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Abstract

We describe several regression models to predict severe outcomes in COVID-19 and challenges present in complex observa-
tional medical data. We demonstrate best practices for data curation, cross-validated statistical modelling, and variable selection
emphasizing recent Bayesian methods. The study follows a retrospective observational cohort design using multicentre records
across National Health Service (NHS) trusts in southwest England, UK. Participants included hospitalised adult patients positive
for SARS-CoV 2 during March to October 2020, totalling 843 patients (mean age 71, 45% female, 32% died or needed ICU stay),
split into training (n=590) and validation groups (n=253). Models were fit to predict severe outcomes (ICU admission or death
within 28-days of admission to hospital for COVID-19, or a positive PCR result if already admitted) using demographic data and
initial results from 30 biomarker tests collected within 3 days of admission or testing positive if already admitted. Cross-validation
results showed standard logistic regression had an internal validation median AUC of 0.74 (95% Interval [0.62,0.83]), and external
validation AUC of 0.68 [0.61, 0.71]; a Bayesian logistic regression (with horseshoe prior) internal AUC of 0.79 [0.71, 0.87], and
external AUC of 0.70 [0.68, 0.71]. Variable selection performed using Bayesian predictive projection determined a four variable
model using Age, Urea, Prothrombin time and Neutrophil-Lymphocyte ratio, with a median internal AUC of 0.79 [0.78, 0.80], and
external AUC of 0.67 [0.65, 0.69]. We illustrate best-practices protocol for conventional and Bayesian prediction modelling on
complex clinical data and reiterate the predictive value of previously identified biomarkers for COVID-19 severity assessment.

Introduction1

Globally as of 26 April 2023, there have been 764 million2

confirmed cases of COVID-19, including 6.9 million deaths,3

with 24.6 million cases in the UK, resulting in over 207,0004

deaths (WHO Coronavirus (COVID-19) Dashboard, https:5

//covid19.who.int/). COVID-19 has a wide spectrum of6

clinical features ranging from asymptomatic to severe systemic7

illness with a significant attributable mortality, while clinical8

manifestations are variable especially in the most vulnerable9

groups and immunocompromised people [1]. COVID-19 is a10

multi-system disease resulting in the derangements of home-11

ostasis affecting pulmonary, cardiovascular, coagulation, haema-12

tological, oxygenation, hepatic, renal and fluid balance [2, 3, 4,13

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Although the major-14

ity of people with COVID-19 will have mild or no symptoms,15

a small but significant proportion will suffer from a severe in-16

fection needing hospitalisation for supportive care, oxygen, or17
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admission to intensive care units (ICU) for respiratory support.18

Early identification of hospitalised COVID-19 patients who19

are likely to deteriorate, i.e. transfer to ICU or who may die,20

is vital for clinical decision making. Healthcare systems across21

the world including highly developed countries continue to face22

challenges in terms of capacity and resources to manage this23

pandemic, as lock down measures have been relaxed, including24

opening of schools and businesses.25

To date, published prediction models have evaluated case-26

level factors that might predict poor outcomes (critical illness27

or death). A recent living systematic review [17] identified 26528

prognostic models for mortality and 84 for progression to se-29

vere or critical state. The majority of the studies looked at vital30

signs, age, comorbidities, and radiological features. Models31

were unlikely to include a broad range of variables concern-32

ing co-infection, biochemical factors (outside of C-reactive pro-33

tein), and other haematological factors on an individual patient34

level. Most of the prognostic models did not describe the target35

population or care setting adequately, did not fully describe the36

regression equation, showed high or unclear risk of bias and/or37

were inadequately evaluated for performance.38
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Goals39

The present study analyzes a range of laboratory blood marker40

values across metabolic pathways affected by COVID-19 infec-41

tion (i.e. a core set of biomarkers feasible for clinical collec-42

tion) and evaluates predictive models of severe outcomes. The43

main objectives of the study are: (1) Examine statistical associ-44

ations of routinely measured physiological and blood biomark-45

ers, and age and gender, to predict severe COVID-19 outcomes.46

(2) Develop cross-validated logistic regression prediction mod-47

els using the candidate biomarkers, highlighting biomarkers wor-48

thy of future research. (3) Use variable selection techniques in-49

cluding least absolute shrinkage and selection operator (LASSO)50

regularisation [18] and Bayesian Projective Prediction [19] to51

illustrate the process of creating a reduced model that maintains52

reasonable performance and is more feasible to use clinically.53

(4) In each of these steps, demonstrate best analytic practices54

for explaining clinical data curation and statistical modelling55

decisions, with an emphasis on showcasing the capabilities of56

recent Bayesian methods.57

Methods58

Study Cohort and Demographics59

Pseudonymised data was obtained from Laboratory Infor-60

mation Management Systems (LIMS) linking patient data for61

laboratory markers to key clinical outcomes. Three hospitals in62

the Southwest region of England, UK, participated in the study,63

two of which were tertiary teaching hospitals and the third was64

a district general hospital (DGH). A system-wide data search65

was conducted on the LIMS for all patients who tested positive66

for SARS-CoV-2 by polymerase chain reaction (PCR) at these67

three hospitals during the first wave of COVID-19 pandemic68

(01/03/2020 to 31/10/2020). The serial pathology data col-69

lected as a part of standard of care of patients admitted with/for70

COVID-19 were included- bacteriology, virology, mycology,71

haematology, and biochemistry. All patients testing negative72

for SARS CoV-2 by PCR were excluded. All laboratory mark-73

ers including clinical outcomes from LIMS were extracted and74

the final dataset was anonymized with no patient identifying75

data to link back.76

Inclusion and exclusion criteria77

We included all adult patients admitted to study hospitals78

and tested positive for SARS CoV-2 by PCR. Pediatric patients79

(<18 years old) and staff/healthcare workers and their house-80

hold contacts were excluded. Figure 1 depicts the decision81

flow for inclusion and exclusion of patient data.82

Data Covariates83

The LabMarCS dataset includes a variety of host, clinical84

severity indices, microbiological, immunological, haematolog-85

ical and biochemistry parameters used as predictive variables86

in the regression models. A full list of recorded data items is87

shown in Figure 288

Figure 1: Flowchart of patient exclusion and inclusion criteria. The initial set of
1159 candidate patients was narrowed to a training set (n=590) and a validation
set (n=253).
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Biomarker Abbreviation Place Recorded / Reason
No. of 

Readings
% of 

Patients 
Reference Range/ Criteria Clinical Categories Criteria Description

Activated partial 
thromboplastin time

APTT Admisson 422 50% Normal between 21-33 seconds Normal, Abnormal
Normal: <33; Mild: 33-49.5; Moderate: 
49.5-82.5; Severe: >82.5

Prothrombin Time PT Admisson 435 52%
Normal between 9.5-13 
seconds

Normal, Abnormal Abnormal: >=13

Carbon Dioxide CO2 Arterial/ Point of care 154 18% Normal: 4.6-6.4 seconds Normal, Abnormal Abnormal if outside range
Lactate poctLAC Arterial/ Point of care 154 18% 0.5-2.2 mmol/L Normal, Abnormal Abnormal if <0.5 or >2.2
Oxygen O2 Arterial/ Point of care 154 18% 11.0-14.4 seconds Normal, Abnormal Abnormal if <11 or >14.4

Bicarbonate Excess BE
Arterial or Venous / 

Point of care
418 50% 22-29 Normal, Abnormal Abnormal if outside range

pH acid/base scale pH
Arterial or Venous / 

Point of care
417 49% 7.35-7.45 Normal, Abnormal Abnormal if outside these bounds

Blood Culture bc_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Respiratory resp_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Urine urine_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Viral viral_coinfection Admisson 843 100% 10 viral infections tested Positive, Negative Postive if one or more postive

Glucose Glucose 
Point of Care / Record 

Often Not Digitized
222 26% Non-fasting: 3.0-7.8 mmol/L Normal, Abnormal Abnormal if outside range

Hemoglobin HB Admisson 772 92%
Male 130-170 g/L, Female 120-
150 g/L

Normal, Mild, 
Moderate, Severe

Normal: >gender specific criteria; Mild: 
100 to gender specific criteria; Moderate: 
80-100; Severe: <80

Platelet Count PLT Admisson 770 91% 150-450 10^9/L
Normal, Mild, 

Moderate, Severe
Normal: >150; Mild: 100-150; Moderate: 
50-100; Severe: <50

Lymphocytes Lymphocyte Admisson 772 92% 1.5-4.5 10^9/L
Normal, Mild, 

Moderate, Severe
Normal 1.5-4.5; Mild 1-1.5; Moderate 0.5-
1; Severe: <0.5 or >4.5

Neutrophils Neutrophil Admisson 772 92% 2.0-7.5 10^9/L
Normal, Mild, 

Moderate, Severe
Normal 2-7.5; Mild 1-2; Moderate: 0.5-1; 
Severe: <0.5 or > 7.5

Neutrophil - Lymphocyte 
Ratio

NLR Admisson 772 92% 0.78 and 3.53
Normal, Mild, 

Moderate, Severe
Normal: <3; Mild: 3-8; Moderate: 8-18; 
Severe: >18

White Cell Count WCC Admisson 772 92% 4.0-11.0 10^9/L
Normal, Mild, 

Moderate, Severe
Normal: 4-11; Mild: 1-4; Moderate: 0.5-1; 
Severe: <0.5 and >11

C-Reactive Protein CRP Admisson 759 90% < 6 mg/L Normal, Abnormal Abnormal if greater than criteria
Estimated Glomerular eGFR Admisson 707 84% >90 Normal, Abnormal Abnormal if greater than criteria
Urea urea Admisson 754 89% 2.5-7 10^9/L Normal, Abnormal Abnormal if outside these bounds

Brain / B-type natriuretic 
peptide

BNP  Cardiac Function 47 6%
Men under 70: <100pg/ml, 
Women under 70: <150 pg/ml, 
All 70yr and over: <300 pg/ml

Normal, Abnormal
Abnormal if greater than age/gender 
specific criteria

D-Dimer DDM 111 13%

Age (Years)  D-dimer (ng/ml) 
<60                <500
61-70           <600 
71-80           <700 
81-90           <800 
>90                <900

Normal, Abnormal
Abnormal if greater than age-specific 
criteria

Ferritin FER 115 14%
Male: 33-490, Female(0-44): 15-
445, Female(45+yrs): 30-470

Normal, Mild, 
Moderate, Severe

Normal: <age/gender appropriate criteria; 
Mild: >criteria-735; Moderate: 735-2450; 
Severe: >2450

Fibrinogen fib 104 12% 1.8-4.0 g/L Normal, Mild, Severe. Normal: >1.8; Mild: 1-1.8; Severe: <1

Glycated haemoglobin HBA1c Diabetes 17 2% >=48 mmol/mol Normal, Abnormal Abnormal if greater than criteria

Lactate dehydrogenase LDH Investigatory 66 8% 240-480 IU/L
Normal, Mild, 

Moderate, Severe
Normal: <=480; Mild: >480-720; 
Moderate: >720-1440; Severe: >1440

Procalcitonin PCT ITU / Bacterial Infection 39 5% Normal range: <0.2ng/mL Normal, Abnormal Abnormal: >=0.2
Triglycerides trig Investigatory 19 2% 0.5-1.7 mmol/L Normal, Abnormal Abnormal if outside these bounds
Troponin-T trop  Cardiac Function 177 21% Normal: <14ng/L Normal, Abnormal Abnormal if greater than criteria

Covid CT Covid CT 843 100%

Threshold unique to type of 
test. Lab reports categorical 
'positive' variable alongside CT 
value 

Positive, Negative Only positives included in current study

Age Age 843 100% Continuous All ages >=18
Gender Gender 843 100% Male, Female
Covid Positive on 
Admission

OnAdmission 843 100% True, False Tested only in univariate evaluation

Outcome Outcome 843 100% Discharge, ICU, Death

Urea & Electrolytes Tests

Investigatory Tests

Covid-19 Test

Other Data

Blood Clotting Tests

Blood Gas Tests

Coinfection Battery

Diabetes

Full Blood Count Tests

Figure 2: Variables recorded in the LabMarCS dataset, including plain text description, abbreviation, place of record, frequency in the dataset, and criteria used for
converting continuous readings into categorical values.
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Figure 3: Example a single patient’s time series laboratory biomarker data. See
Figure 2 for biomarker abbreviations. Biomarker results are normalised to span
0 to 1 via offsetting by the absolute value of the minimum value and dividing
by the maximum value.

Outcomes89

For all sites, the primary prediction outcome was death or90

transfer to the ICU within 28 days of the critical date. This91

critical date was either the point of admission to hospital, or92

the date of the first positive COVID-19 PCR test result if the93

patient was already admitted. This generally corresponds to94

WHO-COVID-19 Outcomes Scale Score 6–10 (severe) versus95

0–5 (mild/moderate) [20].96

Patient Timelines97

The collected laboratory biomarkers are continuous mea-98

sures and provide a time-series representation of the course of a99

patient’s admission. Figure 3 shows an example of a single pa-100

tient’s readings over the course of 18 days between testing pos-101

itive for COVID-19 and being released from hospital care. This102

provides a representative example of the heterogeneity seen in103

our dataset, i.e. not all tests are taken and others are taken regu-104

larly or intermittently (further examples in Supplementary Fig-105

ures S2 - S6).106

Transformation of Biomarker Data107

Prediction modelling of irregularly sampled time-series data108

is a challenging open research question [21]. In this study we109

focused on established and available tools for conventional and110

Bayesian prediction. To balance inclusion of test data not avail-111

able on the day of admission and the need for clinical decisions112

to be guided soon after admission, we chose to consider the first113

value recorded for each biomarker within three days of their114

’critical date’. We additionally considered the worst or best115

readings within 1, 5 or 7 days, but found the first reading within116

3 days to be the most realistic compromise. In addition, we117

transformed continuous biomarkers into categorical variables118

via reference ranges for clinical use in the typical healthy popu-119

lation ranges, see Figure 2. As an example, Figure 4 shows the120

histogram of readings for all values recorded for Neutrophils,121

including clinical thresholds to transform into categorical data.122

No missing data imputation was performed, instead missing-123

ness was coded as as an additional category ’Test not taken’.124

For further elaboration these modelling choices and the chal-125

lenges, please see Discussion section.126

Figure 4: Example distribution of biomarker readings for Neutrophil Training
and Validation Data. Vertical lines indicate clinical thresholds for bounds on
Normal, Mild, Moderate, and Severe categorization.

Statistical Analysis127

Analytics were carried out using the R statistical language128

(v4.13) and R Studio (Prairie Trillium release). We used the129

following packages: Standard logistic regression analyses used130

the R Stats GLM package (v3.6.2); LASSO analyses, GLMnet131

(v4.1-4); and for Bayesian analyses, BRMS (v2.17) and Pro-132

jPred (v2.1.2). Source code for this analysis pipeline can be133

found at https://github.com/biospi/LABMARCS.134

Analysis of Individual Biomarkers135

Before running full regression models, we examined the136

independent contribution of individual biomarkers in predict-137

ing ICU entry or death via standard logistic regressions and138

Bayesian logistic regressions with either a flat (aka uniform) or139

horseshoe prior. This allowed calculation of p-values and odds140

ratios for each biomarker. A 5-fold cross-validation repeated141

20 times was run for each biomarker to estimate median AUC142

and 95% interquartile intervals. Stratified cross-validation data143

shuffling was precomputed so all models used the same starting144

data. Stratified cross-validation separates patients by outcome145

(two groups of patients with severe outcomes and those with-146

out), and shuffles both into 5 groups (yielding an 80/20 train-147

ing/test for each fold). These groups are combined ensuring all148

training and test datasets reflect the actual portion of patients149

with severe outcomes for that particular biomarker and not a150

random sample of that portion, which helps guarantee model151

convergence for biomarkers with high data missingness.152

Only complete cases of training data available for each biomarker153

were considered, i.e. we did not include data for variables154

marked ’Test not taken’, to focus on the predictive power of test155

results. Each individual biomarker model included age and gen-156

der (except univariate age and gender models) and were com-157

pared against a standard model including only age and gender.158

Regressions were fit using all associated dummy variables for a159
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given biomarker (e.g. ’Mild’, ’Moderate’, ’Severe’) using ’Nor-160

mal’ as the reference.161

Analysis Using All Valid Biomarker Data162

After individual biomarker evaluation, logistic regression163

models considering all valid biomarkers (Prediction Using In-164

dividual Variables section) and demographic variables were fit165

to the data. Their predictions were tested via internal and ex-166

ternal validation using the stratified cross-validation procedures167

detailed above, expect models were fit using all available train-168

ing data using ’Test Not Taken’ for absent data. The models169

include a standard logistic regression, a logistic regression reg-170

ularised with LASSO, and two Bayesian models using a flat and171

a horseshoe prior [22]. LASSO encourages models to converge172

on sparse solutions with most coefficients set to zero to achieve173

variable reduction as discussed in the Reduced Variable Models174

section. Bayesian horseshoe prior models similarly encourage175

sparse solutions but without making hard decisions on variable176

inclusion - this can subsequently be performed using Projective177

Prediction.178

Analysis Using Reduced Variable Models179

While a model using all biomarker data may have strong180

predictive power, it is clinically desirable to have a strong pre-181

diction with the least amount of biomarkers possible to save182

on resources devoted to biomarker collection. We used two183

methodologies to choose reduced variable models to predict184

COVID-19 severe outcomes, LASSO and Bayesian Projective185

Prediction.186

LASSO is an optimization constraint that shrinks parame-187

ters according to their variance, reduces over-fitting, and en-188

ables variable selection [18]. The optimal degree of regulari-189

sation is determined by tuning parameter λ within each cross-190

validation fold through a nested cross-validation step. LASSO191

has a drawback of having biased coefficient and log-odds esti-192

mates, as such after evaluating LASSO models we run a stan-193

dard GLM model on the reduced biomarker panel selected with194

the LASSO.195

To evaluate LASSO coefficient estimates, we performed re-196

peated nested stratified cross-validation (5-folds the for the in-197

ner LASSO loop; 5-folds for the outer loop, and 20 repeats).198

For a particular dataset fit, LASSO optimises for a sparse rep-199

resentation with many coefficients set to zero. Across cross-200

validated trials these variables will vary. LASSO fits are statis-201

tically biased and are better suited as a guide for variable selec-202

tion in a reduced variable standard GLM. As recommended in203

Heinze et al [23], we consider the frequency of how often a par-204

ticular biomarker has a coefficient greater than zero and count205

across cross-validation trials.206

For determining unbiased effect sizes for the reduced vari-207

able set with a standard GLM, it was chosen that if at least one208

categorical level for a particular biomarker (e.g. ’Severe’) was209

selected by the LASSO, all levels for that biomarker were in-210

cluded in the model. This resulted in a final set of ’LASSO in-211

spired’ variables that were then fit with standard logistic GLM.212

Note this approach, and more generally fitting multiple models213

to the same dataset, is subject to the problem of selective in-214

ference (aka multiple comparison error), see [24, 25] and the215

related R package [26]. Given our focus is not on reporting216

p-values, but instead cross-validation and generalisation from217

training data to validation data, these concerns are minimized.218

The second variable selection method explored was Bayesian219

Projective Prediction [19], a technique for assessing reduced220

variable models against a complete ’reference’ model, which in221

our case is a Bayesian logistic regression with a horseshoe prior222

[22]. Priors such as the horseshoe can be applied to provide223

adaptive shrinkage to covariates in Bayesian models directly so224

that full posterior distributions of odds estimates can be gen-225

erated in an unbiased way. Unlike the LASSO, this does not226

shrink coefficients to zero exactly as the inherent uncertainty is227

not ignored. To perform hard variable selection, the recent ap-228

proach of Projective Prediction can be used to compare the fit229

of submodels of the reference model through projections and230

approximate leave-one-out (LOO) cross-validation. Under the231

hood, Projective Prediction uses LASSO (or forward search)232

to select submodels for comparison, but retains the Bayesian233

inference for coefficient ranking and odds-ratio estimates. This234

approach allows one to evaluate the trade-off between AUC per-235

formance and the number of variables included in the model236

and use a reduced model projection at a desired AUC cutoff.237

Further projective prediction allows the flexibility to train one238

model on all valid available data, perform variable selection,239

and then use any projected sub-model with reduced variables240

to predict outcomes for novel data. Projective prediction mod-241

els were evaluated using cross-validation procedures described242

in prior sections. Note, the analysis of the projective predic-243

tion model using all training data uses LOO for variable se-244

lection, which is computationally intensive. To speed variable245

selection computation during our cross-validation analysis, we246

used ’naive’ variable selection, which only considers the train-247

ing data from current fold as is, and does not perform any fur-248

ther internal cross-validation (the projective prediction package249

allows naive, k-fold, and LOO).250

Results251

Cohort Description252

The initial cohort included 1159 patients which was nar-253

rowed down to 843 patients who met all inclusion criteria de-254

scribed above, see Figure 1. 57% of patients were hospitalised255

for COVID-19 and the remainder had nosocomial infection. For256

our statistical models, the training cohort (n=590) was defined257

as all adults admitted to hospital and testing positive for SARS-258

Cov-2 by PCR, or testing positive while already admitted be-259

tween March and October 2020. For external validation, we260

held the DGH cohort (n=253) out of training. Figure 5 depicts261

the distribution of ages and genders in the training and valida-262

tion data sets. Patients in the training set had a mean age of 70,263

were 44% female, and 29% had severe outcomes. The valida-264

tion set had a mean age of 75, were 47% female, and 38% had265

a severe outcome.266
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Figure 5: Distribution of age and gender for hospitalized patients with coron-
avirus disease 2019 (COVID-19) for (Top) training data (n=590) and (Bottom)
hold out validation data (n=253) cohorts.

Prediction Using Individual Variables267

Figure 6 shows descriptive statistics on individual biomarker268

readings and their odds ratio contributions in a 5-fold 20-repeat269

stratified cross-validated logistic regression including the par-270

ticular biomarker and age and gender. Figure 7 details perfor-271

mance using the area under the receiver operating characteristic272

curve (AUC) metric, comparing biomarker models (a particular273

biomarker plus age and gender) to a model using only age and274

gender. Due to the categorical representation of the biomarkers,275

individual levels may be significant while another is not (e.g.276

’Severe’ is a predictor, but ’Mild’ is not). Statistically signifi-277

cant predictors (i.e. odds ratios deviating from one with p-value278

at 0.05 or lower) associated with increasing risk of a severe out-279

come (as shown in Figure 6) include age, and the biomark-280

ers: Activated Partial Thromboplastin Time (Mild), Prothrom-281

bin time (Abnormal), blood pH (Abnormal), Haemoglobin (Se-282

vere), Platelet count (Moderate), Lymphocytes (Moderate, Se-283

vere), Neutrophils (Severe), Neutrophil-Lymphocyte Ratio (Mild,284

Moderate, Severe), C-Reactive Protein (Abnormal), Urea (Ab-285

normal), and Troponin-T (Abnormal). Nosocomial transmis-286

sion was included due to the high number of cases in our cohort287

but was not a significant predictor and excluded from further288

analyses. Due to small numbers preventing cross validation,289

Triglycerides, Glycated Haemoglobin, and Procalcitonin (also290

invalid due to being recorded only in ICU) were excluded from291

further analysis and require future research.292

Regression Models Using All Valid Biomarker Data293

Each model was evaluated via 5-fold stratified cross-validation294

with 20 repeats (100 models total). As such, each model is295

trained with a randomised sample of 80% of the training data296

set (n=472). Internal validation evaluates model predictions on297

the 20% (n=118) held out. External validation uses the same298

model, but is instead tested on the never trained on validation299

data set (n=253). Missing data for each biomarker is coded as300

’Test Not Taken’ and is included as a predictor variable. Figure301

8 shows the performance of these models (AUC, Sensitivity,302

Specificity). For comparison, Figure 9 shows the performance303

of each model using all valid training data (n=590) and testing304

on the same data (internal validation) and testing on the held305

out external validation data (n=253).306

Models trained on the full data have improved AUC scores,307

but do not provide a direct uncertainty estimate. For a sin-308

gle model this could be done via bootstrapping, but would not309

include uncertainty in model fit. Instead we compute inter-310

quantile ranges using 5-fold 20-repeat cross-validation of mod-311

els. Cross-validation results provide 95% inter-quantile ranges312

that clearly illustrate that in general, all models perform sim-313

ilarly, with a median AUC in the mid 0.70’s in internal val-314

idation, and near the high 0.60’s in external validation. The315

Bayes model with horseshoe prior slightly outperforms all oth-316

ers, as shown in the AUC difference column showing the dis-317

tribution of pair-wise differences across folds and repeats. The318

calibration of the models is reasonably good on the full data, all319

training data, but has poor calibration on the validation set, see320

Supplementary Figure S9.321

Reduced Variable Models322

The models detailed above are moderately good predictors323

of severe COVID-19 outcomes, but for clinicians with limited324

time and resources, reduced models can balance predictive per-325

formance with ease of clinical use by using only the most infor-326

mative biomarkers. To address this, we use two variable selec-327

tion approaches, LASSO and projective prediction, that allow328

the creation of reduced models with fewer biomarkers but sim-329

ilar performance to the larger models.330

LASSO Models331

After performing 5-fold 20 repeat cross-validation we ex-332

amined the frequency of how often a particular biomarker has333

a coefficient greater than zero and count across cross-validation334

trials. Figure S10 shows the frequency of variables having a335

coefficient great than zero in the cross-validated LASSO analy-336

sis. If we select variables that appear at least 50% of the time,337

our reduced model would include: Age, CRP (abnormal), FER338

(mild), FIB (mild), HB (severe), PLT (mild, moderate, severe),339

Lymphocytes (Severe), Neutrophils (Mild, Severe), NLR (Se-340

vere), APTT (mild, moderate), PT (abnormal), blood pH (ab-341

normal), Urea (abnormal), and positive viral and blood culture342

co-infections.343

For the reduced variable standard GLM, this resulted in a344

model using the 15 biomarkers above for all categorical lev-345

els, and was evaluated via both cross-validation and as fit to all346
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Bayesian Logistic        
(Flat Prior)

Bayesian Logistic 
(Horse Shoe Prior)

Biomarker
Binary 

Categorical 
Variable

% of Patients 
with 

Biomarker 
Recording

# TRUE 
(% of TRUE 

Observations 
with Severe 
Outcome)

# FALSE 
(% of FALSE 

Observations 
with Severe 
Outcome)

P Value
Odds Ratio 

[2.5%, 97.5%]
Odds Ratio 

[2.5%, 97.5%]
Odds Ratio 

[2.5%, 97.5%]

Age - 100% - - 3.22E-05 1.02 [1.01, 1.04] 1.02 [1.01, 1.04] 1.02 [1.01, 1.04]
Gender Female 100% 257 (26%) 333 (32%) 0.08 0.72 [0.50, 1.03] 0.72 [0.50, 1.03] 0.79 [0.54, 1.07]

- - - 2.83E-05 1.02 [1.01, 1.04] 1.02 [1.01, 1.04] 1.02 [1.01, 1.04]
Female 257 (26%) 333 (32%) 0.06 0.70 [0.49, 1.02] 0.70 [0.48, 1.02] 0.83 [0.55, 1.07]

Nosocomial Transmission TRUE 100% 240 (30%) 350 (29%) 0.65 0.92 [0.63, 1.33] 0.91 [0.63, 1.32] 0.94 [0.70, 1.21]

Mild 54% 30 (63%) 291 (320%) 2.44E-03 3.44 [1.57, 7.88] 3.6 [1.52, 8.30] 2.79 [1.12, 6.19]
Moderate 54% 4 (100%) 317 (34%) 0.98 9.91E+06 [0.00, NA] 5.3E+106 [7.9E+05, Inf] 6.84 [0.92, 218.16]

Prothrombin Time Abnormal 56% 45 (58%) 288 (31%) 2.96E-03 2.73 [1.41, 5.36] 2.18 [1.01, 4.67] 2.26 [1.01, 4.63]

Carbon Dioxide Abnormal 21% 68 (59%) 57 (51%) 0.33 1.44 [0.70, 2.99] 1.46 [0.69, 3.01] 1.08 [0.82, 1.92]
Lactate Abnormal 21% 13 (54%) 112 (55%) 0.96 1.03 [0.32, 3.44] 1.03 [0.32, 3.50] 1.00 [0.58, 1.64]
Oxygen Abnormal 21% 105 (55%) 20 (55%) 0.98 1.01 [0.38, 2.66] 1.01 [0.37, 2.69] 1.00 [0.65, 1.54]
Bicarbonate Excess Abnormal 64% 123 (38%) 252 (31%) 0.26 1.30 [0.82, 2.05] 1.30 [0.82, 2.00] 1.11 [0.86, 1.70]
pH acid/base scale Abnormal 63% 136 (46%) 238 (26%) 1.05E-04 2.45 [1.56, 3.87] 2.48 [1.59, 3.96] 2.23 [1.33, 3.57]

Blood Culture TRUE 100% 5 (0%) 585 (30%) 0.98 3.20E-07 [NA, 2.94E+22] 2.17E-140 [0, 2E-05] 0.45 [0.01, 1.26]
Respiratory TRUE 100% 6 (50%) 584 (29%) 0.20 2.95 [0.52, 16.62] 2.94 [0.48, 18.21] 1.30 [0.69, 5.62]
Urine TRUE 100% 12 (25%) 579 (30%) 0.63 0.72 [0.15, 2.53] 0.64 [0.14, 2.46] 0.93 [0.36, 1.56]
Viral TRUE 100% 7 (71%) 583 (29%) 0.06 4.95 [1.04, 35.13] 5.86 [1.06, 44.82] 1.92 [0.82, 12.53]

Glucose Abnormal 30% 49 (45%) 126 (32%) 0.11 1.77 [0.88, 3.54] 1.80 [0.90, 3.63] 1.31 [0.85, 2.60]

Mild 176 (36%) 368 (27%) 0.13 1.38 [0.91, 2.08] 1.37 [0.91, 2.08] 1.14 [0.90, 1.74]
Moderate 48 (33%) 495 (30%) 0.62 1.19 [0.59, 2.29] 1.17 [0.59, 2.31] 1.02 [0.68, 1.57]
Severe 11 (55%) 532 (30%) 0.03 4.08 [1.16, 15.06] 4.22 [1.20, 15.15] 1.63 [0.83, 7.16]
Mild 67 (39%) 474 (29%) 0.07 1.65 [0.95, 2.83] 1.63 [0.93, 2.86] 1.33 [0.90, 2.31]
Moderate 17 (65%) 524 (29%) 0.01 4.21 [1.54, 12.65] 4.40 [1.53, 13.35] 2.58 [0.97, 8.33]
Severe 4 (75%) 537 (30%) 0.12 6.16 [0.76, 126.83] 9.34 [0.84, 305.58] 1.86 [0.69, 17.37]
Mild 151 (27%) 392 (31%) 0.12 1.69 [0.89, 3.34] 1.71 [0.89, 3.26] 1.06 [0.73, 1.86]
Moderate 217 (31%) 326 (30%) 0.03 1.96 [1.07, 3.75] 1.99 [1.08, 3.70] 1.21 [0.88, 2.18]
Severe 84 (48%) 459 (27%) 4.99E-04 3.48 [1.75, 7.17] 3.53 [1.74, 7.11] 2.00 [1.00, 4.35]
Mild 23 (13%) 520 (31%) 0.23 0.47 [0.11, 1.43] 0.41 [0.09, 1.34] 0.71 [0.22, 1.29]
Moderate 3 (33%) 540 (30%) 0.67 1.71 [0.08, 19.15] 1.29 [0.04, 21.86] 1.07 [0.30, 3.80]
Severe 143 (41%) 400 (26%) 1.88E-03 1.92 [1.27, 2.91] 1.93 [1.28, 2.92] 1.75 [1.07, 2.70]
Mild 237 (28%) 306 (32%) 3.69E-03 2.50 [1.38, 4.79] 2.60 [1.40, 5.05] 1.83 [0.99, 3.58]
Moderate 137 (39%) 406 (27%) 3.18E-05 3.97 [2.12, 7.81] 4.13 [2.19, 8.23] 2.90 [1.42, 5.80]
Severe 54 (54%) 489 (28%) 2.61E-06 6.38 [2.99, 14.14] 6.72 [3.06, 15.22] 4.48 [1.91, 10.15]
Mild 57 (23%) 486 (31%) 0.34 0.72 [0.36, 1.38] 0.70 [0.35, 1.32] 0.84 [0.47, 1.23]
Moderate 2 (50%) 541 (30%) 0.45 3.03 [0.11, 83.24] 3.11 [0.08, 117.32] 1.15 [0.43, 5.00]
Severe 85 (42%) 458 (28%) 0.02 1.84 [1.12, 3.00] 1.83 [1.10, 3.00] 1.48 [0.97, 2.68]

C-Reactive Protein Abnormal 91% 489 (33%) 47 (4%) 1.49E-03 10.23 [3.08, 63.44] 13.12 [3.48, 77.20] 7.81 [2.44, 31.55]
Estimated Glomerular 
Filtration Rate

Abnormal 82% 350 (38%) 131 (18%) 0.06 1.76 [0.98, 3.23] 1.79 [0.98, 3.28] 1.42 [0.93, 2.83]

Urea Abnormal 89% 262 (47%) 264 (15%) 4.23E-11 4.27 [2.79, 6.63] 4.33 [2.85, 6.79] 4.13 [2.69, 6.33]

Brain / B-type natriuretic 
peptide

Abnormal 7% 30 (53%) 14 (29%) 0.13 3.91 [0.73, 27.00] 4.78 [0.76, 34.31] 1.52 [0.74, 9.03]

D-Dimer Abnormal 12% 52 (42%) 18 (33%) 0.67 1.29 [0.40, 4.43] 1.34 [0.40, 4.88] 1.11 [0.61, 2.62]
Mild 14% 11 (64%) 72 (39%) 0.09 3.61 [0.84, 17.70] 4.00 [0.85, 19.54] 1.30 [0.78, 5.08]
Moderate 14% 28 (46%) 55 (40%) 0.27 1.79 [0.64, 5.15] 1.85 [0.66, 5.30] 1.09 [0.74, 2.36]
Severe 14% 6 (33%) 77 (43%) 0.94 0.93 [0.11, 5.90] 0.82 [0.09, 5.71] 0.95 [0.35, 1.89]
Mild 5% 4 (75%) 26 (46%) 0.10 11.27 [0.85, 360.85] 24.77 [1.06, 1.29E+03] 1.40 [0.67, 11.84]
Severe 5% 3 (67%) 27 (48%) 0.40 3.41 [0.23, 105.85] 3.41 [0.23, 105.85] 1.15 [0.46, 5.30]

Glycated haemoglobin* Abnormal 3% 11 (9%) 4 (0%) 1.00 2.98E+08 [0, NA] 8.30E+11 [0.22, 4E+46] 1.28 [0.32, 15.50]

Mild 6% 12 (67%) 25 (56%) 0.49 2.61 [0.19, 71.00] 3.67 [0.18, 166.51] 1.14 [0.58, 3.98]

Moderate 6% 16 (63%) 21 (57%) 0.78 1.81 [0.09, 77.89] 1.81 [0.09, 77.89] 1.01 [0.39, 2.45]
Severe 6% 5 (60%) 32 (59%) 0.34 4.63 [0.22, 178.20] 7.51 [0.19, 465.95] 1.06 [0.43, 3.67]

Procalcitonin* Abnormal 4% 21 (86%) 4 (100%) 1.00 1.15E-07 [NA, 1.6E+184] 2.3E-07 [1.05E-31, 5.16] 0.80 [0.08, 2.72]
Triglycerides* Abnormal 3% 10 (90%) 5 (100%) 1.00 1.68E-09 [NA, Inf] 4.3E-07 [1.98E-30, 1.31] 0.74 [0.04, 3.05]
Troponin-T Abnormal 24% 91 (44%) 51 (22%) 0.03 2.96 [1.17, 7.96] 3.07 [1.25, 7.91] 1.71 [0.91, 5.40]
* Biomarkers not included in subsequent models due to small sample size, and recorded only in ICU (PCT)

Coinfection

100%

Investigatory Tests

Platelet Count

Demographics / Other

92%

92%

92%

92%

92%White Cell Count 

Diabetes

Full Blood Count Tests

Urea & Electrolytes Tests

92%

Lymphocytes

Standard Logistic GLM

Age & Gender

Activated partial 
thromboplastin time

Blood Clotting Tests

Blood Gas Tests

Ferritin

Hemoglobin

Lactate dehydrogenase

Neutrophils

Neutrophil - Lymphocyte 
Ratio

Fibrinogen

Figure 6: Individual biomarker evaluation including descriptive statistics and logistic regression model outcomes (Standard, Bayesian with flat prior, and Bayes
with horseshoe prior) , including age and gender (except univariate age and gender models). Regressions were fit using all associated dummy variables for a given
biomarker (e.g. normal, mild, moderate, severe) and using only complete cases of training data, i.e. not using a variable for ’Test not taken.’ Categorical variables
use a reading of ’Normal’ as a reference in the fitted model, except ’Male’ used as the reference category for gender.
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Demographic / Biomarker
Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age 

& Gender 
Standard 

[2.5%,97.5%]

Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age 

& Gender 
Standard 

[2.5%,97.5%]

Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age 

& Gender Standard 
[2.5%,97.5%]

Age 0.62 [0.52, 0.74] 0.00 [-0.10, 0.03] 0.61 [0.45, 0.74] 0.01 [-0.10, 0.06] 0.61 [0.51, 0.73] 0.00 [-0.13, 0.03]
Gender 0.54 [0.45, 0.62] 0.07 [-0.06, 0.17] 0.54 [0.46, 0.64] 0.08 [-0.08, 0.20] 0.54 [0.47, 0.62] 0.07 [-0.11, 0.17]
Age & Gender 0.62 [0.51, 0.71] 0.00, [0.00, 0.00] 0.62 [0.51, 0.73] 0.00, [-0.02, 0.01] 0.61 [0.52, 0.72] 0.00, [-0.02, 0.02]

Nosocomial Transmission 0.61 [0.47, 0.69] 0.00 [-0.05, 0.04] 0.61 [0.48, 0.69] 0.00 [-0.02, 0.04] 0.61 [0.43, 0.70] 0.00 [-0.11, 0.02]

Activated partial 
thromboplastin time

0.65 [0.46, 0.78] -0.04 [-0.23, 0.04] 0.65 [0.47, 0.78] -0.04 [-0.24, 0.06] 0.64 [0.45, 0.77] -0.04 [-0.15, 0.06]

Prothrombin Time 0.64 [0.46, 0.77] -0.03 [-0.22, 0.06] 0.64 [0.47, 0.76] -0.03 [-0.16, 0.05] 0.64 [0.50, 0.75] -0.03 [-0.13, 0.04]

Carbon Dioxide 0.54 [0.42, 0.69] 0.01 [-0.16, 0.24] 0.55 [0.42, 0.68] 0.00 [-0.15, 0.21] 0.56 [0.43, 0.69] 0.00 [-0.17, 0.13]
Lactate 0.57 [0.42, 0.72] 0.00 [-0.20, 0.10] 0.56 [0.40, 0.72] -0.01 [-0.16, 0.19] 0.57 [0.42, 0.76] 0.00 [-0.23, 0.18]
Oxygen 0.57 [0.43, 0.74] 0.00 [-0.21, 0.14] 0.56 [0.42, 0.71] 0.00 [-0.16, 0.12] 0.54 [0.42, 0.70] 0.03 [-0.15, 0.18]
Bicarbonate Excess 0.57 [0.47, 0.70] 0.00 [-0.09, 0.11] 0.57 [0.45, 0.70] 0.00 [-0.08, 0.13] 0.58 [0.43, 0.72] 0.00 [-0.05, 0.13]
pH acid/base scale 0.65 [0.48, 0.75] -0.07 [-0.18, 0.08] 0.65 [0.48, 0.74] -0.07 [-0.26, 0.07] 0.64 [0.47, 0.75] -0.06 [-0.21, 0.09]

Blood Culture 0.62 [0.52, 0.71] -0.01 [-0.02, 0.00] 0.62 [0.52, 0.72] -0.01 [-0.03, 0.01] 0.62 [0.51, 0.72] -0.00 [-0.13, 0.02]
Respiratory 0.61 [0.51, 0.73] -0.00 [-0.02, 0.01] 0.62 [0.50, 0.73] -0.00 [-0.05, 0.02] 0.62 [0.50, 0.73] -0.00 [-0.02, 0.02]
Urine 0.61 [0.47, 0.70] 0.00 [-0.00, 0.04] 0.61 [0.48, 0.70] 0.00 [-0.03, 0.04] 0.62 [0.50, 0.71] 0.00 [-0.05, 0.02]
Viral 0.61 [0.48, 0.76] -0.00 [-0.02, 0.01] 0.61 [0.47, 0.76] -0.00 [-0.03, 0.02] 0.61 [0.46, 0.76] -0.00 [-0.04, 0.03]

Glucose 0.60 [0.44, 0.77] -0.00 [-0.09, 0.15] 0.60 [0.45, 0.76] -0.01 [-0.11, 0.17] 0.58 [0.46, 0.74] -0.01 [-0.10, 0.19]

Hemoglobin 0.61 [0.52, 0.72] -0.00 [-0.06, 0.07] 0.61 [0.53, 0.72] -0.00 [-0.06, 0.08] 0.61 [0.51, 0.71] -0.00 [-0.03, 0.05]
Platelet Count 0.63 [0.51, 0.74] -0.01 [-0.07, 0.04] 0.63 [0.51, 0.73] -0.01 [-0.07, 0.03] 0.63 [0.51, 0.73] -0.01 [-0.09, 0.04]
Lymphocytes 0.65 [0.56, 0.76] -0.03 [-0.10, 0.03] 0.65 [0.56, 0.76] -0.04 [-0.17, 0.04] 0.63 [0.53, 0.73] -0.02 [-0.08, 0.03]
Neutrophils 0.63 [0.53, 0.74] -0.02 [-0.09, 0.06] 0.63 [0.53, 0.75] -0.02 [-0.07, 0.06] 0.64 [0.54, 0.74] -0.02 [-0.07, 0.04]
Neutrophil - Lymphocyte 
Ratio

0.67 [0.59, 0.75] -0.05 [-0.15, 0.04] 0.67 [0.59, 0.75] -0.05 [-0.14, 0.05] 0.67 [0.58, 0.74] -0.05 [-0.16, 0.05]

White Cell Count 0.62 [0.50, 0.70] -0.01 [-0.08, 0.07] 0.62 [0.49, 0.71] -0.01 [-0.06, 0.08] 0.63 [0.49, 0.71] -0.00 [-0.10, 0.06]

C-Reactive Protein 0.66 [0.54, 0.74] -0.04 [-0.11, 0.01] 0.66 [0.55, 0.74] -0.03 [-0.10, 0.02] 0.66 [0.55, 0.74] -0.04 [-0.12, 0.01]
Estimated Glomerular 
Filtration Rate

0.62 [0.48, 0.74] -0.01 [-0.03, 0.04] 0.63 [0.47, 0.74] -0.00 [-0.03, 0.05] 0.62 [0.44, 0.74] 0.00 [-0.03, 0.03]

Urea 0.71 [0.60, 0.81] -0.09 [-0.19, -0.01] 0.71 [0.60, 0.80] -0.09 [-0.20, -0.01] 0.70 [0.60, 0.81] -0.09 [-0.19, -0.00]

Brain / B-type natriuretic 
peptide

0.65 [0.38, 0.95] -0.05 [-0.38, 0.25] 0.65 [0.40, 1.00] -0.03 [-0.45, 0.25] 0.65 [0.40, 0.90] 0.00 [-0.40, 0.25]

D-Dimer 0.65 [0.44, 0.86] 0.01 [-0.11, 0.18] 0.65 [0.42, 0.90] 0.00 [-0.13, 0.18] 0.65 [0.40, 0.85] 0.00 [-0.17, 0.14]
Ferritin 0.60 [0.41, 0.81] -0.01 [-0.24, 0.23] 0.60 [0.44, 0.83] -0.01 [-0.30, 0.19] 0.59 [0.41, 0.79] 0.00 [-0.25, 0.21]
Fibrinogen 0.67 [0.44, 1.00] 0.00 [-0.44, 0.33] 0.67 [0.44, 1.00] 0.00 [-0.44, 0.33] 0.67 [0.44, 1.00] 0.00 [-0.44, 0.33]
Glycated haemoglobin* NA NA NA NA NA NA
Lactate dehydrogenase 0.67 [0.42, 1.00] 0.00 [-0.25, 0.33] 0.67 [0.42, 1.00] 0.00 [-0.27, 0.33] 0.67 [0.40, 1.00] 0.00 [-0.33, 0.27]
Procalcitonin* NA NA NA NA NA NA
Triglycerides* NA NA NA NA NA NA
Troponin-T 0.54 [0.39, 0.72] 0.01 [-0.23, 0.21] 0.56 [0.44, 0.72] -0.00 [-0.23, 0.19] 0.57 [0.44, 0.74] 0.01 [-0.24, 0.16]
* Biomarkers not included in subsequent models due to small sample size, and recorded only in ICU (PCT)

Coinfection

Demographics / Other

Blood Clotting Tests

Blood Gas Tests

Investigatory Tests

Urea & Electrolytes Tests

Full Blood Count Tests

Diabetes

Standard Logistic GLM Bayesian Logistic (Flat Prior) Bayesian Logistic (Horse Shoe Prior)
Cross-Validated 80/20 Split Cross-Validated 80/20 Split Cross-Validated 80/20 Split

Figure 7: Predictive performance of the individual biomarker models in Figure 6 as described by the median area under the curve (AUC) in receiver operating
curve (ROC) analysis and median difference between an Age and Gender reference model and the same model (negative values indicate the reference has worse
performance) with the particular biomarker included (except univariate age and gender models). Regressions were fit using all associated dummy variables for a
given biomarker (e.g. mild, moderate, severe) and using only complete cases of training data (n=590), i.e. not using a variable for ’Test not taken.’ 95% inter-
quantile ranges calculated via 5-fold cross-validation with 20 repeats (100 models total). Categorical variables use a reading of ’Normal’ as a reference in the fitted
model, except ’Male’ used as the reference category for gender.
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Model 
AUC 

[2.5%, 97.5%]

Specificity at 90% 
Sensitivity

[2.5%, 97.5%]

Specificity at 95% 
Sensitivity

[2.5%, 97.5%]
AUC Difference

AUC 
[2.5, 97.5]

Specificity at 90% 
Sensitivity

[2.5%, 97.5%]

Specificity at 95% 
Sensitivity

[2.5%, 97.5%]
AUC Difference

Standard Logistic GLM 0.74 [0.62, 0.83] 0.40 [0.02, 0.61] 0.14 [0.00, 0.48]  -0.04 [-0.14, 0.03] 0.68 [0.61, 0.71] 0.27 [0.18, 0.37] 0.13 [0.02, 0.23]  -0.02 [-0.07, 0.01]
GLM with LASSO regularisation 0.78 [0.70, 0.85] 0.47 [0.27, 0.63] 0.34 [0.04, 0.54]  -0.01 [-0.04, 0.02] 0.69 [0.66, 0.71] 0.32 [0.24, 0.38] 0.19 [0.14, 0.26]  -0.01 [-0.03, 0.00]
Bayesian GLM (Flat Prior) 0.74 [0.62, 0.83] 0.42 [0.01, 0.63] 0.23 [0.00, 0.52]  -0.04 [-0.14,  0.02] 0.67 [0.60, 0.70] 0.27 [0.16, 0.36] 0.13 [0.01, 0.22]  -0.03 [-0.08, 0.00]
Bayesian GLM (Horse Shoe Prior) 0.79 [0.71, 0.87] 0.49 [0.35, 0.68] 0.37 [0.10, 0.58] Reference 0.70 [0.68, 0.71] 0.34 [0.29, 0.40] 0.23 [0.17, 0.28] Reference
LASSO inspired GLM (15 biomarkers) 0.80 [0.73, 0.87] 0.51 [0.34, 0.66] 0.39 [0.01, 0.60] 0.01 [-0.04,  0.05] 0.67 [0.65, 0.69] 0.28 [0.22, 0.34] 0.16 [0.10, 0.20]  -0.03 [-0.04, -0.01]
Projective Prediction (28 Biomarkers) 0.78 [0.71, 0.87] 0.50 [0.29, 0.65] 0.36 [0.07, 0.56]  -0.01 [-0.02, 0.04] 0.70 [0.68, 0.71] 0.34 [0.28, 0.40] 0.23 [0.16, 0.28] 0 [-0.01, 0.01]
Projective Prediction (3 Biomarkers) 0.79 [0.78, 0.80] 0.50 [0.46, 0.53] 0.41 [0.34, 0.46]  0.00 [-0.07,  0.08] 0.67 [0.65, 0.69] 0.27 [0.23, 0.31] 0.19 [0.15,0.24]  -0.03 [-0.05, -0.01]

Internal Validation External Validation

Figure 8: Cross-validated performance of models trained using valid biomarker data. 95% inter-quantile ranges are presented for each estimate. Specificity is
obtained by evaluating at a set sensitivity of either 90% or 95%. All reduced variable models include age, and a stated number of biomarkers. The reduced variable
standard GLM uses 15 biomarkers that had non-zero coefficients on >=50% LASSO Cross-validation trials. If at least one categorical level for a particular biomarker
(e.g. severe) met this requirement, all levels for that biomarker were included in the model. The 3 biomarker projective prediction model uses all categorical levels
for Urea, PT, and NLR. Pairwise AUC difference is presented in comparison to the Bayesian (Horse shoe prior) model.

Model Accuracy AUC Brier Sensitivity Specificity Accuracy AUC Brier Sensitivity Specificity
Standard Logistic GLM 0.82 0.87 0.13 0.93 0.56 0.66 0.69 0.13 0.82 0.40
Standard GLM with LASSO regularisation 0.77 0.83 0.23 0.94 0.39 0.62 0.69 0.38 0.93 0.13
LASSO inspired GLM (15 biomarkers) 0.79 0.84 0.14 0.91 0.50 0.67 0.69 0.14 0.88 0.34
Bayesian GLM (Flat Prior) 0.82 0.86 0.18 0.92 0.58 0.64 0.68 0.36 0.79 0.40
Bayesian GLM (Horse Shoe Prior) 0.79 0.84 0.21 0.94 0.45 0.63 0.71 0.37 0.89 0.22
Projective Prediction (28 Biomarkers) 0.79 0.83 0.21 0.94 0.44 0.64 0.71 0.36 0.90 0.24
Projective Prediction (3 Biomarkers) 0.73 0.75 0.27 0.91 0.30 0.67 0.70 0.33 0.94 0.24

Internal Validation External Validation

Figure 9: Performance of models using all valid biomarker data trained on all training data available (n=590). Internal validation is trained on all of the training
data and tested on the same. External validation uses the same model and is tested on held out validation data set (n=253). Missing data for each biomarker is
coded as ’Test Not Taken’. Specificity and sensitivity evaluated using a probability threshold of 0.5 (i.e. assumes a well-calibrated model). All reduced variable
models include age, and a stated number of biomarkers. The reduced variable standard GLM uses 15 biomarkers that had non-zero coefficients on >=50% LASSO
Cross-validation trials. If at least one categorical level for a particular biomarker (e.g. severe) met this requirement, all levels for that biomarker were included in
the model. The 3 biomarker projective prediction model uses uses all categorical levels for Urea, PT, and NLR.

available training data. This model had performance very simi-347

lar to the models using all valid biomarker data, with a median348

external validation AUC of 0.68 [0.63, 0.72], see Figures 8 and349

9.350

Note, ’Test Not Taken’ is a significant predictor for LDH351

and Lactate on over 50% of cross-validation trials. The poten-352

tial significance of missing data is complex and is addressed in353

the Discussion section. Due to this confounding, biomarkers354

whose top predictive contribution was from ’Test Not Taken’355

were excluded from both LASSO reduced variable models and356

projective prediction models described below.357

Projective Prediction Models358

When all biomarkers were considered, projective prediction359

identifies the following predictors in the top 20, in order of con-360

tribution to AUC: Urea (abnormal), Age, PT (abnormal), NLR361

(Severe), pH (abnormal), Lymphocytes (severe), APPT(mild),362

eGFR (abnormal), Neutrophils (Severe), APPT(moderate), CRP363

(abnormal), DDM (abnormal), Hemoglobin (severe). Thus age364

and 12 biomarkers are candidates for a reduced model. Note,365

several predictors of ’Test Not Taken’ were also selected in-366

cluding Lactate, O2, CO2, LDH, Ferritin and Fibrinogen. As367

mentioned above, these biomarkers are set aside due to this368

confounding. Supplementary Figures S11 and S12 display369

the output from projective prediction ranking the contribution370

of each variable to the model. A model using a projection in-371

corporating all biomarker and demographic data is equivalent to372

the standard Bayesian GLM we evaluated in the prior section,373

see Figures 8 and 9.374

Reduced variable projections were evaluated by manual in-375

spection of AUC performance among groups of models using376

the top biomarkers. Guided by the projective prediction rank-377

ing, we ran a model using only the top biomarker, using only378

the top two, the top three, and so on. As described above we379

omit biomarkers with significant contributions from ’Test Not380

Taken’ and include all categorical levels for a given biomarker381

as long as one level is highly ranked. Ultimately, we found a 3382

biomarker projective prediction model using age and including383

urea, prothrombin time, neutrophil-lymphocyte ratios had sim-384

ilar performance to larger models with a median internal vali-385

dation AUC of 0.79 [0.78, 0.80], and external validation AUC386

of 0.67 [0.65, 0.69], as shown in Figures 8 and 9. Odds ra-387

tios for the full Bayesian model and the reduced 3-biomarker388

model can be found in Supplementary Table S13. The calibra-389

tion of the model is reasonably good on the training data but390

has poor calibration on the validation set, see Supplementary391

Figure S14.392

Discussion393

Challenges of Complex Medical Data394

Curating the LabMarCS data is challenging as the data are395

heterogeneous in multiple ways. Biomarkers are recorded for396

9

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2022.09.16.22279985doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.16.22279985


different reasons, e.g. routine upon admission, investigatory397

tests, or tests primarily or exclusively taken in ICU. Further,398

some biomarkers are typically recorded together (but not al-399

ways) as part of a test suite, including: Urea and electrolytes,400

full blood count, COVID-19 and co-infection swab test, blood401

clotting, and blood gas tests (arterial or venous). The schedule402

when some these markers are recorded vary by patient and clin-403

ical decision, leading to records being present in highly varying404

amounts, e.g. only 3% up to 100% of patients depending on the405

particular biomarker, see Supplementary Figure S1.406

Modelling Choices407

When constructing and evaluating models, there are many408

choice points that should be explicitly highlighted with justifi-409

cation, be it based on convenience, computational complexity,410

clinical advice, or a heuristic. The space of potential models411

is vast and most studies will constrain the model search space,412

delineating why these choices are made will facilitate under-413

standing and reproduction by other researchers. These include414

key choices relating to: patient inclusion/exclusion criteria, data415

missingness protocols, data transformations, training and vali-416

dation data selection, and performance evaluation.417

Missing Data418

Missingness, in the context of this study and in healthcare419

data more generally, can sometimes be informative and miss-420

ing not at random (MNAR), with the presence or absence of a421

test correlated with the its measurement or the study outcome.422

Imputation of missing data relies on key statistical assumptions423

that imputed variables are missing at random (MAR) or missing424

completely at random (MCAR). Conversations with our clini-425

cal co-authors established some routinely collected biomark-426

ers might be inferred to be MAR. However, the routines iden-427

tified were specific to a small a subset of our cohort and not428

likely to extrapolate. We ultimately erred to be conservative and429

avoid all imputation, and instead include the presence/absence430

of missing values as a covariate itself [27, 28]. As such, in the431

current study we chose to use placeholders for ’Test not taken’432

if there was no recorded value for a particular biomarker within433

the evaluated 3-day window.434

This approach allows the possibility that a ’Test Not Taken’435

may be a significant predictor. This has many potential mean-436

ings, as it may convey that when a patient is doing well and437

unlikely to experience a severe outcome, clinicians are unlikely438

to request some biomarker tests. Alternatively, if a patient is in439

palliative care and has a poor prognosis, a clinician may con-440

sider further testing unnecessary. As such, the likelihood of a441

test being administered may follow an inverted-U function as442

patients to healthy or too ill may not have tests administered.443

Furthermore, as our data was collected early in the pandemic,444

there may be other underlying clinical decisions or resource445

limitations that drove why some tests were taken but not others.446

Lastly, because we only consider results from the first 3 days447

from a patients critical date, it may be that some tests were sim-448

ply taken later in a patient’s stay due to operational constraints,449

and hence may be more predictive as they were taken closer to450

the outcome. When these instances occurred, we were conser-451

vative and excluded biomarkers with ’Test Not Taken’ as the452

most informative category from our reduced variable models.453

Data Transforms - Time Windows454

Ideally clinicians make decisions based on readings on the455

day of admission. However, not all tests are administered on456

admission. To balance inclusion of test data not available on457

the day of admission and the need for clinical decisions to be458

guided soon after admission, we chose to consider the first value459

recorded for each biomarkers within three days of their ’critical460

date’, i.e. date of admission if already COVID-19 positive, or461

if already in hospital, the date of testing COVID-19 positive.462

However, given the richness of the time series data collected,463

further research into models that leverage this extra information464

is needed.465

Focusing on early detection reflects the intent for the model466

to improve early stage clinical decision making when potential467

treatments or changes in care may be introduced. This focus468

on the first reading in a 3-day interval loses information, but469

greatly simplifies the modelling approach. Note, this choice is470

not without risk of reducing statistical power, increasing the risk471

of false positives, and underestimation of the extent of variation472

in biomarker readings and outcomes between groups [29]. It is473

likely that representing biomarker data as time-series (assum-474

ing regular measures across patients) would add considerable475

information for continuous monitoring.476

Data Transforms - Continuous vs. Categorical477

A key modelling decision must be made on whether to use478

continuous data or transformed categorical data. Clinicians of-479

ten use biomarker thresholds to provide semantic categories480

(e.g. normal, mild, moderate, severe) which sometimes use481

non-linear or discontinuous mappings that require special care482

if using continuous data. While clinical thresholds are likely483

established with evidence, it may be the case that thresholds484

for one use may not apply to a novel use. This led [30, 31] to485

use machine learning approaches to build categorisation models486

on continuous biomarker data dependent on the training data at487

hand. However, using machine learning to establish categorisa-488

tion thresholds on our biomarker data is difficult with a small489

training data set and the heterogeneity of biomarker recordings.490

If missing data imputation is performed, it raises another de-491

cision point on whether to impute the continuous or the trans-492

formed categorical data.493

Another important factor to recognise is that some biomark-494

ers lack a linear relationship between a reading and a semantic495

category. Biomarkers can have a lower and upper bound for496

what is considered normal, and both below and above this range497

reflects clinically meaningful yet sometimes separate abnormal-498

ities. The modelling needs to factor in non-linearity when per-499

severing continuous data or trying to map to a categorical space.500

In our position, categorical transformation had an advantage, as501

they allowed us to collaborate with ICU consultants while using502

pre-established clinically acceptable ranges to define our cate-503

gorisation, see Figure 2.504
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Training and Validation Data Selection505

There are multiple ways that our data set could be split be-506

tween training and validation sets, e.g. randomly sampling 1/3507

of the data to hold out as a validation set. Random selection508

of training data should in principle generate data more repre-509

sentative of the validation set left out. However, hospitals may510

have differing practices and non-stratified randomization may511

inflate performance at the cost of real world generalisation. We512

chose to separate our training and validation datasets by hospi-513

tal to provide a stronger test of generalisation that should mimic514

generalisation to novel hospitals completely outside the original515

training data .516

Model Performance Evaluation and Dissemination517

There are a variety of ways statistical model performance518

can be evaluated. Here we have chose here to emphasize cross-519

validated estimates of AUC, sensitivity, and specificity. Inter-520

quartile intervals over these measures reveal that the variety of521

models perform in similar ways. With a larger data set, trade-522

offs may become more apparent. Model calibration on the val-523

idation set is a clear weak point. While the models have a524

reasonable calibration for training data, generalisation perfor-525

mance is weak and suggestive of the lack of sufficient data.526

Comparison to Contemporary Models527

We found several biomarkers previously highlighted by other528

groups to have significant predictive power, including: Urea,529

Neutrophil-Lymphocyte Ratio, Lymphoctyes, APTT, eGFR, and530

CRP. Our highly reduced 3-biomarker model (plus age) uses531

Urea (highlighted by all prior models), Neutrophil-Lymphocyte532

ratio (highlighted by [32, 11, 31]), and APPT (highlighted by533

[31]). With a larger dataset, further vetting of these and other534

biomarkers would be possible, but it gives reassurance that de-535

spite limitations, we find similar predictive biomarkers.536

Advantages of Bayesian Modelling537

While the predictive performance across models presented538

here is generally quite similar, the Bayesian horse shoe model539

had slightly better cross-validated predictive performance and540

there are several reasons for researchers to favor Bayesian ap-541

proaches. Coefficients estimated via Bayes should on average542

deliver better predictive performance than standard GLM. Ad-543

ditionally, if a sparse model is needed, a horseshoe prior can544

provide advantages similar to LASSO without biased coeffi-545

cient estimates. Computationally, Bayesian techniques can be546

slow due Markov Chain Monte Carlo used to sample the coeffi-547

cient space. If one is interested in variable selection, projective548

prediction offers the ability to take a single Bayesian model fit,549

run a variable selection algorithm to rank variable contributions,550

and then arbitrarily create sub-model projections with any num-551

ber of original variables. While the initial model fit and variable552

selection are computationally intensive, sub-model projections553

are fast to create and performance test.554

Summary & Conclusions555

Limitations: This is a retrospective cohort study in South-556

west England where case numbers have varied widely, and were557

below national incidence rates during the first wave. This re-558

sults in less precise parameter estimates for prediction models559

(less power/smaller sample size) and likely reduced generaliz-560

ability of the model to other settings. The timing of biomarker561

collection was highly varied both within and between patients,562

with many types of readings missing.563

Strengths: The primary strength of our study is the granu-564

larity of serial laboratory data available linked to clinical out-565

comes. This study was performed during the first wave where566

there was the original Wuhan strain circulating amongst the un-567

vaccinated naı̈ve population without any specific immunomod-568

ulating therapies such as steroids or antiviral agents, reflecting569

the “true” homeostasis derangements at a population level.570

In particular, this study describes the variety of challenges571

present in complex medical data sets and how statistical best-572

practices can be applied to such data, highlighting the benefits573

of recent Bayesian methodology. Our study reiterates the pre-574

dictive value of previously identified biomarkers for COVID-575

19 severity assessment (e.g. age, urea, prothrombin time, and576

neutrophil-lymphocyte ratio). Both the full and reduced vari-577

able models have moderately good training performance, but578

improved external validation is needed for all models to be clin-579

ically viable. The methods presented here should generalise580

well to a larger dataset.581
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Figure S1: Heat map displaying missing values across recorded biomarkers.
Light blue indicates a value is missing and dark blue indicate it is present
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Figure S2: Example biomarker time series for a patient admitted to hospital
COVID-19 positive and who subsequently died almost two weeks later.
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Figure S3: Example biomarker time series for a patient admitted to hospital
with subsequent nosocomial transmission and discharge a week later.
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Figure S4: Example biomarker time series for a patient admitted to hospital
COVID-19 positive, with subsequent entrance to ICU and death over one month
later.
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Figure S5: Example biomarker time series for a patient admitted to hospital and
ICU, with subsequent nosocomial transmission and discharge about one week
later.
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Figure S6: Example biomarker time series for a patient with two hospital ad-
missions and testing COVID-19 positive on the first, with discharge almost two
weeks after second admission.

Figure S7: Distribution of D-Dimer readings with clinical classification requir-
ing age and gender bands

Biomarker
Binary 

Categorical 
Variable

P-Value
Odds Ratio

CI [2.5%, 97.5%]

Age - 6.30E-05 1.04 [1.02, 1.06]
Gender Female 0.43 1.21 [0.75, 1.97]

Mild 0.07 2.79 [0.93, 8.35]
Moderate 0.99 3.23E+07 [0, Inf]
Not Taken 0.50 0.45 [0.05, 4.51]
Abnormal 0.16 2.02 [0.75, 5.44]
Not Taken 0.46 2.38 [0.24, 23.86]

Abnormal 0.80 1.13 [0.44, 2.95]
Not Taken NA NA
Abnormal 0.63 0.67 [0.13, 3.34]
Not Taken 0.02 0.16 [0.04, 0.72]
Abnormal 0.95 1.05 [0.26, 4.15]
Not Taken NA NA
Abnormal 0.24 1.48 [0.76, 2.87]
Not Taken 0.99 0 [0, Inf]
Abnormal 0.13 1.59 [0.87, 2.91]
Not Taken 0.99 9.4E06 [0, Inf]

Blood Culture TRUE 0.99 0 [0, Inf]
Respiratory TRUE 0.36 2.71 [0.32, 22.69]

Urine TRUE 0.43 0.45 [0.06, 3.24]
Viral TRUE 0.02 16.64 [1.7, 162.66]

Abnormal 0.36 1.55 [0.61, 3.92]
Not Taken 0.60 0.84 [0.44, 1.61]

Mild 0.05 1.76 [1.01, 3.09]
Moderate 0.99 1.01 [0.40, 2.51]

Severe 0.15 4.62 [0.58, 37.05]
Not Taken 0.99 1.3E9 [0, Inf]

Mild 0.01 2.8 [1.33, 5.90]
Moderate 0.03 5.81 [1.21, 28.03]

Severe 0.10 20.44 [0.57, 734.84]
Not Taken 0.99 0 [0, Inf]

Mild 0.12 1.98 [0.83, 4.73]
Moderate 0.23 1.81 [0.69, 4.76]

Severe 0.14 2.61 [0.74, 9.22]
Not Taken NA NA

Mild 0.02 0.05 [4E-3, 0.59]
Moderate 0.73 0.22 [3.1E-5, 1.4E3]

Severe 0.38 1.45 [0.63, 3.32]
Not Taken NA NA

Mild 0.82 1.1 [0.48, 2.52]
Moderate 0.80 1.15 [0.39, 3.44]

Severe 0.41 1.89 [0.41, 8.69]
Not Taken NA NA

Mild 0.72 0.83 [0.29, 2.38]
Moderate 0.73 0.21 [2.5E-5, 1.6E3]

Severe 0.83 1.11 [0.43, 2.83]
Not Taken NA NA

Abnormal 0.07 4.46 [0.91, 21.93]
Not Taken 0.94 0.90 [0.07, 12.34]

Abnormal 0.41 0.72 [0.33, 1.58]

Not Taken 0.04 0.25 [0.06, 0.95]
Abnormal 3.71E-04 2.74 [1.57, 4.77]
Not Taken 0.95 0.94 [0.11, 7.76]

Abnormal 0.72 1.47 [0.18, 11.76]

Not Taken 0.81 1.24 [0.21, 7.40]
Abnormal 0.31 0.42 [0.08, 2.24]
Not Taken 0.23 0.37 [0.07, 1.89]

Mild 0.10 5.65 [0.71, 45.00]
Moderate 0.61 1.52 [0.30, 7.58]

Severe 0.84 1.30 [0.10, 17.54]
Not Taken 0.63 1.30 [0.45, 3.72]

Mild 0.21 11.93 [0.26, 552.59]
Severe 0.42 0.26 [0.01, 6.77]

Not Taken 0.92 1.07 [0.27, 4.22]
Mild 0.13 14.88 [0.46, 477.41]

Moderate 0.31 5.41 [0.20, 145.69]
Severe 0.48 4.20 [0.08, 217.62]

Not Taken 0.61 2.13 [0.12, 39.40]

Abnormal 0.68 1.31 [0.37, 4.65]

Not Taken 0.58 1.40 [0.43, 4.53]

Intercept - 0.004 0.001 [0.0, 0.11]
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Figure S8: Standard logistic regression odds ratio and confidence intervals per
biomarker using all valid biomarker training data available (n=590). Note most
biomarkers include a ’Test Not Taken’ stand in variable.

14

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2022.09.16.22279985doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.16.22279985


0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Predicted Probability (Bin Width 0.1)

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 P
op

ul
at

io
n

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Predicted Probability (Bin Width 0.1)

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 P
op

ul
at

io
n

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Predicted Probability (Bin Width 0.1)

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 P
op

ul
at

io
n

Figure S9: Model calibration depicting a standard GLM model trained on:
(Top) all data and tested on all data (Middle); training data (n=590) and tested
on the same; (Bottom) training data and tested on validation data (n=293). A
well calibrated model should evenly distribute outcome probabilities, i.e. be
close to unity.
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Figure S10: Frequency of LASSO logistic regression variables having a coefficient greater or less than 0. Red and black lines indicate thresholds for 20% and 50%
frequency.
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Figure S11: Heatmap representation of the LOO variable selection output from Bayesian projective prediction ranking predictive power as a function in change of
AUC. The color of an individual cell shows the proportion of times in the LOO process a variable was chosen at that particular rank of predictive strength. Note
this demonstrates a reduced 15-biomarker model (51 variables total), where biomarkers that had ’Test Not Taken’ ranked as their most important predictive element
were removed from the model.
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Solution Terms AUC Difference
ELPD 
LOO

Standard 
Error

Difference
Standard 

Error
<NA> 0 -0.8 -358.5 9.7 -61.6 10.7
UreaAbnormal 0.5 -0.3 -326.3 11.4 -29.4 8.3
poctLACNA 0.6 -0.2 -310.6 12.2 -13.6 6.4
O2NA 0.6 -0.2 -310.6 12.2 -13.6 6.4
CO2NA 0.6 -0.2 -310.5 12.1 -13.6 6.3
Age 0.8 0 -302.2 11.9 -5.3 5
PTAbnormal 0.8 0 -299.2 12 -2.2 4.3
NLRSevere 0.8 0 -307.6 12.3 -10.7 4
LDHNA 0.8 0 -304.7 12.5 -7.8 3.7
poctpHAbnormal 0.8 0 -302.3 12.4 -5.4 3.4
LymphocytesSevere 0.8 0 -302.9 12.4 -5.9 3.4
APTTMild 0.8 0 -301.4 12.4 -4.5 3.4
eGFRAbnormal 0.8 0 -299 12.4 -2 3.3
NeutrophilsSevere 0.8 0 -301.8 12.6 -4.8 3.1
APTTModerate 0.8 0 -302.5 12.8 -5.6 3
FERNA 0.8 0 -304.7 12.8 -7.8 2.9
fibNA 0.8 0 -302.4 12.8 -5.4 2.8
CRPAbnormal 0.8 0 -303.1 12.7 -6.2 2.8
CO2Abnormal 0.8 0 -301.2 12.8 -4.3 2.7
DDMAbnormal 0.8 0 -302.4 12.7 -5.5 2.6
HBSevere 0.8 0 -302.9 12.8 -6 2.6

Figure S12: Summary statistics of Bayesian projective prediction ranking the contribution of each variable by change in AUC and expected log-predictive density
(ELPD)
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Biomarker
Binary 

Categorical 
Variable

Bayesian Horshoe 
Odds Ratios

CI [2.5%, 97.5%]

Projective Prediction 
3-Biomarker Model

Odds Ratios
CI [2.5%, 97.5%]

Age - 1.03 [1.02, 1.05] 1.02 [1, 1.03]
Gender Female 0.99 [0.74, 1.3]

Mild 1.57 [0.87, 4.63]
Moderate 3.24 [0.81, 112.13]
Not Taken 0.93 [0.55, 1.32]
Abnormal 1.66 [0.91, 4.18] 2.32 [1.15, 4.61]
Not Taken 0.99 [0.64, 1.55] 0.63 [0.41, 0.9]

Abnormal 1.05 [0.69, 1.81]
Not Taken 0.64 [0.13, 1.6]
Abnormal 0.89 [0.36, 1.53]
Not Taken 0.63 [0.13, 1.58]
Abnormal 1.1 [0.66, 2.52]
Not Taken 0.63 [0.13, 1.56]
Abnormal 1.13 [0.84, 1.91]
Not Taken 1.1 [0.68, 2.17]
Abnormal 1.3 [0.91, 2.31]
Not Taken 1.17 [0.78, 2.54]

Blood Culture TRUE 0.6 [0.04, 1.4]
Respiratory TRUE 1.1 [0.56, 3.19]

Urine TRUE 0.94 [0.39, 1.72]
Viral TRUE 1.81 [0.77, 14.79]

Abnormal 1.1 [0.76, 2.01]
Not Taken 0.96 [0.66, 1.3]

Mild 1.11 [0.85, 1.7]
Moderate 1 [0.63, 1.54]

Severe 1.57 [0.77, 8.07]
Not Taken 1.3 [0.55, 8.27]

Mild 1.35 [0.89, 2.83]
Moderate 1.58 [0.83, 6.12]

Severe 1.41 [0.64, 11.32]
Not Taken 0.97 [0.34, 2.29]

Mild 1.05 [0.76, 1.6]
Moderate 1.02 [0.75, 1.48]

Severe 1.2 [0.84, 2.35]
Not Taken 1.31 [0.56, 8.86]

Mild 0.66 [0.13, 1.27]
Moderate 1 [0.33, 2.96]

Severe 1.14 [0.82, 1.95]
Not Taken 1.31 [0.57, 8.9]

Mild 1.04 [0.77, 1.55] 1.32 [0.92, 2.29]
Moderate 1.08 [0.79, 1.78] 1.98 [1.34, 3.38]

Severe 1.38 [0.86, 3.41] 2.55 [1.5, 5.34]
Not Taken 1.31 [0.57, 8.84] 3.22 [0.94, 14.32]

Mild 0.91 [0.48, 1.35]
Moderate 1.04 [0.37, 3.61]

Severe 1.12 [0.78, 2]
Not Taken 1.29 [.055, 8.15]

Abnormal 2.04 [0.93, 7.61]
Not Taken 1.11 [0.55, 3.54]

Abnormal 1.03 [0.71, 1.6]

Not Taken 0.72 [0.26, 1.16]
Abnormal 2.83 [1.72, 4.65] 3.28 [2.2, 5.2]
Not Taken 1.07 [0.56, 2.53] 0.84 [0.25, 1.81]

Abnormal 1.05 [0.64, 1.99]

Not Taken 0.95 [0.53, 1.49]
Abnormal 1.07 [0.66, 2.08]
Not Taken 0.85 [0.4, 1.3]

Mild 1.43 [0.75, 6.87]
Moderate 1.07 [0.65, 2.14]

Severe 1.01 [0.44, 2.35]
Not Taken 0.93 [0.56, 1.34]

Mild 1.32 [0.61, 8.49]
Severe 0.92 [0.26, 2.21]

Not Taken 0.87 [0.39, 1.37]
Mild 1.29 [0.7, 5.43]

Moderate 1.07 [0.56, 2.51]
Severe 1.05 [0.47, 2.96]

Not Taken 0.71 [0.24, 1.22]

Abnormal 1.01 [0.68, 1.55]

Not Taken 1.02 [0.71 ,1.57]

Intercept - 0.04 [0.0, 0.28] 0.05 [0.02, 0.11]
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Figure S13: Odds ratios for full Bayesian model and reduced 3-biomarker model via projective prediction19
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Figure S14: Model calibration depicting Projective Prediction 3-biomarker
model tested on: (Top) training data (n=590); (Bottom) validation data
(n=293). Note the models do not have points for each of the 10 probability
bins because some ranges, e.g. 0.9-1.0 had no patients in this band as judged
by the model output. A well calibrated model should evenly distribute outcome
probabilities, i.e. be close to unity.
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