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 Abstract 

Background: Recent studies applying chaos theory methods have found the existence of 

chaotic markers in SARS-CoV-2’s epidemiological data, evidence that has implications 

on the prediction, modeling and epidemiological analysis of the SARS-CoV-2/COVID-

19 pandemic with implications for healthcare management. 

Aim and Methods: We study the aggregate data for the new cases per million and the 

new deaths per million from COVID-19 in Africa, Asia, Europe, North and South 

America and Oceania, applying chaos theory’s empirical methods including embedding 

dimension estimation, Lyapunov spectra estimation, spectral analysis and state-of-the-art 

topological data analysis methods combining persistent homology, recurrence analysis 

and machine learning with the aim of characterizing the nature of the dynamics and its 

predictability. 

Results: The results show that for all regions except Oceania there is evidence of low 

dimensional noisy chaotic attractors that are near the onset of chaos, with a recurrence 

structure that can be used by adaptive artificial intelligence solutions equipped with 

nearest neighbors’ machine learning modules to predict with a very high performance the 

future values of the two target series for each region. The persistent homology analysis 

uncovers a division into two groups, the first group comprised of Africa and Asia and the 

second of Europe, North and South America. For Oceania, we found evidence of the 

occurrence of a bifurcation which we characterize in detail applying a combination of 

machine learning and topological analysis methods, we find that the bifurcation in the 

region is related to the emergence of new variants.  

Keywords: SARS-CoV-2; Chaos Theory; Recurrence Analysis; Persistent Homology; 

Ordinal Partition Graphs; Machine Learning; Adaptive A.I.; Epidemiology.  
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1. Introduction 

A virus contagion dynamics among human populations depends upon biological factors 

such as, among others, the virus characteristics, including incubation period, first time for 

symptoms to appear, the type of symptoms, the number of asymptomatic cases, 

morbidity, mortality, the mutation rates for the emergence of new variants, as well as the 

infected population and transmission vectors, on the other hand, there are also other 

factors that include a country’s population’s behavior and the measures put in place for 

healthcare response, quarantine, treatment, drugs, vaccination policies and, even, 

healthcare communication and public education on the virus and healthcare risks 

associated with it.  

In this sense, since human societies respond to viruses and associated diseases 

with adaptive measures, there is a complex adaptive dynamics of human societies in 

response to virus contagion and outbreaks, response that, in turn, influences the viral 

propagation dynamics and the occurrence and pattern of outbreak waves, with possible 

complex attractors emerging from this dynamics. The nature and structure of these 

attractors may offer a basis for viral contagion and outbreak waves’ prediction and 

characterization using techniques coming from chaos theory, with possible value and 

insights for healthcare authorities, viral outbreak containment policies including possible 

quarantines, vaccination policies and healthcare resources planning. 

Recent research into the Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS-CoV-2) has uncovered evidence of low dimensional attractors and markers of 

chaos in the pandemics’ dynamics for different countries and regions [1-4]. Taking into 

account this evidence, in the current work, we apply chaos theory’s main empirical 

methods including both chaos metrics such as embedding dimension and Lyapunov 

spectra estimation along with spectral analysis and expand on these empirical methods 

by employing state-of-the-art topological data analysis methods including: recurrence 

analysis metrics, persistent homology analysis, predictability metrics from nearest 

neighbors machine learning algorithms incorporated into adaptive artificial intelligences 

(A.I.), k-nearest neighbors graph analyses and ordinal partition graph analyses. These 

analyses allow us to provide a detailed characterization of the SARS-CoV-2’s dynamics 

per region. In terms of major findings, we uncovered the following key findings: 
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• Africa, Asia, Europe, North and South America show strong evidence of 

an emergent low dimensional noisy chaotic attractor that is near the onset 

of chaos with a black power law noise-like spectrum (color chaos) and a 

strongly predictable dynamics with a recurrence structure that can be used 

by forward looking adaptive A.I. solutions that can be employed to predict 

the future viral outbreaks; 

• The topological data analysis techniques also uncover both common 

patterns to the regions as well as some level of diversity between regions, 

the persistent homology method, in particular, uncovers a division in two 

groups in terms of persistent of homology classes, the two groups are 

divided as follows: Africa and Asia on one group and Europe, North and 

South America on another group; 

• Oceania shows evidence of a bifurcation with an increase in 

epidemiological risk that we characterize using machine learning tools and 

k-nearest neighbors graph analysis along with ordinal partition graph 

analysis. 

The dataset that we use is the Our World in Data SARS-CoV-2 data, for the time 

period that goes from the earliest available data up to 2022-08-07, which was the last day 

available at the time of the analysis. The available dataset, thus covers the following 

periods for each region: 

• Africa: 2020-02-13 to 2022-08-07; 

• Asia: 2020-01-22 to 2022-08-07; 

• Europe: 2020-01-23 to 2022-08-07; 

• North America: 2020-01-22 to 2022-08-07; 

• South America: 2020-02-22 to 2022-08-07; 

• Oceania: 2020-01-25 to 2022-08-07. 

The advantage of a regional division, while providing aggregate data, is that it 

produces a pattern that captures the general dynamics in the corresponding region in terms 

of general outbreak dynamics, while compensating for specific countries’ undercounting 

of cases, a major problem in the case of SARS-CoV-2 which limits the country-by-

country analysis due to the need for test availability and the number of asymptomatic 

cases, a similar issue being raised for the number of deaths. In this way, the regional 
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analysis provides for a way to mitigate this and for a better capturing of the general 

pandemic dynamics. A second point is that, while dealing with a pandemic, regional 

analysis allows one to identify commonalities and differences that may characterize 

different regions and explain co-outbreaks, that is outbreaks that occur almost 

simultaneously in different countries belonging to the same region. 

The work is organized as follows:  

• In section 2, we review the main concepts and methods used in the current 

work. 

• In section 3, we apply the methods and tools reviewed in section 2 to the 

dataset. 

• In section 4, we provide for a conclusion and final reflections of the work’s 

implications for epidemiological research into the SARS-CoV2’s 

pandemic and healthcare policies. 

2. Main Concepts and Methods 

2.1. Deterministic and Stochastic Chaos 

Deterministic chaos can be defined as a bounded aperiodic dynamics with sensitive 

dependence upon initial conditions that exhibits a dynamical sequence that is random-

looking with spectral signatures that are akin to a stochastic process [5-9], in this sense, 

deterministic chaos is often considered as a form of endogenous (pseudo)random 

dynamics in a deterministic system without any noise term, this type of chaos is closed in 

the sense that there is no external environment leading to external random noise. 

In nature, especially when dealing with complex systems which are open and 

interact nonlinearly with an environment, we never have a fully closed deterministic 

process, noise is always present, this leads to stochastic chaos, which is an open chaos 

dynamics [7, 10, 11]. Within a purely mathematical setting, when it comes to random-

like signals, for the purpose of systematization, there are three major dynamical processes 

[7, 10-12]: deterministic chaos, stochastic processes without a nonlinear chaotic 

component and stochastic chaos, which involves characteristics of the first two. An 

example of the last type is a system of nonlinear dynamical equations (in discrete time or 

in continuous time) that have a noise coupling. 
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The main problem with stochastic chaos is that noise is integrated into the 

dynamics and contributes to it [7,11]. The range of such a dynamics is very wide, one can 

have noise-induced chaos, an example of which is the destruction of periodic windows 

through noise, in a nonlinear dynamical system [11]. One can also have high dimensional 

or low dimensional attractors depending on the relation between the “external” stochastic 

component (the noise) and the “internal” nonlinear dynamical component [11, 12]. 

The type of noise coupling as well as the nature of noise also matters. Indeed, 

while we can have, for instance, a system of deterministic nonlinear dynamical equations 

that lead to a power spectrum equivalent to a white noise spectrum, we can also have 

deterministic chaotic systems that produce complex fractal and even multifractal 

signatures with power law decay in the power spectrum [11], if a such a deterministic 

chaotic dynamical system is coupled with a fractal or multifractal noise process, then the 

final fractal or multifractal signatures result from a complex interaction between the 

nonlinear dynamics and the complex noise process. Likewise, while high frequency white 

noise processes may be present, a deterministic chaotic dynamics with a power law decay 

in the power spectrum, which corresponds to 1/fβ chaos when coupled to a white noise 

process can lead to a 1/fβ noise signature with a high frequency breakdown, we see 

examples of this in financial market modeling in [11] and it corresponds to the concept 

of power law chaos. 

Power law chaos, also called color chaos [11, 13], is relevant since it produces 

long range dependences, and, in the case of β > 2, it leads to the so-called black noise-

like spectra, which are persistent processes that characterize different natural disasters 

[14]. In the epidemiological context, a black (stochastic) chaos dynamics, that is, 

(stochastic) chaos that produces signals with black noise spectra leads to persistent 

processes that can be characterized by long periods of low cases and then persistent large 

outbreak waves. 

Empirically, stochastic chaos can be identified by the presence of positive 

maximum Lyapunov exponents in systems with dynamical noise, these signatures can 

show up either in the original signal or in a denoised signal. However, while the presence 

of these signatures in a noisy signal is indicative of a possible stochastic chaotic 

dynamical system, the absence of these signatures cannot also rule out the possibility of 

stochastic chaos. 
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This last issue is even more problematic for dimension estimations, indeed, we 

can have high dimensional chaos, a chaotic dynamics coupled to a high noise level, a 

coupling between a nonlinear dynamics and a complex stochastic process (for instance, 

fractal or multifractal noise), or even high dimensional chaos [11, 12]. By contrast, the 

emergence of a low dimensional attractor with positive maximum Lyapunov exponents 

in a noisy dynamics is indicative of a process of self-organization in a stochastic chaotic 

dynamics. In the empirical section we will find this to be the case for all regions except 

for Oceania, which exhibits a dynamical regime change corresponding to a bifurcation. 

In complex adaptive dynamics such as an epidemic or a pandemic where human 

communities respond adaptively, an emergent chaotic process always falls into a 

stochastic chaos framework. The emergence of a low dimensional attractor, however, 

even in the presence of dynamical noise, implies the possibility of employing phase space 

reconstruction methods to predict the future dynamics of the series, especially in the case 

of black (stochastic) chaos, which leads to persistence patterns with recurrence structures 

and topological signatures that can be exploited by adaptive A.I. systems, exploiting 

topological features of the attractor in order to predict the future dynamics of relevant 

epidemiological targets. 

In this case, the emergence of a low dimensional attractor, means that the interplay 

between the complex nonlinear dynamics has led to the emergence of a few robust small 

number of degrees of freedom that are supported by the system’s dynamics, and that may 

be linked to the adaptive dynamics themselves, leading to strong bottom-up and top-down 

connections [11, 12]. 

Thus, for instance, in the case of a virus spreading in a country, when the 

healthcare authorities calculate macroscopic variables, such as the number of new 

infected individuals, they can adjust their healthcare policies to these variables’ evolution, 

which leads to a change in that evolution itself, leading to a strong coevolutionary 

dynamics between human agents’ responses, viral evolution and the emergent patterns 

themselves, in this way the agents are adapting to the consequences of their own behavior, 

macroscopically monitored through statistics, and this adaptation in turn will change the 

outbreak dynamics. 

The emergence of low dimensional attractors, in these contexts, with convergent 

stable dimension estimates implies that a macro-level dynamics with a small number of 
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active degrees of freedom is being robustly sustained, which allows us to speak of a form 

of self-organization to a low dimensional stochastic/noisy chaotic attractor [12]. In a 

disease spread this is an important point, since it implies that a structural dynamics with 

a specific dimensionality (number of degrees of freedom) has emerged and is being 

sustained in the coevolutionary process. A type of dynamical profile that is researched 

upon, within the complexity sciences, by both synergetics and also in the networked chaos 

literature [11, 12]. 

We will see, in the case of the SARS-CoV-2, that, for the data sample available at 

the time of the analysis, all regions, except Oceania, are characterized by such low 

dimensional attractors’ emergence, however, the profile is not homogeneous with 

differences between regions as well as spectral and topological commonalities that may 

be linked to the virus characteristics. We also find evidence that is favorable to the 

attractors being close to a bifurcation point that corresponds to the onset of chaos, which 

opens up the possibility of occurrence of bifurcations, especially linked to new variants, 

in the case of Oceania we indeed find evidence of the occurrence of one such bifurcation, 

which leads to the need to employ topological analysis methods in conjunction with 

machine learning in order to be effectively addressed. 

2.2. Main Methods 

Phase Space Embedding 

Phase space embedding is a method that can be used to uncover and reconstruct an 

attractor for a system’s dynamics from a time series. The main assumption is that the 

system’s dynamics may be described by an attractor in a 𝑑𝐸 dimensional phase space, 

with 𝑑𝐸 corresponding to the number of degrees of freedom. When dealing with complex 

adaptive systems, these dimensions correspond to emergent degrees of freedom resulting 

from coevolutionary dynamics leading to a geometrical structure that can be described by 

an attractor in a 𝑑𝐸 dimensional phase space, the resulting attractor, which may contain a 

deterministic nonlinear component and dynamical noise, will depend upon the system in 

question [11, 12]. 

In general, the emergent attractor and corresponding phase space dimensionality 

are unknown, with researchers only having available a sample time series 𝑥𝑡 which results 

from 𝑇 sequential observations/measurements of the system in question, in this case, 

measurement noise and possible dynamical noise may be jointly present [12], however, 
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assuming that there is an attractor in a 𝑑𝐸 dimensional Euclidean phase space, the time 

series can be formally expressed as an observation function 𝑥𝑡  =  𝑔(𝐲𝑡) where 𝐲𝑡 is a 

point in the 𝑑𝐸 dimensional Euclidean phase space. If 𝐲𝑡 is in an attractor, which is a 

dynamical invariant, then, we know that the sequence 𝐲𝑡 is a trajectory in the attractor, 

and 𝑥𝑡 results from that trajectory [15]. 

If the equations of motion for 𝐲𝑡 are known along with 𝑔, then a prediction of 𝑥(𝑡) 

can be built by applying these equations, and the dynamical properties can also be 

addressed from the study of these equations and simulations of the system’s dynamics. 

However, when neither 𝐲(𝑡) nor 𝑔 are known this is no longer possible, in this case, delay 

embedding is a phase space reconstruction method working from the signal 𝑥(𝑡) that is 

able to recover the main properties of the attractor, the method is based on Takens’ 

theorem [8, 15], using an appropriate time delay  and embedding dimension 𝑑𝐸 in 

Euclidean space, we can build the 𝑑𝐸 dimensional tuples: 

𝐱𝑡  = (𝑥𝑡 – (𝑑𝐸 – 1)𝜏, … , 𝑥𝑡 – 2𝜏, 𝑥𝑡−𝜏, 𝑥𝑡) (1) 

The resulting trajectory of the phase point 𝐱𝑡 can recover, under certain 

conditions, the dynamics of the underlying unknown attractor [15]. The embedded 

trajectory can thus be used to study the main properties of the unknown attractor and as a 

feature space for time series’ prediction using machine learning techniques [8]. 

Methods for setting embedding parameters are aimed at obtaining an attractor 

reconstruction that captures the main properties of an underlying attractor, which means, 

in this case, having to choose values for the parameters 𝑑𝐸 and . 

The delay choice should be linked to the memory and characteristics of the 

dynamics. In epidemiological contexts, the choice of the delay should be defined in terms 

of the incubation period and quarantine window, setting the period to the first day after a 

recommended quarantine period allows for the embedding to account for quarantine 

effects. 

In this case, we use, for , a 15 day period, the 15 day lag is the number of days 

between the start and the end of the recommended 14 day quarantine period. Indeed, the 

World Health Organization’s (WHO) recommended a 14 day quarantine period from a 

person’s last exposure, which leads to 15 days between the last exposure and an exit from 

quarantine [16]. While there were differences in the implementation of the quarantine 
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period [17], the WHO recommended period became a policy standard and can be used as 

a baseline for delay setting, in this way, we are accounting in our delay choice for the 

quarantine effects, in an exploratory study we also found better results by working with 

the 15 period delay. 

To choose the optimal embedding dimension, we use the lowest value for the false 

nearest neighbors [3, 18, 19]. The concept of false nearest neighbors is about topology 

and dimensionality, if the embedding dimension is too low with respect to the attractor’s 

dimensionality, then, one is obtaining a lower dimensional projection of a higher 

dimensional geometrical structure, in this case, points that are not neighbors will be 

projected onto a close neighborhood in the lower dimensional embedding, which will lead 

to problems, especially when dealing with topological data analysis, one of these 

problems is that what may seem to be noise-like signatures are associated not with noise 

but with the attempt to embed a higher dimensional object in a lower dimensional space. 

When rising the number of phase space dimensions used in the phase space 

embedding, there is a reduction of false nearest neighbors, that is, phase points projected 

onto a close neighborhood of each other but that in a higher dimensional space embedding 

are found not to be neighbors at all, in this way, the number of false nearest neighbors 

tends to reduce as the number of embedding dimensions are risen, in a fully deterministic 

attractor, the false nearest neighbors will become zero when the dimension achieves the 

right number of dimensions needed to embed the attractor. When there is noise present, 

this percentage will not become zero but may be low, depending upon the strength of the 

deterministic component versus the noise level. In this way, the method is able to 

distinguish between low and high dimensional attractors and fully deterministic from 

stochastic dynamics. 

In the case of a bifurcation, which happens for the Oceania’s series, we cannot, 

however, employ the false nearest neighbors method, because we are not dealing with a 

stable attractor, in this case, we need to employ a different methodology which will use 

machine learning and the topological data analysis methods addressed further on, this 

methodology is presented and discussed in section 3 when we address the Oceania’s case. 

Lyapunov Exponents Estimation 

A positive largest Lyapunov exponent, is an indicator of sensitive dependence on initial 

conditions and a marker of chaos. In the present work, we use Eckmann and et al.’s 
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method for Lyapunov spectrum estimation [20], which estimates the spectrum of 

Lyapunov exponents for a multidimensional attractor. For the complete and detailed 

description of the algorithm we refer to the original reference [20].  

The method allows one to set a matrix dimension 𝑑𝑀 and study the behavior of 

the exponents for increasing embedding dimensions 𝑑𝐸 ≥ 𝑑𝑀, we can set the dimension 

𝑑𝑀 equal to our “suspected” dimensionality of the attractor. An advantage of Eckman et 

al.’s method is that it is able to extract a Lyapunov spectrum for the set matrix dimension, 

with one exponent for each dimension, the identification of positive exponents is evidence 

favorable to chaos. In this case, if we find a convergence of the Lyapunov spectrum as 

the embedding dimension increases and some of the exponents converge to positive 

values, then, this is evidence favorable to chaos [20]. 

Topological Data Analysis Methods 

Topological data analysis methods are perhaps the most sophisticated and robust methods 

in nonlinear time series analysis, especially for short time series. These methods allow 

one to better characterize the dynamics and distinguish between periodic, quasiperiodic, 

chaotic and random dynamics as well as address bifurcations. 

The main structure is the distance matrix S obtained for an embedding with entries 

given by the distance between any two points of an embedded trajectory in a 𝑑𝐸 

dimensional Euclidean space. This matrix has entries given by: 

𝑆𝑡,𝑠 = ‖𝐱𝑡 − 𝐱𝑠‖ (2) 

Different distance metrics can be used, the most common being the Euclidean 

metric [8, 21], which takes advantage of the Euclidean metric space topology and has 

some advantages for the methods we will implement here. The matrix S provides for 

information on the recurrence structure of the dynamics, becoming a relevant source of 

topological information on the attractor’s structure. Taking advantage of the Euclidean 

metric topology of the embedded trajectory, the distance matrix can be used to produce a 

neighborhood radius-dependent binary recurrence matrix, this is the ε-recurrence matrix 

𝐵𝜀 with entries: 

𝐵𝑡,𝑠
𝜀 = {

0, ‖𝐱𝑡 − 𝐱𝑠‖ > 𝜀

1, ‖𝐱𝑡 − 𝐱𝑠‖ ≤ 𝜀
 

(3) 
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This is a square symmetric matrix that registers the value 1 when two phase points 

do not differ by more than ε, and 0 otherwise. The use of the closed neighborhood 

structure, in the recurrence analysis, has the advantage of allowing us to identify fully 

periodic dynamics so that, in the case of a periodic dynamics, if the radius is equal to 

zero, all diagonals parallel to the main diagonal that differ from each other by the period 

in question will have the value of 1 in each matrix entry, otherwise the value will be 0 

[21]. In the nonperiodic case, we never get these evenly spaced full diagonals of radius 

of 0.  

We will perform several analyses on the distance matrix, the first is the calculation 

of two metrics [21]: the recurrence strength and the conditional 100% recurrence 

probability.  The recurrence strength is the sum of the number of points that fall within a 

distance no greater than the radius, in each diagonal below the main diagonal, divided by 

the total number of diagonals below the main diagonal with recurrence, this measure 

evaluates how strong on average the recurrence is. The conditional 100% recurrence 

probability is the probability that a randomly chosen diagonal line with recurrence has 

100% recurrence, for the radius chosen. If all lines with recurrence had 100% recurrence, 

for the radius chosen, then this number would be equal to 1, the lower this metric is, that 

is, the closer to zero it is, the more interrupted the diagonals are, which occurs for 

stochastic systems and also for deterministic chaotic dynamics [21]. 

Chaotic dynamics, depending upon the strength of the exponential divergence 

characterized by the largest Lyapunov exponent and the dimensionality of the attractor, 

usually displays a higher recurrence strength and, with rising radius, it can, in general, 

exhibit a higher conditional 100% recurrence probability than stochastic processes. We 

calculate the above two metrics for different radii in order to characterize the topological 

properties of the attractor in terms of neighborhood structure, using radii that are multiples 

of the series’ standard deviation. 

The second type of analysis that we perform is based on persistent homology. In 

this case, the distance matrix S for the phase space reconstructed trajectory sets up a 

family of transition matrices corresponding to the ε recurrence matrices 𝐵𝜀, the resulting 

transition graphs are, thus, based on the topology induced by the Euclidean metric (if the 

Euclidean metric is used to construct the distance matrix S). Now, relevant topological 

structures can be extracted by working with the distance matrix to build a parametrized 
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family of simplicial complexes 𝐶𝜀 obtained from the sequence of ε recurrence matrices 

𝐵𝜀, with 𝜀 ≥ 0, with an edge connecting two vertices, corresponding to phase points 𝐱𝑡 

and 𝐱𝑠, being included when 𝐵𝑡,𝑠
𝜀 = 1, therefore, at any given radius, different phase 

points at different times (even distant times) may be close in value, that is,  they may be 

neighbors in the attractor, and, thus, linked by an edge in the simplicial complex. For 

increasing radii 𝜀′ ≥ 𝜀 the parametrized family leads to a Vietoris-Rips filtration: 𝐶𝜀 ⊆

𝐶𝜀′ ⊆ ⋯ [22, 23].  

Persistent homology, as a topological data analysis tool, when calculated on a 

reconstructed attractor’s full distance matrix S, which includes all the Euclidean distances 

between the points, allows one to find relevant topological features in the reconstructed 

attractor and analyze how the homology changes over the filtration. Homology theory is 

a branch of algebraic topology that studies the connectivity properties of topological 

spaces [23]. In a simplicial complex, we can look at different homology dimensions and 

corresponding homology class, a 0 homology class (H0) corresponds to components 

connected by a path (which leads to a zero dimensional boundary), a 1 homology class 

(H1) corresponds to a loop, voids which are simplexes with faces but no interior 

correspond to a 2 homology class (H2), and so on [23]. 

Persistent homology can be used to count the number of structures in each 

simplicial complex in the filtration for each homology dimension, including the birth and 

death of homology classes as the radius is increased. The homology classes’ birth and 

death can be calculated in the following way, given a filtration of simplicial complexes 

𝐶𝜀1
⊆ 𝐶𝜀2

⊆ ⋯, we get a sequence of maps for the homology dimension s, 𝐻𝑠(𝐶𝜀1
) →

𝐻𝑠(𝐶𝜀2
) → ⋯, a homology class is born at n if it is in 𝐻𝑠(𝐶𝜀𝑛

) but not in the image of the 

map 𝐻𝑠(𝐶𝜀𝑛−1
) → 𝐻𝑠(𝐶𝜀𝑛

) and dies at m if it is in 𝐻𝑠(𝐶𝜀𝑚
) but not in 𝐻𝑠(𝐶𝜀𝑚+1

) [23]. 

Persistent structures have “long lives” in the filtration and correspond to large 

scale structures in an attractor, structures with lower persistence usually appear in noisy 

and chaotic systems. A persistence diagram D can be calculated for different homology 

dimensions with each point for each dimension giving the lifetime for a structure, in this 

case, we define 𝐷𝑠 as the persistence sub-diagram for the homology dimension s, each 

point in the sub-diagram corresponds to an ordered pair of birth and death times in the 

filtration. 
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The lifetime or persistence of a class at dimension s corresponds to the difference 

between the death and birth times, thus, given a dimension s and the ordered pairs 

(𝑛𝐵, 𝑛𝐷) ∈ 𝐷𝑠, where 𝑛𝐵 is the “filtration birth time” and 𝑛𝐷 is the “filtration death time”, 

with the death happening after birth, we can calculate the persistence as  

𝑝𝑒𝑟𝑠(𝑝) = 𝑛𝐷 − 𝑛𝐵 (4) 

Structures that live through the full filtration have 𝑛𝐷 = ∞ and, therefore, 

𝑝𝑒𝑟𝑠(𝑝) = ∞. Now, to better characterize the attractor’s topology we calculate the 

following metrics for each homology dimension (that is, for each sub-diagram 𝐷𝑠):  

• The number of classes with 𝑝𝑒𝑟𝑠(𝑝) < ∞: this metric allows us to identify which 

dimension is predominant in terms of number of homology classes with lifetimes 

shorter than ∞; 

• The number of classes with 𝑝𝑒𝑟𝑠(𝑝) = ∞: this metric allows us to identify the 

homology dimensions that have structures that persist throughout the whole 

filtration, constituting large scale structures; 

• The maximum persistence: this metric allows us to characterize each homology 

dimension in terms of the maximum persistence, which allows us to characterize 

which dimensions have the most persistent structures; 

• The mean persistence: this metric allows us to characterize each homology 

dimension in terms of its mean persistence. 

With these metrics calculated for the different sub-diagrams we get a picture of 

the attractor’s structure at multiple dimensions and the dominant features. 

Now, as another topological data analysis method, in order to evaluate the degree 

to which the recurrence structure in the Euclidean distance matrix S supports a prediction 

of future values of the target series, we can use a nearest neighbor machine learning 

method to build an adaptive A.I. system to predict the series k steps ahead using the 

Euclidean radius to predict the next step, this is nearest neighbors-based regression that 

uses a radius to predict the next steps in a series.  

In the current work, we use Python’s machine learning module scikit-learn’s 

radius neighbors regressor for this task. We stress that the main objective of this 

application is not to test different machine learning methods in the prediction of the new 

cases per million and the new deaths per million series, but, instead, our aim is to evaluate 
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the degree to which topological information associated with the Euclidean recurrence 

structure contained in the matrix S can be used to predict the target epidemiological series, 

this explains the choice of machine learning architecture which must be one that uses the 

Euclidean radius to predict the target series, therefore, the employment of the machine 

learning here is as an added topological data analysis method.  

Given a phase space embedding, we can apply a radius neighbors-based regression 

using the embedding of a past trajectory as a dynamical feature space, and perform the 

regression over a learning sliding window of a reconstructed orbit  {𝐱𝑡−𝑤, … , 𝐱𝑡−1} and 

the sequence of observed signals {𝑥𝑡−𝑤+𝑘 , … , 𝑥𝑡+𝑘}, for 𝑘 = 1,2, …, used as training data 

so that the A.I. learns window-dependent prediction function: 

𝑓(𝐱𝑡) = 𝑥𝑡+𝑘 (5) 

We can then use the learned function to predict the target series k steps ahead by 

applying the function 𝑓(𝐱𝑡), the sliding window is then moved one step to the right and 

the learning algorithm is run again. This is a basic prospective prediction algorithm where 

the A.I. system behaves as an adaptive agent that relearns the patterns and adapts to 

changes in the series, adapting to the recurrence structure. Sliding window prospective 

models have been successfully applied in epidemiological prediction, a noticeable model 

was the testing of a sliding window prospective prediction model used to predict the 

H5N1 dynamics by Kane et al. [24]. 

This adaptive agent prospective method is more effective than the fixed training 

data method for small datasets and for dealing with complex systems’ dynamics that 

exhibit bifurcations, attractors that have long periods, attractors with changing recurrence 

epochs, including alternation between laminar periods and turbulent periods, as well as 

regime switching. In this way, the adaptive agent approach allows the agent to capture 

epoch-specific recurrences in sliding windows (sliding recurrence epochs) and also adapt 

to changing dynamical patterns. 

Again, since our goal is to evaluate the degree to which the recurrence structure 

in the attractor contains information on the future dynamics, which is a hallmark of the 

presence of a deterministic structure [8], we quantify the prospective adaptive agent’s 

performance using as main metrics the coefficient of determination, explained variance, 

root mean squared error divided by the data amplitude and the linear correlation between 
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the observed and predicted values, in order to evaluate the degree to which the recurrence 

structure contains information on the future series’ dynamics. 

Now, besides the distance matrix S, there are two other structures for topological 

analysis that can be calculated from the reconstructed attractor, the first is the k-nearest 

neighbors graph N, the second is a symbolic dynamics tool called the ordinal partition 

graph O [23] which is also used to calculate the permutation entropy [23, 25]. 

In the first case, we have an undirected graph with the vertices corresponding to 

each phase point and the edges corresponding to the k nearest neighbors [23]. To select 

the number of k neighbors to analyze, we use another machine learning method to build 

an adaptive agent, with a similar approach as described above, but instead of a radius 

learner we use a k-nearest neighbors’ learner for a single step prediction, by evaluating 

its performance on different k values we choose the value of k that leads to the highest 

predictability, since that is the value which contains the highest information for predicting 

the target series. In this case, we choose the value of k that leads to the highest coefficient 

of determination and then analyze the resulting k-nearest neighbors’ graph, calculating 

the degree entropy and the Kolmogorov-Sinai (K-S) entropy for the graph [26]. 

Given a general graph G comprised of n nodes and the degree associated with 

each node, we can extract a frequency distribution over the set of different degree values 

𝑆, leading to the relative frequencies 𝑝𝑠 associated with each degree value 𝑠 ∈ 𝑆, from 

this distribution we can calculate the degree entropy as: 

𝐻𝑑𝑒𝑔(𝐺) = − ∑ 𝑝𝑠 log2 𝑝𝑠

#𝑆

𝑠=1

 

(6) 

In the special case of a graph where the relative frequencies associated with each 

degree coincide 𝑝𝑖 = 1/#𝑆, we get the maximum entropy, with 𝐻(𝐺) = log2 #𝑆, in the 

case of a graph where each node has the same degree we get 𝐻(𝐺) = 0. To obtain a value 

between 0 and 1 we can work with the relative entropy: 

𝐻𝑑𝑒𝑔
′ (𝐺) =

𝐻𝑑𝑒𝑔(𝐺)

log2 #𝑆
 

(7) 

The closer to 1 this last degree entropy measure is, the closer the graph is to a 

maximum degree entropy. From now on, when we refer to the degree entropy, we mean 

this last definition. 
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The K-S entropy provides, on the other hand, for an important synthesis for a 

dynamical system, since it is an information measure on the sequence of nodes for a 

Markov process on a network, in this case, for the k nearest neighbors graph it provides 

an information measure for a Markov process with a transition matrix extracted from the 

graph, likewise, for the ordinal partition graph it provides for an information measure on 

a Markov process with a transition matrix extracted from the transition graph between the 

different permutations. For an unweighted graph, which is our case, this entropy coincides 

with the logarithm of the dominant eigenvalue of the transition matrix 𝜇+, expressing it 

in bits leads to the following information measure [26]: 

𝐻𝐾𝑆(𝐺) = log2 𝜇+ (8) 

Now, besides the k-nearest neighbors graph, there is a final topological analysis 

method that is relevant, which is the, already mentioned, ordinal partition graph which is 

built from the permutations Π𝑑𝐸
= {𝜋𝑖: 𝑖 = 1,2, … , 𝑑𝐸!} of the dimensions’ set 

{1,2, … , 𝑑𝐸}, in this case, a permutation map 𝑓𝑝𝑒𝑟: ℝ𝑑𝐸 → Π𝑑𝐸
 is defined such that 

𝑓𝑝𝑒𝑟(𝑥1, 𝑥2, … , 𝑥𝑑𝐸
) = 𝜋𝑖 with 𝜋𝑖 satisfying the condition that 𝑥𝜋𝑖(1) ≤ 𝑥𝜋𝑖(2) ≤ ⋯ ≤

𝑥𝜋𝑖(𝑑𝐸), that is, the permutation produces a nondecreasing reordering of the values in the 

𝑑𝐸 tuple of real numbers, now, evaluating the permutation map for each phase point 𝐱𝑡, 

we get a sequence of permutations 𝑓𝑝𝑒𝑟(𝐱𝑡), from this sequence we can build the ordinal 

partition graph O, where two permutations are linked if there is a transition between them. 

The permutation entropy can be calculated from the probability distribution over 

the permutations in the ordinal partition graph O [23,25]: 

𝐻(𝑑) = − ∑ 𝑝(𝜋𝑖) log2(𝜋𝑖)

𝑑!

𝑖=1

 

(9) 

For the ordinal partition graph O, we also calculate here the degree entropy and 

the K-S entropy. 

3. Results 

3.1. Analysis of Series with Attractors 

The analysis we perform, as discussed in the introduction, is focused on the regional 

division in terms of Continents with an additional subdivision between North and South 

America. It turns out that a regional division, while providing aggregate data, produces a 

pattern that captures the general dynamics in the corresponding region in terms of general 
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outbreak dynamics while compensating for specific countries’ undercounting of cases, a 

major problem for SARS-CoV-2, which limits the country-by-country analysis, and may 

be linked to test availability and the number of asymptomatic cases. 

In an exploratory study, we found dynamical markers of undercounting, especially 

in Africa in both new cases and, in particular, in new deaths, leading some countries to 

exhibit a series with long zero new identified cases, and zero new deaths interrupted by a 

few jumps as well as ‘patchy’ series, while the overall aggregate pattern by region agrees 

for those countries that were able to implement a higher testing and were able to monitor 

the virus more closely. In this way, we work with the aggregate pattern by region, with 

similar methodology being possible to implement in those countries where the testing 

frequency allows for sufficient fluctuations to apply the analysis, providing for a basis for 

comparison between regions that otherwise would not be possible. 

In figure 1, we show the time series plots for the number of new cases per million 

for each region, obtained from the Our World in Data website. As can be seen from the 

plots, Africa stands out with a fast pattern of large successive waves this is the multiple 

wave pattern, while Asia, Europe, North and South America have a series of waves and 

then a few very large waves, this corresponds to a rogue wave-like pattern, where we 

have a series of smaller waves and then we get a very large wave, in Oceania, on the other 

hand, we have a dynamical regime change, there is a region with smaller fluctuations and 

then a rogue wave formed, after which the pattern becomes more turbulent with a higher 

number of new cases per million.  

 

Figure 1: Number of new cases per million for each region in the database from the first observation to 

2022-08-07. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.16.22280044doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.16.22280044
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 2: Number of new deaths per million for each region in the database from the first observation to 

2022-08-07. 

The dynamical regime change in Oceania can also be seen in the new deaths per 

million plot, with a rise in turbulence and deaths after the regime change. This means that 

Oceania will require a different analysis process that will rely on the characterization of 

the regime change and a research into that change. 

For the remaining five regions, which do not exhibit evidence of a dynamical 

regime change, we find evidence of a low dimensional chaotic attractor in both the 

number of new cases per million and the number of new deaths per million, as shown in 

tables 1 and 2. For the new cases per million series, the number of degrees of freedom for 

the emergent attractor is three with an associated small but non-null percentage of false 

nearest neighbors, this may be indicative of the presence of noise and consistent with a 

stochastic chaos process, the largest Lyapunov exponent, in each case, is positive and 

near 0.002. 

Table 1: Main chaotic time series metrics for the five regions and new cases per million. 

 Embedding 

Dimension 

% FNN 𝑳𝟏 

Africa 3 6.364749 0.002112 

Asia 3 4.423749 0.002160 

Europe 3 6.162791 0.002674 

North America 3 8.591885 0.002600 

South America 3 5.816832 0.001877 

 

For the new deaths per million, we also have evidence favorable to a low 

dimensional chaotic attractor for each of the five regions, however, the embedding 

dimensions differ between regions, indeed, while Asia is still characterized by a three-
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dimensional embedding, Europe and South America lead to a four-dimensional 

embedding, while for Africa and North America we get a five dimensional embedding. 

The percentage of false nearest neighbors in each case is very small, below 1%, with the 

exception of Asia which has an around 3.7% value and South America which has an 

around 1.5% value. Noticeably, Africa has a 0% estimate of false nearest neighbors. 

These results point to a lower noise level in the reconstructed attractors, when compared 

to the new cases per million, despite, in general, the higher dimensionality of the resulting 

attractors as estimated by the lowest percentage of false nearest neighbors. The largest 

Lyapunov exponents are all positive but smaller than those of the new cases per million. 

Table 2: Main chaotic time series metrics for the five regions and new deaths per million. 

 Embedding 

Dimension 

% FNN 𝑳𝟏 

Africa 5 0.0 0.001575 

Asia 3 3.716609 0.001939 

Europe 4 0.704225 0.001490 

North America 5 0.245098 0.001214 

South America 4 1.472393 0.001314 

 

The Lyapunov spectrum, as shown in figure 3, exhibits a good convergence with 

a dominant positive exponent in each region. In the new cases per million series, the 

Lyapunov spectrum converges to a positive exponent and two negative exponents, 

leading to a negative sum in the spectrum, which is consistent with dissipative chaos and 

the existence of an attractor in phase space in the number of new cases per million (figure 

3 (left)). 

In the case of the number of new deaths per million’s Lyapunov spectra (figure 3 

(right)), for Africa there is only one positive exponent, with the second largest exponent 

converging to a negative value but very near zero, a similar profile is obtained for Europe, 

Asia and South America, in the North America case, the second exponent converges to a 

positive value, however, it is also very near zero (0.000333). In each case the spectrum 

sum is negative which is, again, consistent with dissipative chaos and a chaotic attractor. 
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Figure 3: Lyapunov spectrum for the different regions’ embedded number of new cases per million series 

(left) and the number of new deaths per million (right), using matrix dimension equal to the dimension 

estimated by the false nearest neighbors with the spectrum calculated for increasing embeddings. 

Applying spectral analysis to each series and region we find evidence of a black 

power law noise-like spectrum, in the majority of regions, in figure 4 we show the power 

spectra for Africa in log-log scale with the estimated slope. 

 

Figure 4: Power spectrum for Africa plotted in log-log scale with fitted line in the power law 

decaying region for the new cases per million series (left) and the new deaths per million series 

(right). 

The estimated slope for the new cases per million in the power law decay region 

is -2.820713, with an associated R2 of 0.689679 and a p-value of 2.454008e-15, this 

means that we have 1/fβ spectrum with β approximately equal to 2.820713 > 2, which 
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corresponds to a black power law noise-like spectrum. At the high frequency region we 

get a white noise spectrum with the exception of a rise in the spectrum and a peak that is 

consistent with a periodicity present at the high frequency region. 

The estimated slope for the new deaths per million in the power law decay region 

is -2.953122, with an associated R2 of 0.674452 and a p-value of 2.731255e-12, again we 

have a black noise-like spectrum. Contrasting with the new cases per million, the new 

deaths per million, while exhibiting a similar peak at the high frequency region, also show 

a wider white noise region than the new cases per million. 

The black noise power law decay implies a strong persistence which is linked to 

long memory and the formation of persistent large outbreak waves visible in both the 

number of new cases and deaths. Since the evidence is favorable to a low dimensional 

noisy chaotic dynamics, the black noise-like spectrum may be linked to the chaotic 

dynamics itself, in this case, to a form of color chaos [11, 13] that can be called black 

chaos since it has a black (power law) noise-like spectrum. Power law chaos occurs for 

attractors such as the Lorenz attractor as well as for nonlinear chaotic maps and 

characterizes the color chaos dynamics [11,13], with black chaos being a form of color 

chaos that exhibits a black noise-like spectrum. 

The peak at the high frequency region may have different possible explanations, 

one possible explanation would be an artifact produced by a testing periodicity, but this 

hypothesis is not supported by the evidence given that we have a similar peak in the new 

deaths per million. 

Considering the evidence, we have a low dimensional chaotic attractor for both 

series (new cases and deaths) comprised of a long-range dynamics, which is supported 

by the low false nearest neighbors’ values leading to a low embedding dimension, a 

positive albeit small largest Lyapunov exponent, and a black noise-like spectrum 

associated with the large outbreak waves and strong persistence that allows us to classify 

the dynamics as black chaos. 

Now, the white noise spectrum at the high frequency region, after the power law 

decay, is either a feature of the attractor or a possible feature of the interplay between the 

black chaos and a white dynamical noise with a high frequency dominance, in which case, 

the peak may be a high frequency marker coming from the long memory chaotic process 

with power law spectrum (color chaos) leaving a dynamical marker in the form of a signal 
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with a periodicity at the high frequency region, a signal that results from the interplay 

between the white dynamical noise and the underlying chaotic dynamics, this peak 

occurring thus as a form of noise-induced order in what is an underlying stochastic chaos 

dynamics. 

Another possible explanation for the peak is that the chaotic attractor is close to a 

bifurcation point between a periodic orbit and a chaotic orbit. This possible explanation 

is supported by one piece of evidence, specifically, the low value of the largest Lyapunov 

exponents, which coupled with these spectral signatures support the possibility of the 

dynamics being near a bifurcation point corresponding to the onset of chaos, being close 

to a cycle, that is, the dynamics may be close to a bifurcation point between a periodic 

window and a chaotic dynamics, such peaks in the power spectra can indeed happen for 

chaotic dynamics close to the onset of chaos. Such a proximity is a hypothesis that fits 

the data well, furthermore, in stochastic chaos, the stochastic component may induce a 

transition from what would be a periodic orbit to a chaotic orbit, in such a way that we 

have a form of noise-induced chaos but with the resulting dynamics being close to the 

onset of chaos.  

In chaos theory, the onset of chaos, as stated, corresponds to a bifurcation point 

where there is a transition from a periodic or quasiperiodic dynamics to a chaotic 

dynamics, near the onset of chaos we can find dynamics that, while being characterized 

by chaotic attractors, intermix long range periodic or quasiperiodic signatures in the 

recurrence structure for a sufficiently high value of the radius, this is so because near the 

bifurcation point, the chaotic dynamics has a low Lyapunov exponent and can exhibit 

recurrences associated with close proximity to periodic or even quasiperiodic orbits, 

especially if the dynamics is very close to the onset of chaos which is usually preceded 

by a regular structure such as, for instance, a periodic window. 

Chaotic attractors near the onset of chaos tend to have low values for the 

maximum Lyapunov exponents and may recurrently visit a cycle or quasiperiodic orbit 

which becomes like a “ghost trail”, this sometimes shows up in the recurrence analysis in 

the form of long evenly (periodic) or unevenly spaced diagonals with 100% recurrence 

that only show up for a sufficiently high radius, diagonals that are intermixed with broken 

diagonals and isolated points which are characteristic of chaotic dynamics [21]. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.16.22280044doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.16.22280044
http://creativecommons.org/licenses/by-nd/4.0/


Considering, now, the case of Asia, in figure 5 is shown the power spectrum for 

the number of new cases per million and for the number of new deaths per million. We 

find again evidence of power law scaling with 1/fβ noise signatures with β > 2, again 

favorable to the black chaos hypothesis. For the new cases per million, this power law 

scaling is dominant with the breakdown to a white noise spectrum being highly reduced 

and confined to the high frequency region, also we still get a peak indicating a close 

proximity to a cycle. 

 

Figure 5: Power spectrum for Asia plotted in log-log scale with fitted line in the power law 

decaying region for the new cases per million series (left) and the new deaths per million series 

(right). 

The estimated exponent for the new cases per million is not as high as that of 

Africa, being closer to 2, which also means that the dynamics is slightly less persistent 

for Asia than for Africa, indeed, the estimated exponent is 2.209483 (obtained from the 

estimated slope in the log-log plot), with an R2 of 0.850672 and a p-value of 1.265705e-

25. 

The new deaths per million series also shows a power law scaling, however the 

scaling corresponds to a much lower part of the spectrum, with the dominant frequency 

range being characterized by a white noise spectrum, which is consistent with the 

possibility that we are dealing with stochastic chaos where the dynamical noise process 

is characterized by high frequency white noise, a point already raised for Africa. The 

estimated exponent for the power law section is 3.058617, with an associated R2 of 

0.600340 and a p-value of 5.009210e-07. 

In the Asian case, there is a greater difference between the new deaths per million 

series and the number of new cases per million series, indeed, while in Africa we get a 

similar power spectrum profile, for Asia the power spectrum profile differs significantly, 

which contrasts with the dimensionality change, indeed, in Africa we go from a three 
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dimensional to a five dimensional embedding, while in Asia the estimated dimensionality 

is the same. 

 

Figure 6: Power spectrum for Europe plotted in log-log scale with fitted line in the power law 

decaying region for the new cases per million series (left) and the new deaths per million (right). 

Considering now the case of Europe, as shown in figure 6, we find a power law 

scaling for both the number of new cases per million and the new deaths per million, with 

a similar overall profile in what regards both the scaling and the high frequency region. 

The power law scaling, in both cases is the dominant part of the spectrum and in both 

cases corresponds to a black noise-like spectrum. For the new cases per million the 

estimated exponent is 2.879192, with an R2 of 0.865065 and a p-value of 6.643054e-27, 

for the new deaths per million we get a similar power law decay of 2.812378, with an R2 

of 0.735955 and a p-value of 2.046621e-18, therefore, we have a similar decay profile. 

Furthermore, in the high frequency region, we do not have a white noise spectrum but 

rather two dominant peaks in the new cases per million and three peaks in the number of 

new deaths per million, which again points to the presence of strong periodicities at the 

high frequency level, both in the new cases per million and the new deaths per million. 

Given the above results, we are led to the same hypotheses as those raised for 

Africa, one being that the peaks indicate the occurrence of some form of noise-induced 

order in a chaotic dynamics, the second being that the dynamics is close to a bifurcation 

point with the periodic signatures arising from the close proximity to a periodic window, 

leaving a marker at the high frequency part of the spectrum. Given the low value of the 

largest Lyapunov exponent and the fact that spectral peaks linked to periodicities can 

happen for a chaotic dynamics near a periodic window (dynamics near the onset of chaos) 

the last hypothesis, again, fits well with the data. 

Considering, now, North and South America, we find different profiles than those 

obtained for the previous regions. In North America, the decay is faster than the power 
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law, the high frequency spectrum is also not white noise but has three peaks in both the 

new cases per million and the new deaths per million. In this way, we find that there is 

some persistence, in the low to mid frequency but it is not power law scaling, and at the 

high frequency we have the evidence of multiple periodicities. Again, this is characteristic 

of a chaotic dynamics near a bifurcation point, the presence of these peaks in both the 

new cases per million and the new deaths per million reinforces the hypothesis of a 

dynamics near the onset of chaos.  

 

Figure 7: Power spectrum for North America plotted in log-log scale for the new cases per million 

series (left) and the new deaths per million (right). 

As shown in figure 8, South America also has a fast decay for the new cases per 

million, but it has a power law decay in the deaths, the estimated exponent is 3.135302, 

with an R2 of 0.8566170 and a p-value of 2.492670e-13. Despite the different low 

frequency decay patterns, in the high frequency range we get two peaks, which is again 

consistent with the hypothesis of a close to the onset of chaos dynamics. 

 

Figure 8: Power spectrum for South America plotted in log-log scale with fitted line in the power 

law decaying region for the new cases per million series (left) and the new deaths per million 

(right) with the fitted line in the power law decaying region. 

Taking into account these results, we now turn to the topological analysis. In 

figure 9, we show the recurrence strength calculated for different radii with increasing 

radius in units of standard deviation (s.d.) for the number of new cases per million’s 

reconstructed attractors.  
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Fig 9: Average recurrence strength calculated for different radii with increasing radius, for the 

embedded series of the number of new cases per million with the radii taken in units of standard 

deviation. 

We find that, for the lower values of the radius, North America stands out with a 

higher recurrence strength which initially grows faster than the remaining regions with 

increasing radius, this means that there is a stronger recurrence visible in lower radius 

values. For radii between 1.5 and 4 s.d. North and South America are the predominant 

regions in terms of average recurrence strength, that is they have the highest proportion 

of recurrence points over the number of diagonals below the main diagonal. Africa, in 

turn, only surpasses these two regions for radii of 4.5 s.d. and 5 s.d., with Europe and 

Asia converging from below to the North and South America’s average recurrence 

strengths as the radius is increased, but Asia stands out as being predominantly below the 

other regions for the analyzed radii. 

 

Figure 10: Conditional 100% recurrence probability calculated for different radii with increasing 

radius, for the embedded series of the number of new cases per million with the radii taken in units 

of standard deviation. 

The conditional 100% recurrence probability also shows a similar pattern. Asia 

stands out as the region with both the lowest average recurrence strength and the lowest 
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probability of finding a 100% recurrence line in a random selection of lines with 

recurrence (figure 10). Contrastingly, North America dominates the intermediate radii, 

with Africa coming second up to the 3.5 s.d. radius, at a radius of 4 s.d., South America 

converges to North America’s pattern, and for radii of 4.5 s.d. and 5 s.d. Africa becomes 

dominant in terms of the probability of finding a 100% recurrence line conditional on the 

line containing recurrences points. 

North America seems to have the strongest recurrence for intermediate radii, 

which implies that it may have the attractor that is closest to the onset of chaos, with the 

clearest recurrence structure. This pattern, however, is not the same for the new deaths 

per million’s reconstructed attractors as shown in figures 11 and 12 for the recurrence 

strength and conditional recurrence probability. 

Indeed, for the new deaths per million, we find that North America has 

predominantly lower recurrence strength and lower probabilities of finding 100% 

recurrence lines in lines with recurrence, this means that while North America’s new 

cases per million seems to have the strongest recurrence visible in intermediate radii, for 

the new deaths per million, we find that, until the radius of 3 s.d., Asia’s attractor is the 

one with the highest average recurrence strength and North America the one with the 

lowest, as the radius is increased beyond 3.5 s.d., Europe converges with Asia, while 

North America converges with South America, with Africa’s attractor becoming the 

attractor with the lowest value of recurrence strength though also convergent from below 

to the North and South America’s average recurrence strengths. 

 

Figure 11: Average recurrence strength calculated for different radii with increasing radius, for 

the embedded series of the number of new deaths per million with the radii taken in units of 

standard deviation. 
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Figure 12: Conditional 100% recurrence probability calculated for different radii with increasing 

radius, for the embedded series of the number of new deaths per million with the radii taken in 

units of standard deviation. 

As for the probability of finding a line with 100% recurrence, conditional on the 

line being a line with recurrence, South America’s recurrence rises faster than the 

remaining regions, becoming the predominant line, which means that South America has 

a more regular structure when the radius is increased when it comes to deaths, followed 

by Asia, Europe, Africa and, finally, North America.  

Considering, now, the homology classes analysis of the Vietoris–Rips filtration 

from the distance matrix S, we find that, in each region, the dominant dimension in terms 

of number classes is H0, which corresponds to connected components, followed by H1, 

which corresponds to loops and, finally, H2, which corresponds to voids (table 3). For the 

homology dimensions 1 and 2 we find that North America is the region with the highest 

number of classes, for the new cases per million. 

Table 3: Number of persistence classes for the five regions and homology dimensions 0 to 2. 

Regions New Cases New Deaths 

H0 H1 H2 H0 H1 H2 

Africa 877 316 33 847 479 131 

Asia 899 257 26 899 274 37 

Europe 898 315 32 883 409 71 

North America 899 337 44 869 458 164 

South America 868 308 33 853 411 81 

 

Indeed, for the number of new cases per million and the homology dimension 0, 

North America has the same number of classes as Asia (899), however, for the homology 

dimension 1, we find that North America has 337 classes while Asia only has 257 (which 

is the region with the lowest number of classes H1), a similar pattern is found for the 

homology dimension 2, where we find that North America has, again, the highest number 
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of classes 44 while Asia only has 26, the lowest number of classes. This indicates that the 

North America’s new cases per million attractor may have a higher complexity in terms 

of its topological structure. 

For the new deaths per million and H0, we find that Asia has the highest number 

of classes H0 (899) followed by Europe (883) with North America only coming in third 

with 869 classes. For H1, we find that Africa has the highest number of classes (479), 

followed by North America (458), while for H2 we find that North America has the 

highest number of classes (164) followed by Africa (131). 

Considering the persistence metrics we find that, as shown in tables 4 and 5, for 

all regions, the new deaths per million show smaller values in both maximum and mean 

persistence than the new cases per million. For the new cases per million series, the lowest 

persistence values both in terms of maximum persistence and mean persistence are 

obtained for Africa and Asia, while Europe, North and South America show higher 

persistence metrics’ values for the homology classes. Regarding the maximum 

persistence values, we find that North America has the highest maximum persistence 

value of the group for homology dimension 0, but Europe has the highest values of terms 

of maximum persistence for homology dimensions 1 and 2, also standing out as having 

the highest mean persistence for all homology dimensions. 

Table 4: Maximum persistence for the five regions and homology dimensions 0 to 2. 

Maximum 
Persistence 

New Cases New Deaths 

H0 H1 H2 H0 H1 H2 

Africa 12.7619 3.4790 0.9513 0.4419 0.1228 0.0253 

Asia 46.8804 36.6568 2.8549 0.3554 0.2006 0.0305 

Europe 447.1697 277.1158 32.5501 2.0519 1.2889 0.3488 

North America 915.0522 183.8258 16.7437 3.7855 1.0945 0.3973 

South America 248.9097 122.0910 8.0882 4.4615 1.2010 0.6799 

 
Table 5: Mean persistence for the five regions and homology dimensions 0 to 2. 

Mean 
Persistence 

  

New Cases  New Deaths 

H0 H1 H2 H0 H1 H2 

Africa 1.4334 0.3712 0.1373 0.0685 0.0106 0.0038 

Asia 4.1626 1.3028 0.2843 0.0348 0.0084 0.0040 

Europe 52.7557 14.2232 4.7414 0.5297 0.1263 0.0574 

North America 40.0296 8.4910 3.3073 0.9573 0.1744 0.0717 

South America 24.9506 6.3083 2.3986 0.6662 0.1367 0.0598 
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For the new deaths per million, we also find that Africa and Asia have the lowest 

persistence values both in terms of maximum persistence and mean persistence, again, 

with Europe, North and South America standing out. In regards to the maximum 

persistence metric and the homology dimension 0, we find that South America stands out 

followed by North America and by Europe, the same holding for homology dimension 2, 

for homology dimension 1, we find that Europe has the highest maximum persistence 

value followed by South America and then North America. Regarding the mean 

persistence, North America stands out as having the highest value. 

For all groups there is only one infinity class which corresponds to homology 

dimension 0, furthermore, unlike the other dimensions, all homology dimension 0 classes 

are born at 0, as shown in figure 13 which shows the persistence diagrams for the new 

cases per million (top) and new deaths per million (bottom). 

 

Figure 13: Persistence diagrams for each region’s number of new cases per million (top) and 

number of new deaths per million (bottom). 

The persistence analysis, thus, shows some differences between the regions, in 

regards to the attractors’ topological structure, however, there is also a clear division into 

two groups: Africa and Asia, on the one hand, and Europe, North America and South 

America, on the other. The first group is characterized by smaller persistence metrics’ 

values, while the second is characterized by higher persistence metrics’ values. We also 

find that the new deaths per million show smaller persistence metrics’ values than the 

new cases per million. 

Considering, now, the degree to which the recurrence patterns in a Euclidean 

distance matrix contain information that may allow an adaptive agent to use it to predict 

the corresponding series, as discussed in the previous section, we use the sliding window 
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learning approach and scikit-learn’s radius neighbor learner. The key for the window 

choice is that it cannot be too short since we may not obtain any recurrence patterns, but 

it cannot also be too large since we will get a smoothed trajectory and the agent will not 

be able to predict well the performance. 

In tables 6 and 7, we show the R2 score of the learner for a one-step-ahead learning 

using sliding learning windows between 7 data points (7 samples/one week) to 14 data 

points (14 samples/two weeks) for the new number of cases per million and the new 

number of deaths per million. 

Table 6: R2 scores of the adaptive A.I. for a one-step-ahead learning of the number of new cases per million, 

for different sliding learning window sizes and each of the five regions. 

Learning 

Window 

Africa Asia Europe North 

America 

South 

America 

7 82.01% 91.68% 88.87% 77.31% 82.38% 

8 80.92% 90.87% 87.84% 74.47% 80.76% 

9 79.05% 89.95% 86.15% 72.87% 78.32% 

10 77.47% 88.98% 84.82% 71.27% 76.05% 

11 76.78% 88.03% 84.16% 69.15% 74.57% 

12 76.77% 87.24% 84.41% 67.37% 74.13% 

13 76.90% 86.48% 84.98% 68.11% 74.07% 

14 76.46% 85.54% 84.85% 66.17% 73.17% 

 
Table 7: R2 scores of the adaptive A.I. for a one-step-ahead learning of the number of new deaths per 

million, for different sliding learning window sizes and each of the five regions. 

Learning 

Window 

Africa Asia Europe North 

America 

South 

America 

7 82.02% 91.72% 84.17% 62.84% 88.51% 

8 81.68% 91.42% 82.62% 60.27% 87.76% 

9 80.63% 91.00% 80.44% 55.65% 86.49% 

10 79.69% 90.54% 78.70% 51.97% 85.44% 

11 79.12% 90.04% 77.90% 51.38% 85.09% 

12 79.09% 89.51% 78.71% 54.32% 85.72% 

13 79.28% 88.99% 80.24% 58.83% 86.76% 

14 79.06% 88.38% 80.50% 60.45% 87.05% 

 

The learning algorithm used is the radius nearest neighbor regression, which uses 

the recurrence information for a given radius to learn, in this way it allows us to see the 

predictability of the signal using the recurrence information from the reconstructed 

attractor, as discussed in the previous section. For the radius value we used five standard 

deviations (5 s.d.), the metric is the Euclidean distance and a brute force algorithm was 
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used. The choice of the standard deviation comes out of the previous recurrence analysis, 

indeed for 5 s.d. we found the stronger recurrence results for all the regions, and the 

objective of this analysis is to characterize the degree to which the recurrence structure 

contains information on the future trajectory of each target series.  

As can be seen in tables 6 and 7, for all the learning window sizes, the score is 

high showing that the past recurrence structure has a high degree of information on the 

dynamics for the one-period-ahead value of the corresponding target series. 

However, the R2 score tends to decrease in general with the window, with the 

highest values of R2 being obtained for a 7 samples training window. In this case, North 

America stands out as the region with lowest R2 followed by Africa, which comes in 

second after North America as the region with the worst performance, even though the 

performance is very high for all the regions when a 7 period window is used, with all 

regions, except North America, exceeding an 80% R2, and with North America exhibiting 

an R2 of around 77.31% for the new cases per million and 62.84% for the new deaths per 

million. Noticeably, Asia stands out as having an R2 and explained variance higher than 

90%, for both the new cases per million and the new deaths per million. Working, then, 

with a 7 samples window, we show in tables 8 and 9 the different metrics for the one-

period-ahead prediction.  

Table 8: Main performance metrics of the adaptive A.I. for a one-step-ahead prediction of the number of 

new cases per million, for a 7 samples sliding window. 

  Correlation RMSE/Amplitude Explained Variance R2 score 

Africa 0.905993 8.399% 82.011% 82.011% 

Asia 0.957695 4.989% 91.709% 91.680% 

Europe 0.942834 5.702% 88.871% 88.870% 

North America 0.879779 4.985% 77.313% 77.310% 

South America 0.908240 6.156% 82.378% 82.375% 

 
Table 9: Main performance metrics of the adaptive A.I. for a one-step-ahead prediction of the number of 

new deaths per million, for a 7 samples sliding window. 

  Correlation RMSE/Amplitude Explained 

Variance 

R2 score 

Africa 0.905970 7.175% 82.019% 82.019% 

Asia 0.957866 5.820% 91.716% 91.715% 

Europe 0.917579 8.784% 84.174% 84.174% 

North America 0.793074 10.769% 62.837% 62.837% 

South America 0.940868 7.281% 88.515% 88.515% 
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Considering the correlation, we find a high positive correlation between the 

predictions and the series’ values for all the regions. This is indicative that the topological 

information contained in the 7 samples sliding window can be exploited by a radius 

neighbor algorithm to yield a forward-looking prediction for the one-period-ahead target 

variable with a very high performance in terms of linear correlation between the 

prediction and the target.  

Again, North America stands out as the region where the artificial agent has the 

lowest performance, with the lowest correlation, albeit being close 0.88 in the new cases 

per million series and to 0.79 in the new deaths per million series. In regards to the 

RMSE/Amplitude in percentage indicator, we find that, for the one-step-ahead prediction, 

for the new cases per million, the highest error per amplitude is obtained for Africa with 

an RMSE that is around 8.399% of the total data amplitude, which is a low value, North 

America, in this case, shows the best performance of the group with a value of 4.985%, 

by contrast, for the new deaths per million series we find the worst performance in North 

America with a value of 10.769%, which means that the RMSE is around 10.769% of the 

total data amplitude, which is still a low result. 

The explained variance and R2 score show a similar profile, with the best 

performance being obtained for Asia with a more than 90% value in these two indicators, 

for the two series, and the worst performance being obtained for North America with a 

near 77% value for the new cases per million and a near 63% value for the new deaths 

per million. 

In terms of general pattern, we, thus, find that the one-period-ahead series has a 

strong predictability when using the topological information contained in the Euclidean 

neighborhood structure. Also, if we move beyond a single period prediction to consider 

a 1 week ahead (7 days), two weeks ahead (14 days) and a 30 days ahead prediction, the 

performance does not drop significantly as shown in tables 10 and 11, furthermore, it can 

even increase relative to the one-step-ahead prediction, as shown in table 11 for Europe, 

in which the performance increases for the 14 days ahead prediction and then again for 

the 30 days ahead prediction, for North America where there is an increase for the 14 

days ahead prediction’s performance, with a subsequent decrease for the 30 days ahead 

prediction, and, finally, South America, for which there is a decrease in the 14 days ahead 

prediction’s performance and then an increase for the 30 days ahead prediction. The long 
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range predictability of the series is to be expected given the black chaos spectrum and the 

high frequency periodicities. 

Table 10: R2 scores of the adaptive A.I. for a 7, 14 and 30 days ahead prediction of the number of new 

cases per million, for a 7 samples sliding learning window. 

  7 14 30 

Africa 81.85% 81.65% 81.19% 

Asia 91.62% 91.56% 91.40% 

Europe 88.82% 88.77% 88.66% 

North America 77.75% 77.50% 76.99% 

South America 82.24% 82.08% 81.74% 

 
Table 11: R2 scores of the adaptive A.I. for a 7, 14 and 30 days ahead prediction of the number of new 

cases per million, for a 7 samples sliding learning window. 

  7 14 30 

Africa 81.89% 81.74% 81.44% 

Asia 91.64% 91.55% 91.35% 

Europe 84.21% 84.51% 84.79% 

North America 63.02% 63.24% 63.13% 

South America 88.45% 88.44% 88.48% 

 

Moving from the recurrence structure associated with the distance matrix to the k-

nearest neighbors’ topological analysis, to perform this analysis, we first evaluate for 

which number of k-nearest neighbors the reconstructed attractor contains the most 

information that can be used to predict the series, in tables 12 and 13 we show the R2 

scores for the single period prediction for the new cases per million and the new deaths 

per million. As can be seen from the results shown in both tables for Africa and Asia, the 

highest R2 is obtained only for a large number of nearest neighbors when compared to the 

sliding window size, while the highest score for Europe is achieved with a lower number 

of nearest neighbors. 

Table 12: R2 scores of the k-NN adaptive A.I. for the new cases per million series and a 7 samples sliding 

learning window. 

k Africa Asia Europe North 

America 

South 

America 

2 79.976% 89.158% 89.965% 72.553% 81.279% 

3 80.586% 89.768% 90.191% 76.267% 81.631% 

4 81.791% 89.768% 89.984% 76.097% 82.240% 

5 81.837% 90.796% 89.289% 77.643% 82.762% 

6 81.747% 91.299% 89.110% 77.410% 82.473% 
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Table 13: R2 scores of the k-NN adaptive A.I. for the new deaths per million series and a 7 samples sliding 

learning window. 

k Africa Asia Europe North 

America 

South 

America 

2 77.756% 87.060% 88.418% 75.759% 91.270% 

3 79.690% 88.668% 87.844% 74.802% 91.279% 

4 80.426% 89.768% 87.147% 70.697% 90.489% 

5 81.009% 90.569% 86.203% 67.331% 89.726% 

6 81.596% 91.198% 85.012% 65.443% 89.043% 

 

For North America and South America the highest scores for the new cases per 

million are achieved for a higher number of nearest neighbors, while for the new deaths 

per million they are obtained for a smaller number of nearest neighbors. Globally, 

considering both series and all the regions, we find that the scores are very high, which 

means that the k-nearest neighbors also contain relevant information that can be used for 

prediction. Considering that the scores reflect the level of information that can be used 

for predicting the target series by an adaptive A.I. using the k-nearest neighbors’ 

algorithm, we should use, for the topological analysis, in each case, the number of 

neighbors that lead to the highest score in prediction, as discussed in the previous section, 

therefore, in figures 14 and 15 we show the k-nearest neighbor graphs and K-S entropies 

for each region, for the number of new cases per million (figure 14) and for the number 

new of deaths per million (figure 15), using, in each case, the number of nearest neighbors 

k that leads to the maximum R2 score shown in tables 12 and 13. 

 

Figure 14: k-nearest neighbor graphs for each region’s number of new cases per million’s 

reconstructed attractor and the corresponding K-S entropy, using the value k that leads the highest 

R2 in table 12. 
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Figure 15: k-nearest neighbor graphs for each region’s number of new deaths per million’s 

reconstructed attractor and the corresponding K-S entropy, using the value k that leads the highest 

R2 in table 13. 

As can be seen in figures 14 and 15, in conjunction with tables 14 and 15, we find 

that, for the new cases per million, in regards to the degree distribution entropy, all the 

regions exhibit a low entropy distribution with similar values (all close to 0.23), with the 

exception of Europe that stands out as the region with the lowest degree distribution 

entropy (around 0.19).  

Table 14: Main entropy values for figure 14’s k-NN networks. 

 
Degree Distribution 

Entropy 

Kolmogorov Sinai Entropy 

Africa 0.231850 2.829805 

Asia 0.237356 3.077790 

Europe 0.191127 2.261513 

North America 0.232304 2.960116 

South America 0.231839 2.937294 

 
Table 15: Main entropy values for figure 15’s k-NN networks. 

  Degree Distribution 

Entropy 

Kolmogorov Sinai Entropy 

Africa 0.278750 3.212553 

Asia 0.252241 3.172343 

Europe 0.164099 1.840823 

North America 0.178254 1.926514 

South America 0.203755 2.320865 

 

Likewise, for the K-S entropy, all the regions show a similar profile (a value close 

to 3 bits) with Europe standing out with the lowest K-S entropy (around 2.26 bits). For 
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the new deaths per million, we find again Europe as having the lowest entropy values but 

closer to those of North America. 

Considering now the symbolic dynamics, we find that the ordinal partition graph 

for all regions, in the case of the reconstructed attractor, for the number of new cases per 

million, is the complete graph with six nodes 𝐾6 as shown in figure 16. 

 

Figure 16: Ordinal partition graph that characterizes each region’s number of new cases per 

million’s reconstructed attractors. 

The graph 𝐾6’s appearance in each region’s reconstructed attractor indicates that 

this is a robust topological feature of the SARS-CoV-2’s dynamics which is independent 

from each region’s dynamics. From a computational standpoint, such a 𝐾6 graph can be 

associated with a triadic encoding for a three-letter word with no repetitions, with each 

node associated with the possible permutations of a three letter word with each letter 

being chosen from a three letter alphabet, which provides for a symbolic encoding of the 

three dimensions. 

The 𝐾6 structure arises due to two factors, the first is that the embedding 

dimension is equal to 3 which leads to six permutations, therefore six nodes for the graph, 

the second factor is that the dynamics is such that all possible transitions between the six 

nodes occur, which makes the graph for the transitions a complete graph.  

From a symbolic dynamics standpoint, the fact that we get the same ordinal 

partition graph, means that we get a graph isomorphism between any two regions, all the 

regions’ reconstructed attractors are, thus, characterized by the same ordinal partition 

graph, and thus the same underlying computational structure, the permutation entropy 

values are also close to each other, however, there are some differences as can be seen in 

table 16. 
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Table 16: Permutation entropy for each region’s number of new cases per million’s reconstructed 

attractors. 

  Perm. Entropy 

Africa 2.291354 

Asia 2.209633 

Europe 2.270652 

North America 2.349743 

South America 2.412355 

 

As shown in table 16, Asia is the region with the smallest value for the permutation 

entropy, followed, in increasing order, by Europe and Africa. South America has the 

highest value of the permutation entropy followed by North America. The degree entropy 

for this graph is zero and the K-S entropy is the same for all regions and equal to 2.321928. 

For the new deaths per million, the reconstructed attractor for Asia is still given 

by the 𝐾6 graph, with a higher permutation entropy 2.375796, without any change in the 

degree and K-S entropies’ values in comparison to the new cases per million attractor. 

The remaining regions do not keep a complete graph structure for the new deaths 

per million, for their respective embedding dimensions, however, it should be stressed 

that, if a three dimensional embedding were used, then, we would still recover the 

complete graph structure for all regions, that is the 𝐾6 graph characterizes all regions at a 

three dimensional embedding. When the embedding dimension is risen beyond 3, we no 

longer get complete graphs. 

Table 17: Ordinal partition graph main entropy measures for each region’s number of new deaths 

per million’s reconstructed attractors. 

  Perm. 
Entropy 

Degree 
Entropy 

K-S 
Entropy 

Africa 5.784736 0.583711695 3.61576 

Asia 2.375796 0 2.32193 

Europe 3.678060 0.786350715 3.80668 

North America 5.833933 0.581944959 3.74116 

South America 3.966362 0.735372104 3.94223 

 

In this case, for the embedding parameters obtained from the false nearest 

neighbors’ criterion, as shown in table 17, the region with the highest permutation entropy 

is North America followed by Africa, while in degree entropy we find Europe as the 

region with the highest entropy followed by South America, finally, with respect to the 
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K-S entropy we find that South America is the region with the highest value followed by 

Europe. For better visualization, we show, in figure 17, the connected components of the 

k-nearest neighbors’ graphs for Africa, Europe, South America and North America. 

 

Figure 17: Connected components of the ordinal partition graphs that characterize Africa, Europe, 

North America and South America’s respective number of new deaths per million’s reconstructed 

attractors. 

Having analyzed the cases where there is evidence of emergence of chaotic 

attractors, we now proceed to analyze the case of Oceania where there is evidence of a 

bifurcation. 

3.2. Oceania’s Dynamics – a Bifurcation in SARS-CoV-2’s Outbreak 

Dynamics 

Unlike the other regions, Oceania does not have a fixed attractor, there is instead evidence 

of a bifurcation associated with a break in an original attractor’s stability, followed rapid 

buildup of viral outbreak dynamics visible in both the new cases per million and the new 

deaths per million series.  

The first marker of a change can be seen in the new cases per million and the new 

deaths per million time series charts as shown in figure 18, where two dynamics are 

clearly visible, first there is a lower fluctuation level, then there is a large outbreak 

followed by a turbulent dynamics with larger new cases per million values and a buildup 

in deaths.  
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Figure 18: Oceania’s new cases per million series (left) and new deaths per million series (right). 

The dynamics can actually be divided into three stages. The first stage is 

characterized by a dynamics with lower outbreak numbers, yet with markers of 

turbulence, this dynamics characterizes the period from 2020-01-25 to 2021-06-07. The 

second stage occurs between 2021-06-08 and 2021-12-14, which corresponds to a buildup 

stage leading to the large outbreak, in this period the initial dynamics and any 

corresponding possible attractor seem to have lost stability exhibiting a transient period 

with a buildup to the new more turbulent stage with higher number of reported positive 

cases and deaths, leading to the third stage, from 2021-12-15 onwards, where there is a 

large outbreak followed by an on average larger number of positive cases and deaths. 

The three stages are shown in figure 19, for the number of new cases per million, 

which illustrates well the change occurring in the three stages. 

 

Figure 19: Three stages of the dynamics for the number of new cases per million, with stage 1 shown in 

the left, stage 2 shown in the middle and stage 3 shown in the right. 

If we obtain the power spectral densities for each stage and the number of new 

cases per million, we find that stage 1 has a power law decay section in the low frequency 

range with a black noise spectrum with estimated exponent of 2.782218, with an 

associated R2 of 0.578568 and p-value of 0.000993, while stage 2 is characterized by the 

breakdown of the power law scaling with a fast transition to a white spectrum, stage 3 is 

again characterized by a black noise power law scaling in the spectrum with a power law 

decay with an estimated exponent of 2.960222, with an associated R2 of 0.717362 and p-

value of 6.775415e-05. Figure 20 shows the power spectra for the three stages. 
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Figure 20: Power spectra for the three stages and the number of new cases per million, with stage 1 shown 

in the left, stage 2 shown in the middle and stage 3 shown in the right. 

The evidence is compatible with a bifurcation occurring at the end of stage 1, with 

the loss of stability of the underlying dynamics. In stage 1, the dynamics is characterized 

by a black noise spectrum. In stage 2, there is a breakdown to a low memory process with 

a white spectrum as predominant, this marks a transient dynamics associated with a 

transition to a new dynamics, at stage 3, and a possible new attractor, which is 

characterized by a black noise spectrum with a breakdown to a white spectrum at the high 

frequency region. The new dynamics shows a stronger persistence than the previous one.  

Faced with this evidence, we cannot use the false nearest neighbors’ selection 

process to obtain an embedding dimension, since there may be dimensional changes and 

the three stages do not provide for sufficient data for reliable embedding parameters and 

Lyapunov exponents estimations, a problem that is reinforced by the bifurcation itself 

which is contrary to the assumption of a fixed stable attractor assumed in these chaotic 

time series analysis methods. In this way, the chaotic time series metrics cannot be applied 

to the whole series. However, the topological analysis methods can. 

Considering these methods, we find that there are some problems with using a 

recurrence matrix, in the sense that while it can be used to identify topological changes, 

the distances that may be used in a fluctuation scale change and this may interfere with 

the ability to extract recurrence statistics due to the identified bifurcation leading to 

different fluctuation sizes, in this case, it is best to use the k-nearest neighbors’ learner 

and compare the performance for different embedding dimensions, we still use the 15 day 

lag as in the other regions, taking into account the quarantine period effects. Considering, 

first, a base three-dimensional embedding with a 7 day sliding learning window, as shown 

in tables 18 and 19, we find that for the number of new cases per million the best 

performance is obtained for 6 neighbors, while, for the number of new deaths per million, 

the best performance is obtained for 5 neighbors. 
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Table 18: Performance scores, with a three dimensional embedding for the one period ahead prediction of 

a k-nearest neighbors algorithm for the number of new cases per million, with increasing values of k and a 

7 sample sliding window. 

k Correlation RMSE/Amplitude Explained Variance R2 score 

2 0.914802 5.568% 83.313% 83.289% 

3 0.922032 5.317% 84.779% 84.762% 

4 0.927898 5.104% 85.978% 85.959% 

5 0.929938 5.028% 86.394% 86.372% 

6 0.935225 4.836% 87.410% 87.394% 

 
Table 19: Performance scores, with a three dimensional embedding for the one period ahead prediction of 

a k-nearest neighbors algorithm for the number of new deaths per million, with increasing values of k and 

a 7 sample sliding window. 

k Correlation RMSE/Amplitude Explained Variance R2 score 

2 0.840435 8.116% 70.496% 70.300% 

3 0.828712 8.364% 68.637% 68.460% 

4 0.840793 8.082% 70.678% 70.551% 

5 0.845084 7.974% 71.363% 71.328% 

6 0.843407 8.008% 71.118% 71.085% 

 

Taking these results into account, we compare the impact of increasing embedding 

dimensions on the predictability of the series, the dimension with the highest 

predictability is the one that we will use for further analysis, since it is the one that leads 

to the greatest captured pattern, including the bifurcation dynamics, which can be 

exploited by an adaptive A.I. using the k-nearest neighbors’ information, the chosen 

embedding dimension will be the one that has more information on the dynamics 

exploitable by such an agent.  

As shown in tables 20 and 21, the best performance is obtained for a three-

dimensional embedding. Using, thus, a three-dimensional embedding, we can apply the 

topological analysis methods for the k-nearest neighbors graphs and the ordinal partition 

graphs with the corresponding number of k nearest neighbors chosen from the values that 

lead to the highest prediction performance in tables 18 and 19, in this case, k = 6 for the 

number of new cases per million and k = 5 for the number of new deaths per million. In 

figures 21 and 22, we show, respectively, the corresponding k nearest neighbors and 

ordinal partition graphs for the number of new cases per million and the number of new 

deaths per million, for the three stages from left to right. 
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Table 20: Performance scores, for different embedding dimensions and one period ahead 

prediction of a k-nearest neighbors algorithm for the number of new cases per million, with 

increasing embedding dimensions and a 7 sample sliding window. 

dE Correlation RMSE/Amplitude Explained Variance R2 score 

3 0.935225 4.836% 87.410% 87.394% 

4 0.934814 4.881% 87.324% 87.310% 

5 0.935068 4.902% 87.368% 87.355% 

6 0.934272 4.962% 87.212% 87.199% 

7 0.933902 5.008% 87.133% 87.122% 

8 0.933633 5.048% 87.081% 87.070% 

9 0.933352 5.090% 87.030% 87.018% 

10 0.932736 5.145% 86.911% 86.899% 

 
Table 21: Performance scores, for different embedding dimensions and one period ahead 

prediction of a k-nearest neighbors algorithm for the number of new deaths per million, with 

increasing embedding dimensions and a 7 sample sliding window. 

dE Correlation RMSE/Amplitude Explained Variance R2 score 

3 0.845084 7.974% 71.363% 71.328% 

4 0.839036 8.155% 70.360% 70.292% 

5 0.836901 8.247% 69.951% 69.919% 

6 0.834142 8.361% 69.469% 69.441% 

7 0.834510 8.400% 69.533% 69.487% 

8 0.836365 8.394% 69.865% 69.820% 

9 0.834683 8.472% 69.583% 69.530% 

10 0.831927 8.578% 69.098% 69.040% 

 

 

Figure 21:  New cases per million’s k nearest neighbors (k = 6) and ordinal partition graphs obtained for a 

three dimensional embedding and with stage 1 shown in the left, stage 2 shown in the middle and stage 3 

shown in the right. 
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Figure 22:  New deaths per million’s k nearest neighbors (k = 5) and ordinal partition graphs obtained for 

a three dimensional embedding and with stage 1 shown in the left, stage 2 shown in the middle and stage 3 

shown in the right. 

In tables 22 and 23 we show the respective graph entropy measures. Considering 

the new cases per million and the k-nearest neighbors graph, we find that the transition 

from stage 1 to stage 2 comes with an increase in the graph degree entropy but a decrease 

in the K-S entropy, which means that while there is a more random distribution of the 

node degrees, the entropy associated with a Markov process on the graph is reduced. From 

stage 2 to stage 3, still considering the k-nearest neighbors graph, we have a decrease in 

graph degree entropy and an increase in the K-S entropy. Therefore, while we have a less 

random distribution of the degrees, we have an increase in the entropy associated with a 

Markov process on the graph, which is the highest of the three stages. 

Table 22: Entropy measures for the k-nearest neighbors and ordinal partition graphs of figure 21. 

  Stage 1 Stage 2 Stage 3 

Degree Entropy (KNN) 0.267476 0.330146 0.325345 

K-S Entropy (KNN) 3.096103 3.077432 3.137238 

Degree Entropy (Ordinal) 0 0 0.564475 

K-S Entropy (Ordinal) 2.321928 2.321928 2.070895 

Permutation Entropy 2.499085 2.408072 2.471680 

 
Table 23: Entropy measures for the k-nearest neighbors and ordinal partition graphs of figure 22. 

  Stage 1 Stage 2 Stage 3 

Degree Entropy (KNN) 0.270277 0.294282 0.295310 

K-S Entropy (KNN) 4.609673 2.762875 2.847433 

Degree Entropy (Ordinal) 0 0 0 

K-S Entropy (Ordinal) 2.321928 2.321928 2.321928 

Permutation Entropy 2.228261 2.527406 2.556174 
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The ordinal partition graphs, in turn, provide important information, in stage 1 and 

stage 2 the ordinal partition graph is the 𝐾6 graph, which also characterizes the other 

regions’ new cases per million dynamics, as analyzed in the previous subsection. In this 

sense the Oceania dynamics at stages 1 and 2, from a topological standpoint in terms of 

the symbolic dynamics associated with the permutation analysis, shows a computational 

equivalence to the other regions, in the sense that we still get an ordinal partition graph 

that is isomorphic to the other regions.  

Now, during stage 2, for the new cases per million, while we see the same 𝐾6 

computational structure holding, there is a decrease in the permutation entropy, with 

respect to stage 1, finally, after the bifurcation, in stage 3, we no longer have the same 

type of topological structure as the other regions, from an ordinal partition standpoint, 

instead, while we still get a six node graph, as expected from the fact that we are 

performing a three dimensional embedding, however, only five nodes form a complete 

subgraph, this is the 𝐾5 graph, which corresponds to a pentacle, the sixth node is only 

linked to two vertices of the pentacle, forming a triangle, in this sense, the dynamics no 

longer performs every possible transition between all the permutations, three transitions 

are lost, with the number of links dropping from 15 to 12. This is unique in all the regions, 

since for all the other regions, whenever one performs a three dimensional embedding, 

the 𝐾6 graph is obtained. 

Therefore, in stage 3, with respect to the new cases per million, we find a change 

in the number of connections, which leads to a rise in the degree entropy, since we no 

longer have a complete graph which has zero degree entropy, leading to a slightly greater 

diversity of connections, however, there is a decrease in the K-S entropy for the ordinal 

partition graph, there is also a rise in the permutation entropy with respect to stage 2.  

For the new deaths per million, the loss of connectivity associated with the 𝐾6 

graph does not occur, so that all of the stages are characterized by the  𝐾6 structure, in 

this sense the  𝐾6 computational framework is conserved, therefore, the degree entropy is 

zero throughout the three stages and the K-S entropy is also constant and equal to the  

𝐾6’s K-S entropy. The permutation entropy, however, increases in each stage. Regarding 

the k-nearest neighbors, we find that there is also an increase in the degree entropy in each 

stage, however, the K-S entropy decreases in with respect to stage 1, showing lower 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.16.22280044doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.16.22280044
http://creativecommons.org/licenses/by-nd/4.0/


values in stages 2 and 3, there is a slight increase in the K-S entropy in stage 3 but still 

with a lower value with respect to stage 1. 

The bifurcation occurred with the outbreaks of different variants, including the 

delta in June and July 2021, which prompted lockdowns in Australia, and omicron variant 

which led to the large outbreak and is linked to the dynamics of the third stage [27,28].  

More time needs to pass though for a more complete study of the dynamical 

markers of the third stage, including the possible sustainability of a possible new attractor 

or, alternatively, a possible sudden drop in cases linked to a new bifurcation or even a 

new bifurcation with a further rise in cases. The occurrence of bifurcations will largely 

depend on immunity versus the viral evolution with respect to the rise of new variants 

and subvariants and their respective infection and transmissibility properties. 

4. Conclusions 

We applied methods from chaos theory, topological data analysis and machine learning 

to the new SARS-CoV-2 cases per million and the new deaths per million series by 

region. For Africa, Asia, Europe, North America and South America, the evidence is 

favorable to the emergence of low dimensional noisy chaotic attractors for both series.  

While there are some differences between the regions, they all exhibit evidence to 

the attractors being near the onset of chaos, with Africa, Asia and Europe also being 

characterized by power law decay in the power spectra characteristic of a form of color 

chaos, in this case black chaos, that is, chaos with a black noise-like spectrum. We found 

that there is enough information in the topological structure of these attractors for an 

artificial adaptive agent equipped with a nearest neighbor machine learning module to 

predict the future dynamics of each of these series using the reconstructed attractor, this 

holds for both radius and k-nearest neighbor modules. 

For Oceania, we identified the occurrence of a bifurcation and characterized it 

using the artificial adaptive agent with a k-nearest neighbors’ learning module showing 

that the bifurcation can be well captured by the k-nearest neighbors’ sliding learning 

window, we used the highest predictability values for k to find the optimal parameters for 

topological data analysis and found that the bifurcation occurred with changes in k-nearest 

neighbors’ dynamics visible in the entropy metrics, but also, for the new cases per million, 
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in the ordinal partition graph. This bifurcation was linked to new variants, namely delta 

and, in particular, the omicron variant. 

The evidence that the attractors are near the onset of chaos, along with the 

occurrence of the bifurcation in Oceania that led to a large outbreak and a change in the 

dynamics to higher values of the number of new cases and new deaths per million, is 

indicative of the possibility that attractors may change due to bifurcations in the 

dynamics, particularly linked to the emergence of new variants with possibly larger 

transmissibility and with a lower immune response. 

In this sense, from the results obtained from the analysis, we find that we do not 

have an homogeneous attractor for all the regions, different regions show topological 

differences, in terms of attractors and predictability, in the case of the persistent homology 

analysis, we found a division in two main groups: Asia and Africa on one side and Europe, 

North and South America on another side. 

The evidence favorable to the hypothesis that attractors are near the onset of chaos 

reinforces the possibility of bifurcations, since, from the Oceania case, we know that 

bifurcations can happen and that they are linked to the emergence of new variants, this 

evidence implies that we do not have a dynamical self-organization to a long-term stable 

equilibrium associated with an endemic virus that has reached a stable infection profile, 

in this way, healthcare authorities will need to be attentive to new variants and possible 

containment measures as well as adjustments in vaccination policies and drug discovery 

for dealing with these new variants. 

The current work, in what regards the Oceania region, shows that an adaptive 

agent with a sliding window learning is still robust in capturing dynamical changes in 

attractor stability and, conjointly with topological data analysis tools, may provide a way 

for healthcare authorities to monitor and anticipate possible bifurcations. 
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