliers and 

low allele frequency making. This make it well suitable for GWAS analysis on semicontinuous trait.  

STATEMENTS AND DECLARATIONS 

Acknowledgments 

GM benefited from the EUR DPH, a PhD program supported within the framework of the PIA3 

(Investment for the future). Project reference 17-EURE-0019. 

Statistical analyses benefited from the CBiB computing centre of the University of Bordeaux. 

This project was carried out in the framework of the INSERM GOLD Cross-Cutting program (P-EM, 

D-AT). 

Fundings 

GM and D-AT are supported by the EPIDEMIOM-VT Senior Chair from the University of Bordeaux 

initiative of excellence IdEX.  

The FARIVE study was supported by grants from the Fondation pour la Recherche Médicale, the 

Program Hospitalier de recherche Clinique (PHRC 20 002; PHRC2009 RENOVA-TV), the Fondation 

de France, and the Leducq Foundation. FARIVE genetic data were funded by the GENMED 

Laboratory of Excellence on Medical Genomics [ANR-10-LABX-0013], a research program managed 

by the National Research Agency (ANR) as part of the French Investment for the Future. 

Disclosures 

The authors have no conflict of interest to declare. 

Ethics approval 

Research have been performed in accordance with the Declaration of Helsinki. The FARIVE study 

was approved by the “Comité consultatif de protection des personnes dans la recherche biomedicale” 

(Project n° 2002-034). 

Consent to participate 

Written informed consent to participate was obtained from all FARIVE participants. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.22279929doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.19.22279929
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

REFERENCES 
1. Min Y, Agresti A. Modeling Nonnegative Data with Clumping at Zero: A Survey. :27. 

2. Folkersen L, Gustafsson S, Wang Q, et al. Genomic and drug target evaluation of 90 
cardiovascular proteins in 30,931 individuals. Nat Metab. 2020;2(10):1135-1148. 
doi:10.1038/s42255-020-00287-2 

3. Cragg JG. Some Statistical Models for Limited Dependent Variables with Application to the 
Demand for Durable Goods. Econometrica. 1971;39(5):829-844. doi:10.2307/1909582 

4. Tobin J. Estimation of Relationships for Limited Dependent Variables. Econometrica. 
1958;26(1):24-36. doi:10.2307/1907382 

5. Farewell VT, Long DL, Tom BDM, Yiu S, Su L. Two-Part and Related Regression Models for 
Longitudinal Data. Annu Rev Stat Its Appl. 2017;4:283-315. doi:10.1146/annurev-statistics-
060116-054131 

6. Feng X, Lu B, Song X, Ma S. Financial literacy and household finances: A Bayesian two-part 
latent variable modeling approach. J Empir Finance. 2019;51:119-137. 
doi:10.1016/j.jempfin.2019.02.002 

7. Chen EZ, Li H. A two-part mixed-effects model for analyzing longitudinal microbiome 
compositional data. Bioinformatics. 2016;32(17):2611-2617. doi:10.1093/bioinformatics/btw308 

8. Garbutt DJ, Stern RD, Dennett MD, Elston J. A comparison of the rainfall climate of eleven 
places in West Africa using a two-part model for daily rainfall. Arch Meteorol Geophys 
Bioclimatol Ser B. 1981;29(1):137-155. doi:10.1007/BF02278197 

9. Hartman B, Larson C, Kunkel C, Wight C, Warr RL. A Two-Part Model of the Individual Costs 
of Chronic Kidney Disease. :60. 

10. Rustand D, Briollais L, Tournigand C, Rondeau V. Two-part joint model for a longitudinal 
semicontinuous marker and a terminal event with application to metastatic colorectal cancer data. 
Biostatistics. 2022;23(1):50-68. doi:10.1093/biostatistics/kxaa012 

11. Tooze JA, Midthune D, Dodd KW, et al. A new statistical method for estimating the usual intake 
of episodically consumed foods with application to their distribution. J Am Diet Assoc. 
2006;106(10):1575-1587. doi:10.1016/j.jada.2006.07.003 

12. Amore MD, Murtinu S. Tobit models in strategy research: Critical issues and applications. Glob 
Strategy J. 2021;11(3):331-355. doi:10.1002/gsj.1363 

13. Chen T, Ma S, Kobie J, Rosenberg A, Sanz I, Liang H. Identification of significant B cell 
associations with undetected observations using a Tobit model. Stat Interface. 2016;9(1):79-91. 
doi:10.4310/SII.2016.v9.n1.a8 

14. Debnath AK, Blackman R, Haworth N. A Tobit model for analyzing speed limit compliance in 
work zones. Saf Sci. 2014;70:367-377. doi:10.1016/j.ssci.2014.07.012 

15. McBee M. Modeling Outcomes With Floor or Ceiling Effects: An Introduction to the Tobit 
Model. Gift Child Q. 2010;54(4):314-320. doi:10.1177/0016986210379095 

16. van den Broek J. A Score Test for Zero Inflation in a Poisson Distribution. Biometrics. 
1995;51(2):738-743. doi:10.2307/2532959 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.22279929doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.19.22279929
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

17. Allison PD. Logistic Regression Using SAS: Theory and Application, Second Edition. SAS 
Institute; 2012. 

18. Tweedie MC. An index which distinguishes between some important exponential families. In: Vol 
579. ; 1984:579-604. 

19. Gilchrist R, Drinkwater D. The use of the Tweedie distribution in statistical modelling. In: 
Bethlehem JG, van der Heijden PGM, eds. COMPSTAT. Physica-Verlag HD; 2000:313-318. 
doi:10.1007/978-3-642-57678-2_39 

20. Jørgensen B, Martínez JR, Vinogradov V. Domains of attraction to Tweedie distributions. Lith 
Math J. 2009;49(4):399-425. doi:10.1007/s10986-009-9062-8 

21. Kurz CF. Tweedie distributions for fitting semicontinuous health care utilization cost data. BMC 
Med Res Methodol. 2017;17(1):171. doi:10.1186/s12874-017-0445-y 

22. Brown JE, Dunn PK. Comparisons of Tobit, Linear, and Poisson-Gamma Regression Models: An 
Application of Time Use Data. Sociol Methods Res. 2011;40(3):511-535. 
doi:10.1177/0049124111415370 

23. Kimball AS, Obi AT, Diaz JA, Henke PK. The Emerging Role of NETs in Venous Thrombosis 
and Immunothrombosis. Front Immunol. 2016;7:236. doi:10.3389/fimmu.2016.00236 

24. Ruhnau J, Schulze J, Dressel A, Vogelgesang A. Thrombosis, Neuroinflammation, and Poststroke 
Infection: The Multifaceted Role of Neutrophils in Stroke. J Immunol Res. 2017;2017:5140679. 
doi:10.1155/2017/5140679 

25. Laridan E, Martinod K, De Meyer SF. Neutrophil Extracellular Traps in Arterial and Venous 
Thrombosis. Semin Thromb Hemost. 2019;45(1):86-93. doi:10.1055/s-0038-1677040 

26. Diamond SL. Systems Analysis of Thrombus Formation. Circ Res. 2016;118(9):1348-1362. 
doi:10.1161/CIRCRESAHA.115.306824 

27. Ng H, Havervall S, Rosell A, et al. Circulating Markers of Neutrophil Extracellular Traps Are of 
Prognostic Value in Patients With COVID-19. Arterioscler Thromb Vasc Biol. 2021;41(2):988-
994. doi:10.1161/ATVBAHA.120.315267 

28. Wang L, Zhou X, Yin Y, Mai Y, Wang D, Zhang X. Hyperglycemia Induces Neutrophil 
Extracellular Traps Formation Through an NADPH Oxidase-Dependent Pathway in Diabetic 
Retinopathy. Front Immunol. 2019;9:3076. doi:10.3389/fimmu.2018.03076 

29. Zhu L, Liu L, Zhang Y, et al. High Level of Neutrophil Extracellular Traps Correlates With Poor 
Prognosis of Severe Influenza A Infection. J Infect Dis. 2018;217(3):428-437. 
doi:10.1093/infdis/jix475 

30. Martínez-Alemán SR, Campos-García L, Palma-Nicolas JP, Hernández-Bello R, González GM, 
Sánchez-González A. Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in 
Cystic Fibrosis. Front Cell Infect Microbiol. 2017;7:104. doi:10.3389/fcimb.2017.00104 

31. Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The Emerging Role of Neutrophil 
Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front Immunol. 2020;11:1749. 
doi:10.3389/fimmu.2020.01749 

32. Trégouët DA, Heath S, Saut N, et al. Common susceptibility alleles are unlikely to contribute as 
strongly as the FV and ABO loci to VTE risk: results from a GWAS approach. Blood. 
2009;113(21):5298-5303. doi:10.1182/blood-2008-11-190389 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.22279929doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.19.22279929
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

33. Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil Extracellular Traps in 
Autoimmunity and Allergy: Immune Complexes at Work. Front Immunol. 2019;10:2824. 
doi:10.3389/fimmu.2019.02824 

34. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: 
rising to the challenge of larger and richer datasets. GigaScience. 2015;4(1):7. 
doi:10.1186/s13742-015-0047-8 

35. Das S, Forer L, Schönherr S, et al. Next-generation genotype imputation service and methods. Nat 
Genet. 2016;48(10):1284-1287. doi:10.1038/ng.3656 

36. White PC, Hirschfeld J, Milward MR, et al. Cigarette smoke modifies neutrophil chemotaxis, 
neutrophil extracellular trap formation and inflammatory response-related gene expression. J 
Periodontal Res. 2018;53(4):525-535. doi:10.1111/jre.12542 

37. Ortmann W, Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on 
neutrophil extracellular trap formation. Cell Tissue Res. 2018;371(3):473-488. 
doi:10.1007/s00441-017-2751-4 

38. Yuan XZ. Sex differences in neutrophil extracellular trap formation. :116. 

39. Yee TW. Vector Generalized Linear and Additive Models: With an Implementation in R. 
Springer; 2015. 

40. Zhou H, Qian W, Yang Y. Tweedie gradient boosting for extremely unbalanced zero-inflated 
data. Commun Stat - Simul Comput. Published online July 11, 2020:1-23. 
doi:10.1080/03610918.2020.1772302 

41. Jørgensen B. Exponential Dispersion Models. J R Stat Soc Ser B Methodol. 1987;49(2):127-145. 
doi:10.1111/j.2517-6161.1987.tb01685.x 

42. Fox J. Applied Regression Analysis and Generalized Linear Models. Third edition. SAGE; 2016. 

43. Dunn PK, Smyth GK. Evaluation of Tweedie exponential dispersion model densities by Fourier 
inversion. Stat Comput. 2008;18(1):73-86. doi:10.1007/s11222-007-9039-6 

44. Dzupire NC, Ngare P, Odongo L. A Poisson-Gamma Model for Zero Inflated Rainfall Data. J 
Probab Stat. 2018;2018:1-12. doi:10.1155/2018/1012647 

45. Zhang Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed 
models. Stat Comput. 2013;23(6):743-757. doi:10.1007/s11222-012-9343-7 

46. Hoef JMV, Boveng PL. Quasi-Poisson vs. Negative Binomial Regression: How Should We 
Model Overdispersed Count Data? Ecology. 2007;88(11):2766-2772. 

47. Gardner W, Mulvey EP, Shaw EC. Regression analyses of counts and rates: Poisson, 
overdispersed Poisson, and negative binomial models. Psychol Bull. 1995;118(3):392-404. 
doi:10.1037/0033-2909.118.3.392 

48. Gorshenin AK, Korolev VYu. Scale Mixtures of Frechet Distributions as Asymptotic 
Approximations of Extreme Precipitation. J Math Sci. 2018;234(6):886-903. doi:10.1007/s10958-
018-4052-1 

49. Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published 
genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 
2019;47(D1):D1005-D1012. doi:10.1093/nar/gky1120 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.22279929doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.19.22279929
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

50. Saha P, Yeoh BS, Xiao X, et al. PAD4-dependent NETs generation are indispensable for intestinal 
clearance of Citrobacter rodentium. Mucosal Immunol. 2019;12(3):761-771. doi:10.1038/s41385-
019-0139-3 

51. Hawez A, Taha D, Algaber A, Madhi R, Rahman M, Thorlacius H. MiR�155 regulates 
neutrophil extracellular trap formation and lung injury in abdominal sepsis. J Leukoc Biol. 
2022;111(2):391-400. doi:10.1002/JLB.3A1220-789RR 

52. Rohrbach A, Slade D, Thompson P, Mowen K. Activation of PAD4 in NET formation. Front 
Immunol. 2012;3. Accessed August 1, 2022. 
https://www.frontiersin.org/articles/10.3389/fimmu.2012.00360 

53. Canobbio I, Visconte C, Momi S, et al. Platelet amyloid precursor protein is a modulator of 
venous thromboembolism in mice. Blood. 2017;130(4):527-536. doi:10.1182/blood-2017-01-
764910 

54. Donkel SJ, Portilla Fernández E, Ahmad S, et al. Common and Rare Variants Genetic Association 
Analysis of Circulating Neutrophil Extracellular Traps. Front Immunol. 2021;12:615527. 
doi:10.3389/fimmu.2021.615527 

55. Prével R, Dupont A, Labrouche-Colomer S, et al. Plasma Markers of Neutrophil Extracellular 
Trap Are Linked to Survival but Not to Pulmonary Embolism in COVID-19-Related ARDS 
Patients. Front Immunol. 2022;13:851497. doi:10.3389/fimmu.2022.851497 

56. Rada B. Neutrophil Extracellular Traps. Methods Mol Biol Clifton NJ. 2019;1982:517-528. 
doi:10.1007/978-1-4939-9424-3_31 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.22279929doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.19.22279929
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 : Distribution of NETs plasma levels

This figure presents the distribution of the observed NETs

plasma levels (A), predictions from the Tobit model (B), the

Compound Poisson-Gamma model (C) and the Negative

Binomial model (D).
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Figure 2 : QQplots of observations and predictions from the three models

From Tobit (A), Compound Poisson-Gamma (B) and Negative Binomial (C).
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Figure 3: Quantile-Quantile plots from the GWAS results on NETs plasma levels

Tobit (A), Compound Poisson-Gamma (B) and Negative Binomial (C).
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A B C

Supplementary Figure S1: Quantile-Quantile plots from the GWAS results with an allele frequency higher than 5%

on NETs plasma levels

Tobit (A), Compound Poisson-Gamma (B) and Negative Binomial (C).
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Supplementary Figure S2 : Quantile-Quantile plots from the GWAS results on NETs plasma levels

without outliers

Compound Poisson-Gamma (A) and Negative Binomial (B).
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Supplementary Figure S3: Quantile-Quantile plots from the GWAS results with an allele frequency higher than 5% on

NETs plasma levels without outliers

Compound Poisson-Gamma (A) and Negative Binomial (B).
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Figure 4: Manhattan plots from the GWAS results of NETs conducted with Compound Poisson-Gamma model

The −𝑙𝑜𝑔10 of the p-values are presented according to the position of the associated tested SNP across the genome. 

The genome wide significant threshold (5x10-8) is represented with a red line. 
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Table 1 Main characteristics of the FARIVE study 

 Total N=657 VT‡ Cases N=372 Controls N=285 

N (%) N (%) N (%) 

Sex - Men 256 (39.0%) 141 (37.9%) 115 (40.4%) 

Age at sampling (Mean ± SD�) 53.0 ± 18.8 53.3 ± 19.3 52.8 ± 18.2 

Smoking status    

Current smoker 128 (19.5%)   62 (16.7%)   66 (23.2%) 

Former smoker / Never 529 (80.5%) 310 (83.3%) 219 (76.8%) 

Neutrophil Extracellular Traps levels    

All values  

Mean ± SD 

Median [Q1;Q3] 

 

0.08 ± 0.16 

0.03 [4x10-3;0.07] 

   

0.05 ± 0.11 

0.03 [2x10-3;0.05] 

   

0.12 ± 0.20 

0.04 [0.01;0.12] 

Exact zero 104 (15.8%) 75 (20.2%) 29 (10.2%) 

� Standard Deviation 

‡ Venous Thrombosis 
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Table 2: Comparison of regression parameter estimates according to the three models 

Tobit   Compound 
Poisson-Gamma  

  Negative 
Binomial*       

  Beta (SD)   Beta (SD)   Beta (SD) 

Covariates           

Age (10y) 0.005 (0.004)   0.05 (0.04)   0.05 (0.04) 

Sex (Males) -0.01 (0.02)   -0.08 (0.16)   -0.04 (0.13) 

Smoking (Non smokers) 0.05 (0.02)   0.50 (0.19)   0.52 (0.17) 

Status (Controls)  -0.08 (0.01)    -0.87 (0.15)    -0.87 (0.13) 

            
RMSE* 198.7† 

[145.5 ; 251.9]   
193.9 

 [180.8 ; 207.1]   
211.5  

[187.0 ; 236.0 
 
*: For the distribution of NETs multiplied by 1,000. Mean [min-max] over 1,000 bootstraped samples 
†: Negative predictions were censored at zero 
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Table 3 : Association of rs57502213 with NETs plasma levels 

  Genotype for rs57502213  
  TC/TC TC/- -/- 
All individuaks (N=657)       

N 568 88 1 
Mean ± SD 0.07 ± 0.13 0.15 ± 0.28 0.07 
Exact zero 91 (16.0%) 13 (14.8%) - 
        

Cases (N=372)       
N 323 48 1 
Mean ± SD 0.04 ± 0.06 0.12 ± 0.26 0.07 
Exact zero 66 (20.4%) 9 (18.7%) - 
        

Controls (N=285)       
N 245 40 - 
Mean ± SD 0.10 ± 0.18 0.20 ± 0.30 - 
Exact zero 25 (10.2%) 4 (10.0%) - 
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Supplementary Table S1 : Evaluation of the control of the type I error in 10 000 botstrap 

samples according to the frequency of the SNP tested with Compound Poisson-Gamma and 

Negative Binomial models 

 

 

 

 

Supplementary Table S2: Evaluation of the control of the type I error in 10 000 botstrap 

samples when outliers are removed, according to the frequency of the SNP tested with 

Compound Poisson-Gamma and Negative Binomial models 

 

  
Compound Poisson-Gamma    Negative Binomial 

α MAF 1% MAF 5% MAF 10% MAF 20%   MAF 1% MAF 5% MAF 10% MAF 20% 
0.05 0.043 0.053 0.054 0.059   0.119 0.112 0.117 0.114 

0.01 0.007 0.010 0.013 0.013   0.039 0.036 0.038 0.038 
0.001 0.0004 0.0014 0.0017 0.0011   0.0099 0.0077 0.0084 0.0072 

  
Compound Poisson-Gamma    Negative Binomial 

α MAF 1% MAF 5% MAF 10% MAF 20%   MAF 1% MAF 5% MAF 10% MAF 20% 
0.05 0.053 0.054 0.053 0.052   0.059 0.048 0.046 0.043 

0.01 0.010 0.012 0.012 0.012   0.019 0.011 0.010 0.009 

0.001 0.0005 0.0007 0.0013 0.0017   0.0047 0.0008 0.0010 0.0014 
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