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Abstract

Objectives: To develop cross-validated prediction models for severe outcomes in COVID-19 using blood biomarker and demo-
graphic data; Demonstrate best practices for clinical data curation and statistical modelling decisions, with an emphasis on Bayesian
methods.

Design: Retrospective observational cohort study.
Setting: Multicentre across National Health Service (NHS) trusts in Southwest region, England, UK.
Participants: Hospitalised adult patients with a positive SARS-CoV 2 by PCR during the first wave (March – October 2020).

843 COVID-19 patients (mean age 71, 45% female, 32% died or needed ICU stay) split into training (n=590) and validation groups
(n=253) along with observations on demographics, co-infections, and 30 laboratory blood biomarkers.

Primary outcome measures: ICU admission or death within 28-days of admission to hospital for COVID-19 or a positive
PCR result if already admitted.

Results: Predictive regression models were fit to predict primary outcomes using demographic data and initial results from
biomarker tests collected within 3 days of admission or testing positive if already admitted. Using all variables, a standard logistic
regression yielded an internal validation median AUC of 0.7 (95% Interval [0.64,0.81]), and an external validation AUC of 0.67
[0.61, 0.71], a Bayesian logistic regression using a horseshoe prior yielded an internal validation median AUC of 0.78 [0.71, 0.85],
and an external validation median AUC of 0.70 [0.68, 0.71]. Variable selection performed using Bayesian predictive projection
determined a four variable model using Age, Urea, Prothrombin time and Neutrophil-Lymphocyte ratio, with a median AUC of
0.74 [0.67, 0.82], and external validation AUC of 0.70 [0.69, 0.71].

Conclusions: Our study reiterates the predictive value of previously identified biomarkers for COVID-19 severity assessment.
Given the small data set, the full and reduced models have decent performance, but would require improved external validation
for clinical application. The study highlights a variety of challenges present in complex medical data sets while maintaining best
statistical practices with an emphasis on showcasing recent Bayesian methods.

Introduction1

Globally, as of 14 July 2022, there have been 556 million2

confirmed cases of COVID-19, including 6.35 million deaths,3

with 23.1 million cases in the UK, resulting in over 181,0004

deaths (WHO Coronavirus (COVID-19) Dashboard, https:5

//covid19.who.int/). COVID-19 has a wide spectrum of6

clinical features ranging from asymptomatic to severe systemic7

illness with a significant attributable mortality, while clinical8

manifestations are variable especially in the most vulnerable9

groups and immunocompromised people [1]. COVID-19 is a10

multi-system disease resulting in the derangements of home-11

ostasis affecting pulmonary, cardiovascular, coagulation, haema-12

tological, oxygenation, hepatic, renal and fluid balance [2, 3, 4,13
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5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Although the major-14

ity of people with COVID-19 will have mild or no symptoms,15

a small but significant proportion will suffer from a severe in-16

fection needing hospitalisation for supportive care, oxygen, or17

admission to intensive care units(ICU) for respiratory support.18

Early identification of hospitalised COVID-19 patients who19

are likely to deteriorate, i.e. transfer to ICU or who may die,20

is vital for clinical decision making. Healthcare systems across21

the world including highly developed countries continue to face22

challenges in terms of capacity and resources to manage this23

pandemic, as lock down measures have been relaxed, including24

opening of schools and businesses.25

Published prediction models to date have evaluated case26

level factors that might predict poor outcomes (critical illness27

or death). A recent living systematic review [17] identified 26528

prognostic models for mortality and 84 for progression to se-29

vere or critical state. The majority of the studies looked at vital30
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signs, age, comorbidities, and radiological features. Models31

were unlikely to include a broad range of variables concern-32

ing co-infection, biochemical factors (outside of C-reactive pro-33

tein), and other haematological factors on an individual patient34

level. Most of the prognostic models did not describe the target35

population or care setting adequately, did not fully describe the36

regression equation, showed high or unclear risk of bias and/or37

were inadequately evaluated for performance.38

Goals39

The present study analyzes a range of laboratory blood marker40

values across metabolic pathways affected by COVID-19 infec-41

tion (i.e. a core set of biomarkers feasible for clinical collec-42

tion) and evaluates predictive models of severe outcomes. The43

main objectives of the study are: (1) Examine statistical associ-44

ations of routinely measured physiological and blood biomark-45

ers, and age and gender, to predict severe COVID-19 outcomes.46

(2) Develop cross-validated logistic regression prediction mod-47

els using the best candidate biomarkers, and highlight biomark-48

ers worthy of future research. (3) Use variable selection tech-49

niques including least absolute shrinkage and selection operator50

(LASSO) regularisation [18] and Bayesian Projective Predic-51

tion [19] to illustrate the process of creating a reduced model52

that maintains reasonable performance and is more feasible to53

use clinically (4) In each of these steps demonstrate best ana-54

lytic practices for explaining clinical data curation and statisti-55

cal modelling decisions, with an emphasis on showcasing the56

capabilities of recent Bayesian methods.57

Methods58

Study Cohort and Demographics59

Pseudonymised data was obtained from laboratory informa-60

tion management system (LIMS) linking patient data for lab-61

oratory markers to key clinical outcomes. Three hospitals in62

the Southwest region of England, UK, participated in the study,63

two of them were tertiary teaching hospitals and the third was64

a district general hospital (DGH). A system wide data search65

was conducted on LIMS for all patients who tested positive66

for SARS-CoV-2 by polymerase chain reaction (PCR) at these67

three hospitals during the first wave of COVID-19 pandemic68

(01/03/2020 to 31/10/2020). The serial pathology data col-69

lected as a part of standard of care of patients admitted with/for70

COVID-19 were included- bacteriology, virology, mycology,71

haematology, and biochemistry. All patients testing negative72

for SARS CoV 2 by PCR were excluded. All laboratory mark-73

ers including clinical outcomes from LIMS were extracted and74

the final dataset was anonymized with no patient identifying75

data to link back.76

Inclusion and exclusion criteria77

We included all adult patients admitted to study hospitals78

and tested positive for SARSCoV-2 by PCR. Pediatric patients79

(<18 years old) and staff/healthcare workers and their house-80

hold contacts were excluded. Figure 1 depicts the decision81

flow for inclusion and exclusion of patient data.82

Figure 1: Flowchart of patient exclusion and inclusion criteria. The initial set of
1159 candidate patients was narrowed to a training set (n=590) and a validation
set (n=253).
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Data Covariates83

The LabMarCS dataset includes a variety of host, clinical84

severity indices, microbiological, immunological, haematolog-85

ical and biochemistry parameters used as predictive variables86

in the regression models. A full list of recorded data items is87

shown in Figure 288

Outcomes89

For all sites, the primary prediction outcome was death or90

transfer to the ICU within 28 days of admission to hospital,91

or the first positive COVID-19 PCR test result if already admit-92

ted. This generally corresponds to WHO-COVID-19 Outcomes93

Scale Score 6–10 (severe) versus 0–5 (mild/moderate) [20].94

Patient Timelines95

The collected laboratory biomarkers are continuous mea-96

sures and provide a time series representation of the course of a97

patient’s admission. Figure 3 shows an example of a single pa-98

tient’s readings over the course of 18 days between testing pos-99

itive for COVID-19 and being released from hospital care. This100

provides a representative example of the heterogeneity seen in101

our dataset, i.e. not all tests are taken and others are taken regu-102

larly or intermittently (further examples in Supplementary Fig-103

ures S2 - S6).104

Transformation of Biomarker Data105

Prediction modelling of irregularly sampled time-series data106

is a challenging open research question [21]. In this study we107

focused on established and available tools for conventional and108

Bayesian prediction. To balance inclusion of test data not avail-109

able on the day of admission and the need for clinical deci-110

sions to be guided soon after admission, we chose to consider111

the first value recorded for each biomarkers within three days112

of their ’critical date’. In addition, we transformed continuous113

biomarkers into categorical variables via reference ranges for114

clinical use in the typical healthy population ranges, see Fig-115

ure 2. As an example, Figure 4 shows the histogram of read-116

ings for all values recorded for Neutrophils, including clinical117

thresholds to transform into categorical data. No missing data118

imputation was performed, instead missingness was coded as119

as an additional category ’Test not taken’.120

For further elaboration on the challenges of these modelling121

choices, please see Discussion Sectionc.122

Statistical Analysis123

Analytics were carried out using the R statistical language124

(v4.13) and R Studio (Prairie Trillium release). We used the125

following packages: Standard logistic regression analyses used126

the R Stats GLM package (v3.6.2); LASSO analyses, GLMnet127

(v4.1-4); and for Bayesian analyses, BRMS (v2.17) and Pro-128

jPred (v2.1.2). Source code for this analysis pipeline can be129

found at https://github.com/biospi/LABMARCS.130

Analysis of Individual Biomarkers131

Before running full regression models we examined the in-132

dependent contribution of individual biomarkers in predicting133

ICU entry or death via standard logistic regressions and Bayesian134

logistic regressions with either a flat (aka uniform) or horseshoe135

prior. This allowed calculation of p-values and odds ratios for136

each biomarker. A 5-fold cross-validation repeated 20 times137

was run for each biomarker to estimate the median AUC and138

95% interquartile intervals. Each individual biomarker model139

includes age and gender (except univariate age and gender mod-140

els) and was compared against a standard model including only141

age and gender. Regressions were fit using all associated dummy142

variables for a given biomarker (e.g. ’Mild’, ’Moderate’, ’Se-143

vere’) using ’Normal’ as the reference. Only complete cases of144

training data available for that marker were considered, i.e. we145

did not include data for variables marked ’Test not taken’.146

Analysis Using All Valid Biomarker Data147

After individual biomarker evaluation, logistic regression148

models considering all valid biomarkers (Results Section c) and149

demographic variables were fit to the data. Their predictions150

were tested via internal and external validation using cross-151

validation procedures, additionally we fit models that used all152

available training data. The models include a standard logistic153

regression, a logistic regression regularised with LASSO, and154

two Bayesian models using a flat and a horseshoe prior [22].155

LASSO and Bayesian horseshoe prior models (with projective156

prediction) and regularization constraints that push models to157

converge on sparse solutions with most coefficients near zero,158

and lend themselves to variable reduction as discussed in the159

Reduced Variable Models Section c.160

Analysis Using Reduced Variable Models161

While a model using all biomarker data may have strong162

predictive power, it is clinically desire-able to have a strong163

prediction with the least amount of biomarkers possible to save164

on resources devoted to biomarker collection. We used two165

methodologies to choose reduced variable models to predict166

COVID-19 severe outcomes, LASSO and Bayesian Projective167

Prediction.168

LASSO is an optimization constraint that shrinks parame-169

ters according to their variance, reduces over-fitting, and en-170

ables variable selection [18]. The optimal degree of regulari-171

sation is determined for each cross-by identifying a tuning pa-172

rameter λ within a LASSO specific inner loop of each cross-173

validation step. LASSO has a drawback of having biased coef-174

ficient and log-odds estimates, as such after evaluating LASSO175

models we run a final ’LASSO inspired’ standard GLM model.176

To evaluate LASSO coefficient estimates, we performed re-177

peated nested cross-validation (5-folds the for the inner LASSO178

loop; 5-folds for the outer loop, and 20 repeats).179

For a particular dataset fit, LASSO optimises for a sparse180

representation with many coefficients close to zero. Across181

cross-validated trials these variables will vary. LASSO fits are182

statistically biased and are better suited as a guide for vari-183

able selection in a reduced variable standard GLM. As recom-184

mended in Heinze et al [23], we consider the frequency of how185
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Biomarker Abbreviation Place Recorded / Reason
No. of 

Readings
% of 

Patients 
Reference Range/ Criteria Clinical Categories Criteria Description

Activated partial 
thromboplastin time

APTT Admisson 422 50% Normal between 21-33 seconds Normal, Abnormal
Normal: <33; Mild: 33-49.5; Moderate: 
49.5-82.5; Severe: >82.5

Prothrombin Time PT Admisson 435 52%
Normal between 9.5-13 
seconds

Normal, Abnormal Abnormal: >=13

Carbon Dioxide CO2 Arterial/ Point of care 154 18% Normal: 4.6-6.4 seconds Normal, Abnormal Abnormal if outside range
Lactate poctLAC Arterial/ Point of care 154 18% 0.5-2.2 mmol/L Normal, Abnormal Abnormal if <0.5 or >2.2
Oxygen O2 Arterial/ Point of care 154 18% 11.0-14.4 seconds Normal, Abnormal Abnormal if <11 or >14.4

Bicarbonate Excess BE
Arterial or Venous / 

Point of care
418 50% 22-29 Normal, Abnormal Abnormal if outside range

pH acid/base scale pH
Arterial or Venous / 

Point of care
417 49% 7.35-7.45 Normal, Abnormal Abnormal if outside these bounds

Blood Culture bc_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Respiratory resp_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Urine urine_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Viral viral_coinfection Admisson 843 100% 10 viral infections tested Positive, Negative Postive if one or more postive

Glucose Glucose 
Point of Care / Record 

Often Not Digitized
222 26% Non-fasting: 3.0-7.8 mmol/L Normal, Abnormal Abnormal if outside range

Hemoglobin HB Admisson 772 92%
Male 130-170 g/L, Female 120-
150 g/L

Normal, Mild, 
Moderate, Severe

Normal: >gender specific criteria; Mild: 
100 to gender specific criteria; Moderate: 
80-100; Severe: <80

Platelet Count PLT Admisson 770 91% 150-450 10^9/L
Normal, Mild, 

Moderate, Severe
Normal: >150; Mild: 100-150; Moderate: 
50-100; Severe: <50

Lymphocytes Lymphocyte Admisson 772 92% 1.5-4.5 10^9/L
Normal, Mild, 

Moderate, Severe
Normal 1.5-4.5; Mild 1-1.5; Moderate 0.5-
1; Severe: <0.5 or >4.5

Neutrophils Neutrophil Admisson 772 92% 2.0-7.5 10^9/L
Normal, Mild, 

Moderate, Severe
Normal 2-7.5; Mild 1-2; Moderate: 0.5-1; 
Severe: <0.5 or > 7.5

Neutrophil - Lymphocyte 
Ratio

NLR Admisson 772 92% 0.78 and 3.53
Normal, Mild, 

Moderate, Severe
Normal: <3; Mild: 3-8; Moderate: 8-18; 
Severe: >18

White Cell Count WCC Admisson 772 92% 4.0-11.0 10^9/L
Normal, Mild, 

Moderate, Severe
Normal: 4-11; Mild: 1-4; Moderate: 0.5-1; 
Severe: <0.5 and >11

C-Reactive Protein CRP Admisson 759 90% < 6 mg/L Normal, Abnormal Abnormal if greater than criteria
Estimated Glomerular eGFR Admisson 707 84% >90 Normal, Abnormal Abnormal if greater than criteria
Urea urea Admisson 754 89% 2.5-7 10^9/L Normal, Abnormal Abnormal if outside these bounds

Brain / B-type natriuretic 
peptide

BNP  Cardiac Function 47 6%
Men under 70: <100pg/ml, 
Women under 70: <150 pg/ml, 
All 70yr and over: <300 pg/ml

Normal, Abnormal
Abnormal if greater than age/gender 
specific criteria

D-Dimer DDM 111 13%

Age (Years)  D-dimer (ng/ml) 
<60                <500
61-70           <600 
71-80           <700 
81-90           <800 
>90                <900

Normal, Abnormal
Abnormal if greater than age-specific 
criteria

Ferritin FER 115 14%
Male: 33-490, Female(0-44): 15-
445, Female(45+yrs): 30-470

Normal, Mild, 
Moderate, Severe

Normal: <age/gender appropriate criteria; 
Mild: >criteria-735; Moderate: 735-2450; 
Severe: >2450

Fibrinogen fib 104 12% 1.8-4.0 g/L Normal, Mild, Severe. Normal: >1.8; Mild: 1-1.8; Severe: <1

Glycated haemoglobin HBA1c Diabetes 17 2% >=48 mmol/mol Normal, Abnormal Abnormal if greater than criteria

Lactate dehydrogenase LDH Investigatory 66 8% 240-480 IU/L
Normal, Mild, 

Moderate, Severe
Normal: <=480; Mild: >480-720; 
Moderate: >720-1440; Severe: >1440

Procalcitonin PCT ITU / Bacterial Infection 39 5% Normal range: <0.2ng/mL Normal, Abnormal Abnormal: >=0.2
Triglycerides trig Investigatory 19 2% 0.5-1.7 mmol/L Normal, Abnormal Abnormal if outside these bounds
Troponin-T trop  Cardiac Function 177 21% Normal: <14ng/L Normal, Abnormal Abnormal if greater than criteria

Covid CT Covid CT 843 100%

Threshold unique to type of 
test. Lab reports categorical 
'positive' variable alongside CT 
value 

Positive, Negative Only positives included in current study

Age Age 843 100% Continuous All ages >=18
Gender Gender 843 100% Male, Female
Covid Positive on 
Admission

OnAdmission 843 100% True, False Tested only in univariate evaluation

Outcome Outcome 843 100% Discharge, ICU, Death

Urea & Electrolytes Tests

Investigatory Tests

Covid-19 Test

Other Data

Blood Clotting Tests

Blood Gas Tests

Coinfection Battery

Diabetes

Full Blood Count Tests

Figure 2: Variables recorded in the LabMarCS dataset, including plain text description, abbreviation, place of record, frequency in the dataset, and criteria used for
converting continuous readings into categorical values.
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Figure 3: Example a single patient’s time series laboratory biomarker data. See
Figure 2 for biomarker abbreviations. Biomarker results are normalised to span
0 to 1 via offsetting by the absolute value of the minimum value and dividing
by the maximum value.

Figure 4: Example distribution of biomarker readings for Neutrophil Training
and Validation Data. Vertical lines indicate clinical thresholds for bounds on
Normal, Mild, Moderate, and Severe categorization.

often a particular biomarker has a coefficient greater than zero186

and count across cross-validation trials.187

For a ’LASSO inspired’ reduced variable standard GLM, it188

was chosen that if at least one categorical level for a particular189

biomarker (e.g. ’Severe’) met this requirement, all levels for190

that biomarker were included in the model. This resulted in a191

final set of variables that could then fit with standard logistic192

GLM.193

The second variable selection method explored was Bayesian194

projective prediction [19], a technique for constructing an opti-195

mal reference model (in our case a Bayesian logistic regression196

with a horseshoe prior /citecarvalho2009handling over the dis-197

tribution of coefficient values) that generates a ranking of indi-198

vidual variable informativeness via leave-one-out (LOO) cross-199

validation. This ranking of variables can be used to create a200

projection model where one can arbitrarily remove variables201

post-hoc. This approach allows one to evaluate the trade-off be-202

tween AUC performance and the number of variables included203

in the model and use a reduced model projection at a desired204

AUC cutoff. Bayesian methods have the benefit of allowing co-205

efficient shrinkage via the horseshoe prior and provide unbiased206

odds estimates. Further projective prediction allows the flexi-207

bility to train one model on all valid available data, perform208

variable selection, and then use any projected sub-model with209

reduced variables to predict outcomes for novel data.210

Results211

Cohort Description212

The initial cohort included 1159 patients which was nar-213

rowed down to 843 patients who met all inclusion criteria de-214

scribed above, see Figure 1. 57% of patients were hospitalised215

for COVID-19 and the remainder had nosocomial infection. For216

our statistical models, the training cohort (n=590) was defined217

as all adults admitted to hospital and testing positive for SARS-218

Cov-2 by PCR, or testing positive while already admitted be-219

tween March and October 2020. For external validation, we220

held the DGH cohort (n=253) out of training. Figure 5 depicts221

the distribution of ages and genders in the training and valida-222

tion data sets. Patients in the training set had a mean age of 70,223

were 44% female, and 29% had severe outcomes. The valida-224

tion set had a mean age of 75, were 47% female, and 38% had225

a severe outcome.226

Prediction Using Individual Variables227

Figure 6 shows descriptive statistics on individual biomarker228

readings and their odds ratio contributions in a 5-fold 20-repeat229

cross-validated logistic regression including the particular biomarker230

and age and gender. Figure 7 details performance using the231

area under the receiver operating characteristic curve (AUC)232

metric, comparing biomarker models (a particular biomarker233

plus age and gender) to a model using only age and gender.234

Due to the categorical representation of the biomarkers, indi-235

vidual levels may be significant while another is not (e.g. ’Se-236

vere’ is a predictor, but ’Mild’ is not). Statistically significant237

predictors (i.e. odds ratios deviating from one with p-value at238
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Figure 5: Distribution of age and gender for hospitalized patients with coron-
avirus disease 2019 (COVID-19) for (Top) training data (n=590) and (Bottom)
hold out validation data (n=253) cohorts.

0.05 or lower) associated with increasing risk of a severe out-239

come (as shown in Figure 6) include age, and the biomark-240

ers: Activated Partial Thromboplastin Time (Mild), Prothrom-241

bin time (Abnormal), blood pH (Abnormal), Haemoglobin (Se-242

vere), Platelet count (Moderate), Lymphocytes (Moderate, Se-243

vere), Neutrophils (Severe), Neutrophil-Lymphocyte Ratio (Mild,244

Moderate, Severe), C-Reactive Protein (Abnormal), Urea (Ab-245

normal), and Troponin-T (Abnormal). Nosocomial transmis-246

sion was included due to the high number of cases in our cohort247

but was not a significant predictor and excluded from further248

analyses. Due to small numbers preventing cross validation,249

Triglycerides, Glycated Haemoglobin, and Procalcitonin (also250

invalid due to being recorded only in ICU) were excluded from251

further analysis and require future research.252

Regression Models Using All Valid Biomarker Data253

Each model was evaluated via 5-fold cross-validation with254

20 repeats (100 models total). As such, each model is trained255

with a randomised sample of 80% of the training data set (n=472).256

Internal validation evaluates a model predictions on the 20%257

(n=118) held out. External validation uses the same model, but258

is instead tested on the held out validation data set (n=253).259

Missing data for each biomarker is coded as ’Test Not Taken’260

and is included as a predictor variable. Figure 8 shows the per-261

formance of these models (AUC, Sensitivity, Specificity). For262

comparison, Figure 9 shows the performance of each model263

using all valid training data (n=590) and testing on the same264

data (internal validation) and testing on the held out external265

validation data (n=253).266

Models trained on the full data have improved AUC scores,267

but do not provide a direct uncertainty estimate, this could be268

done via bootstrapping for a single model, but we instead com-269

pute inter-quantile ranges across 5-fold 20 repeat cross-validation270

models. Cross-validation results provide 95% inter-quantile271

ranges that clearly illustrate that in general, all models perform272

similarly, with a median AUC in the mid 0.70’s in internal val-273

idation, and near the high 0.60’s in external validation. There274

is a trend for the models that encourage sparse representations,275

LASSO and Bayes with horseshoe prior, to have slightly higher276

AUC’s coupled with higher sensitivity and lower specificity.277

The calibration of the models is reasonably good on the full278

data, all training data, but has poor calibration on the validation279

set, see Supplementary Figure S9.280

Reduced Variable Models281

The models detailed above are moderately good predictors282

of severe COVID-19 outcomes, but for clinicians with limited283

time and resources, reduced models can balance predictive per-284

formance with ease of clinical use by using only the most infor-285

mative biomarkers. To address this, we use two variable selec-286

tion approaches, LASSO and projective prediction, that allow287

the creation of reduced models with fewer biomarkers but sim-288

ilar performance to the larger models.289

LASSO Models290

After performing 5-fold 20 repeat cross-validation we ex-291

amined the frequency of how often a particular biomarker has292

a coefficient greater than zero and count across cross-validation293

trials. Figure S10 shows the frequency of variables having a294

coefficient great than zero in the cross-validated LASSO analy-295

sis. If we select variables that appear at least 50% of the time,296

our reduced model would include: Age, CRP (abnormal), FER297

(mild), FIB (mild), HB (severe), PLT (mild, moderate, severe),298

Lymphocytes (Severe), Neutrophils (Mild, Severe), NLR (Se-299

vere), APTT (mild, moderate), PT (abnormal), blood pH (ab-300

normal), Urea (abnormal), and positive viral and blood culture301

co-infections.302

For a ’LASSO inspired’ reduced variable standard GLM,303

this resulted in a model using the 15 biomarkers above for all304

categorical levels, and was evaluated via both cross-validation305

and as fit to all available training data. This model had perfor-306

mance very similar to the models using all valid biomarker data,307

with a median external validation AUC of 0.68 [0.63, 0.72], see308

Figures 8 and 9.309

Note, ’Test Not Taken’ is a significant predictor for LDH310

and Lactate on over 50% of cross-validation trials. The poten-311

tial significance of missing data is complex and is addressed in312

the Discussion Sectionc. Due to this confounding, biomarkers313

whose top predictive contribution was from ’Test Not Taken’314

were excluded from both LASSO reduced variable models and315

projective prediction models described below.316
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Bayesian Logistic (Flat 
Prior)

Bayesian Logistic 
(Horse Shoe Prior)

Biomarker
Binary 

Categorical 
Variable

% of Patients 
with 

Biomarker 
Recording

# TRUE 
(% of TRUE 

Observations 
with Severe 
Outcome)

# FALSE 
(% of FALSE 

Observations 
with Severe 
Outcome)

P Value
Odds Ratio 

[2.5%, 97.5%]
Odds Ratio 

[2.5%, 97.5%]
Odds Ratio 

[2.5%, 97.5%]

Age - 100% - - 3.22E-05 1.02 [1.01, 1.04] 1.02 [1.01, 1.04] 1.02 [1.01, 1.04]
Gender Female 100% 257 (26%) 333 (32%) 0.08 0.72 [0.50, 1.03] 0.72 [0.50, 1.03] 0.79 [0.54, 1.06]

- - - 2.83E-05 1.02 [1.01, 1.04] 1.02 [1.01, 1.04] 1.02 [1.01, 1.04]
Female 257 (26%) 333 (32%) 0.06 0.70 [0.49, 1.02] 0.70 [0.49, 1.00] 0.82 [0.55, 1.07]

Nosocomial Transmission TRUE 100% 240 (30%) 350 (29%) 0.65 0.92 [0.63, 1.33] 0.92 [0.63, 1.33] 0.98 [0.74, 1.19]

Mild 54% 30 (63%) 291 (320%) 2.44E-03 3.44 [1.57, 7.88] 3.44 [1.55, 7.86] 2.89 [1.12, 6.44]
Moderate 54% 4 (100%) 317 (34%) 0.98 9.91E+06 [0.00, NA] 4.4E+104 [5.4E+04, Inf] 7.86 [0.92, 464.23]

Prothrombin Time Abnormal 56% 45 (58%) 288 (31%) 2.96E-03 2.73 [1.41, 5.36] 2.79 [1.44, 5.37] 2.26 [1.01, 4.63]

Carbon Dioxide Abnormal 21% 68 (59%) 57 (51%) 0.33 1.44 [0.70, 2.99] 1.46 [0.72, 3.02] 1.08 [0.82, 1.95]
Lactate Abnormal 21% 13 (54%) 112 (55%) 0.96 1.03 [0.32, 3.44] 1.04 [0.33, 3.40] 1.02 [0.61, 1.80]
Oxygen Abnormal 21% 105 (55%) 20 (55%) 0.98 1.01 [0.38, 2.66] 1.00 [0.37, 2.68] 0.99 [0.63, 1.53]
Bicarbonate Excess Abnormal 64% 123 (38%) 252 (31%) 0.26 1.30 [0.82, 2.05] 1.31 [0.84, 2.04] 1.09 [0.87, 1.65]
pH acid/base scale Abnormal 63% 136 (46%) 238 (26%) 1.05E-04 2.45 [1.56, 3.87] 2.48 [1.58, 3.97] 2.19 [1.34, 3.53]

Blood Culture TRUE 100% 5 (0%) 585 (30%) 0.98 3.20E-07 [NA, 2.94E+22] 0 [0, 0] 0.42 [0.02, 1.40]
Respiratory TRUE 100% 6 (50%) 584 (29%) 0.20 2.95 [0.52, 16.62] 2.96 [0.46, 18.46] 1.23 [0.70, 4.76]
Urine TRUE 100% 12 (25%) 579 (30%) 0.63 0.72 [0.15, 2.53] 0.63 [0.13, 2.56] 0.94 [0.38, 2.03]
Viral TRUE 100% 7 (71%) 583 (29%) 0.06 4.95 [1.04, 35.13] 5.93 [1.01, 45.18] 1.82 [0.83, 10.36]

Glucose Abnormal 30% 49 (45%) 126 (32%) 0.11 1.77 [0.88, 3.54] 1.77 [0.88, 3.56] 1.28 [0.88, 2.63]

Mild 176 (36%) 368 (27%) 0.13 1.38 [0.91, 2.08] 1.38 [0.91, 2.10] 1.13 [0.90, 1.72]
Moderate 48 (33%) 495 (30%) 0.62 1.19 [0.59, 2.29] 1.18 [0.59, 2.30] 1.02 [0.71, 1.61]
Severe 11 (55%) 532 (30%) 0.03 4.08 [1.16, 15.06] 4.26 [1.17, 16.54] 1.57 [0.82, 6.68]
Mild 67 (39%) 474 (29%) 0.07 1.65 [0.95, 2.83] 1.64 [0.93, 2.79] 1.32 [0.90, 2.30]
Moderate 17 (65%) 524 (29%) 0.01 4.21 [1.54, 12.65] 4.42 [1.59, 13.10] 2.58 [0.96, 8.72]
Severe 4 (75%) 537 (30%) 0.12 6.16 [0.76, 126.83] 9.29 [0.82, 245.54] 1.77 [0.65, 14.71]
Mild 151 (27%) 392 (31%) 0.12 1.69 [0.89, 3.34] 1.70 [0.87, 3.35] 1.10 [0.76, 1.98]
Moderate 217 (31%) 326 (30%) 0.03 1.96 [1.07, 3.75] 1.99 [1.08, 3.81] 1.22 [0.88, 2.26]
Severe 84 (48%) 459 (27%) 4.99E-04 3.48 [1.75, 7.17] 3.53 [1.75, 7.20] 2.08 [1.00, 4.34]
Mild 23 (13%) 520 (31%) 0.23 0.47 [0.11, 1.43] 0.40 [0.09, 1.35] 0.76 [0.26, 1.32]
Moderate 3 (33%) 540 (30%) 0.67 1.71 [0.08, 19.15] 1.27 [0.03, 21.43] 1.01 [0.28, 3.66]
Severe 143 (41%) 400 (26%) 1.88E-03 1.92 [1.27, 2.91] 1.94 [1.28, 2.89] 1.72 [1.08, 2.71]
Mild 237 (28%) 306 (32%) 3.69E-03 2.50 [1.38, 4.79] 2.57 [1.39, 4.98] 1.84 [0.99, 3.50]
Moderate 137 (39%) 406 (27%) 3.18E-05 3.97 [2.12, 7.81] 4.13 [2.19, 8.29] 2.92 [1.44, 5.76]
Severe 54 (54%) 489 (28%) 2.61E-06 6.38 [2.99, 14.14] 6.69 [3.13, 15.02] 4.52 [1.99, 10.44]
Mild 57 (23%) 486 (31%) 0.34 0.72 [0.36, 1.38] 0.71 [0.36, 1.37] 0.86 [0.46, 1.23]
Moderate 2 (50%) 541 (30%) 0.45 3.03 [0.11, 83.24] 3.08 [0.08, 122.91] 1.14 [0.42, 4.94]
Severe 85 (42%) 458 (28%) 0.02 1.84 [1.12, 3.00] 1.84 [1.12, 3.02] 1.50 [0.96, 2.77]

C-Reactive Protein Abnormal 91% 489 (33%) 47 (4%) 1.49E-03 10.23 [3.08, 63.44] 13.12 [3.39, 87.29] 7.45 [2.52, 33.50]
Estimated Glomerular 
Filtration Rate

Abnormal 82% 350 (38%) 131 (18%) 0.06 1.76 [0.98, 3.23] 1.80 [0.99, 3.31] 1.38 [0.88, 2.70]

Urea Abnormal 89% 262 (47%) 264 (15%) 4.23E-11 4.27 [2.79, 6.63] 4.33 [2.82, 6.73] 4.09 [2.67, 6.41]

Brain / B-type natriuretic 
peptide

Abnormal 7% 30 (53%) 14 (29%) 0.13 3.91 [0.73, 27.00] 4.65 [0.77, 31.41] 1.53 [0.73, 8.01]

D-Dimer Abnormal 12% 52 (42%) 18 (33%) 0.67 1.29 [0.40, 4.43] 1.32 [0.40, 4.79] 1.08 [0.59, 2.48]
Mild 14% 11 (64%) 72 (39%) 0.09 3.61 [0.84, 17.70] 4.17 [0.88, 20.84] 1.30 [0.81, 4.78]
Moderate 14% 28 (46%) 55 (40%) 0.27 1.79 [0.64, 5.15] 1.87 [0.63, 5.55] 1.10 [0.72, 2.38]
Severe 14% 6 (33%) 77 (43%) 0.94 0.93 [0.11, 5.90] 0.85 [0.10, 5.65] 0.94 [0.36, 1.70]
Mild 5% 4 (75%) 26 (46%) 0.10 11.27 [0.85, 360.85] 25.22 [1.14, 1.05E+03] 1.44 [0.60, 9.96]
Severe 5% 3 (67%) 27 (48%) 0.40 3.41 [0.23, 105.85] 5.42 [0.21, 308.55] 1.11 [0.46, 4.62]

Glycated haemoglobin* Abnormal 3% 11 (9%) 4 (0%) 1.00 2.98E+08 [0, NA] 2.2E+07 [0.23, 1.3E+39] 1.42 [0.36, 22.68]

Mild 6% 12 (67%) 25 (56%) 0.49 2.61 [0.19, 71.00] 3.93 [0.18, 134.47] 1.14 [0.59, 3.50]

Moderate 6% 16 (63%) 21 (57%) 0.78 1.49 [0.10, 40.47] 1.90 [0.08, 64.73] 1.00 [0.41, 2.27]
Severe 6% 5 (60%) 32 (59%) 0.34 4.63 [0.22, 178.20] 8.20 [0.25, 502.08] 1.08 [0.43, 3.96]

Procalcitonin* Abnormal 4% 21 (86%) 4 (100%) 1.00 1.15E-07 [NA, 1.6E+184] 3.2E-08 [3.07E-39, 7.82] 0.80 [0.08, 2.84]
Triglycerides* Abnormal 3% 10 (90%) 5 (100%) 1.00 1.68E-09 [NA, Inf] 2.1E-06 [5.62E-26, 1.46] 0.75 [0.05, 2.88]
Troponin-T Abnormal 24% 91 (44%) 51 (22%) 0.03 2.96 [1.17, 7.96] 3.09 [1.17, 8.48] 1.75 [0.94, 4.94]
* Biomarkers not included in subsequent models due to small sample size, and recorded only in ICU (PCT)

Coinfection

100%

Investigatory Tests

Platelet Count

Demographics / Other

92%

92%

92%

92%

92%White Cell Count 

Diabetes

Full Blood Count Tests

Urea & Electrolytes Tests

92%

Lymphocytes

Standard Logistic GLM

Age & Gender

Activated partial 
thromboplastin time

Blood Clotting Tests

Blood Gas Tests

Ferritin

Hemoglobin

Lactate dehydrogenase

Neutrophils

Neutrophil - Lymphocyte 
Ratio

Fibrinogen

Figure 6: Individual biomarker evaluation including descriptive statistics and logistic regression model outcomes (Standard, Bayesian with flat prior, and Bayes
with horseshoe prior) , including age and gender (except univariate age and gender models). Regressions were fit using all associated dummy variables for a given
biomarker (e.g. normal, mild, moderate, severe) and using only complete cases of training data, i.e. not using a variable for ’Test not taken.’ Categorical variables
use a reading of ’Normal’ as a reference in the fitted model, except ’Male’ used as the reference category for gender.
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Demographic / Biomarker
Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age & 

Gender Standard 
[2.5%,97.5%]

Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age & 

Gender Standard 
[2.5%,97.5%]

Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age & 

Gender Standard 
[2.5%,97.5%]

Age 0.62 [0.48, 0.71] 0.00, [-0.11, 0.04] 0.62 [0.46, 0.71] 0.00 [-0.10, 0.07] 0.62 [0.45, 0.70] 0.00 [-0.06, 0.09]
Gender 0.55 [0.45, 0.63] 0.08, [-0.05, 0.17] 0.56 [0.48, 0.64] 0.05 [-0.08, 0.14] 0.55 [0.44, 0.63] 0.07 [-0.14, 0.21]
Age & Gender 0.61 [0.50, 0.72] 0.00, [0.00, 0.00] 0.61 [0.48, 0.72] 0.00 [-0.02, 0.02] 0.61 [0.45, 0.72] 0.00 [-0.03, 0.02]

Nosocomial Transmission 0.61 [0.46, 0.73] 0.00, [-0.01, 0.05] 0.61 [0.48, 0.73] 0.00 [-0.02, 0.04] 0.61 [0.46, 0.72] 0.00 [-0.07, 0.02]

Activated partial 
thromboplastin time

0.66 [0.45, 0.78] -0.05, [-0.22, 0.04] 0.66 [0.45, 0.78] -0.04 [-0.23, 0.04] 0.65 [0.45, 0.75] -0.05 [-0.20, 0.05]

Prothrombin Time 0.64 [0.50, 0.76] -0.03 [-0.15, 0.05] 0.64 [0.50, 0.76] -0.03 [-0.15, 0.05] 0.63 [0.44, 0.76] -0.03 [-0.13, 0.05]

Carbon Dioxide 0.56 [0.40, 0.76] 0.01 [-0.13, 0.15] 0.55 [0.43, 0.76] 0.02 [-0.18, 0.17] 0.55 [0.44, 0.74] 0.02 [-0.20, 0.18]
Lactate 0.57 [0.44, 0.79] 0.00 [-0.09, 0.19] 0.58 [0.40, 0.75] -0.01 [-0.24, 0.17] 0.55 [0.37, 0.81] 0.00 [-0.25, 0.16]
Oxygen 0.56 [0.44, 0.78] 0.00 [-0.18, 0.11] 0.56 [0.43, 0.77] 0.00 [-0.16, 0.13] 0.58 [0.45, 0.75] 0.00 [-0.21, 0.14]
Bicarbonate Excess 0.58 [0.43, 0.71] 0.00 [-0.12, 0.14] 0.58 [0.42, 0.71] 0.00 [-0.17, 0.16] 0.60 [0.44, 0.70] 0.00 [-0.07, 0.11]
pH acid/base scale 0.64 [0.43, 0.75] -0.05 [-0.22, 0.10] 0.64 [0.45, 0.75] -0.06 [-0.22, 0.09] 0.64 [0.46, 0.75] -0.05 [-0.16, 0.08]

Blood Culture 0.62 [0.46, 0.73] -0.01 [-0.02, 0.00] 0.62 [0.48, 0.73] -0.01 [-0.03, 0.01] 0.62 [0.47, 0.72] 0.00 [-0.02, 0.02]
Respiratory 0.61 [0.49, 0.73] 0.00 [-0.02, 0.02] 0.62 [0.50, 0.74] 0.00 [-0.04, 0.02] 0.62 [0.47, 0.72] 0.00 [-0.02, 0.03]
Urine 0.61 [0.49, 0.71] 0.00 [-0.01, 0.02] 0.61 [0.47, 0.71] 0.00 [-0.02, 0.03] 0.62 [0.46, 0.72] 0.00 [-0.02, 0.02]
Viral 0.62 [0.43, 0.71] 0.00 [-0.01, 0.01] 0.62 [0.44, 0.71] 0.00 [-0.03, 0.05] 0.62 [0.46, 0.71] 0.00 [-0.03, 0.02]

Glucose 0.61 [0.45, 0.78] -0.02 [-0.10, 0.14] 0.61 [0.47, 0.78] -0.02 [-0.09, 0.09] 0.61 [0.45, 0.78] -0.01 [-0.21, 0.12]

Hemoglobin 0.62 [0.48, 0.71] -0.01 [-0.05, 0.04] 0.62 [0.49, 0.71] -0.01 [-0.05, 0.05] 0.62 [0.48, 0.71] 0.00 [-0.04, 0.03]
Platelet Count 0.64 [0.48, 0.74] -0.01 [-0.07, 0.06] 0.64 [0.52, 0.74] -0.02 [-0.06, 0.05] 0.64 [0.46, 0.74] -0.01 [-0.12, 0.06]
Lymphocytes 0.65 [0.55, 0.73] -0.04 [-0.10, 0.04] 0.65 [0.55, 0.73] -0.04 [-0.10, 0.05] 0.64 [0.52, 0.72] -0.02 [-0.07, 0.02]
Neutrophils 0.63 [0.55, 0.72] -0.02 [-0.12, 0.06] 0.63 [0.53, 0.72] -0.02 [-0.08, 0.07] 0.63 [0.54, 0.72] -0.03 [-0.19, 0.05]
Neutrophil - Lymphocyte 
Ratio

0.67 [0.57, 0.76] -0.06 [-0.16, 0.06] 0.67 [0.57, 0.77] -0.06 [-0.15, 0.06] 0.67 [0.56, 0.76] -0.06 [-0.11, 0.04]

White Cell Count 0.62 [0.48, 0.72] 0.00 [-0.09, 0.08] 0.62 [0.48, 0.72] 0.00 [-0.08, 0.08] 0.62 [0.46, 0.74] -0.01 [-0.05, 0.08]

C-Reactive Protein 0.65 [0.45, 0.74] -0.03 [-0.08, 0.03] 0.65 [0.44, 0.74] -0.03 [-0.09, 0.04] 0.65 [0.44, 0.74] -0.04 [-0.15, 0.05]
Estimated Glomerular 
Filtration Rate

0.62 [0.53, 0.71] -0.01 [-0.03, 0.04] 0.62 [0.52, 0.71] -0.01 [-0.04, 0.04] 0.62 [0.51, 0.71] 0.00 [-0.04, 0.05]

Urea 0.71 [0.59, 0.80] -0.09 [-0.18, -0.02] 0.71 [0.59, 0.80] -0.09 [-0.19, -0.01] 0.71 [0.59, 0.81] -0.09 [-0.20, -0.01]

Brain / B-type natriuretic 
peptide

0.67 [0.44, 0.94] -0.05 [-0.33, 0.25] 0.67 [0.45, 0.94] 0.00 [-0.33, 0.22] 0.65 [0.40, 0.94] 0.00 [-0.33, 0.25]

D-Dimer 0.62 [0.44, 0.85] 0.01 [-0.15, 0.24] 0.63 [0.43, 0.83] 0.00 [-0.21, 0.22] 0.65 [0.42, 0.89] 0.00 [-0.10, 0.17]
Ferritin 0.61 [0.44, 0.83] -0.01 [-0.26, 0.21] 0.61 [0.45, 0.83] 0.00 [-0.29, 0.20] 0.58 [0.43, 0.80] -0.01 [-0.31, 0.20]
Fibrinogen 0.67 [0.38, 1.00] 0.00 [-0.44, 0.50] 0.75 [0.38, 1.00] 0.00 [-0.40, 0.44] 0.75 [0.38, 1.00] 0.00 [-0.44, 0.33]
Glycated haemoglobin* NA NA NA NA NA NA
Lactate dehydrogenase 0.67 [0.40, 1.00] 0.00 [-0.42, 0.33] 0.67 [0.40, 1.00] 0.00 [-0.42, 0.40] 0.67 [0.30, 1.00] 0.00 [-0.25, 0.25]
Procalcitonin* NA NA NA NA NA NA
Triglycerides* NA NA NA NA NA NA
Troponin-T 0.57 [0.40, 0.77] -0.01 [-0.22, 0.20] 0.57 [0.40, 0.76] -0.01 [-0.25, 0.18] 0.59 [0.43, 0.78] -0.01 [-0.25, 0.13]
* Biomarkers not included in subsequent models due to small sample size, and recorded only in ICU (PCT)

Coinfection

Demographics / Other

Blood Clotting Tests

Blood Gas Tests

Investigatory Tests

Urea & Electrolytes Tests

Full Blood Count Tests

Diabetes

Standard Logistic GLM Bayesian Logistic (Flat Prior) Bayesian Logistic (Horse Shoe Prior)
Cross-Validated 80/20 Split Cross-Validated 80/20 Split Cross-Validated 80/20 Split

Figure 7: Predictive performance of the individual biomarker models in Figure 6 as described by the median area under the curve (AUC) in receiver operating curve
(ROC) analysis and median difference between an Age and Gender reference model and the same model with the particular biomarker included (except univariate
age and gender models). Regressions were fit using all associated dummy variables for a given biomarker (e.g. mild, moderate, severe) and using only complete
cases of training data (n=590), i.e. not using a variable for ’Test not taken.’ 95% inter-quantile ranges calculated via 5-fold cross-validation with 20 repeats (100
models total). Categorical variables use a reading of ’Normal’ as a reference in the fitted model, except ’Male’ used as the reference category for gender.
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Model 
AUC 

[2.5%, 97.5%]

Specificity at 90% 
Sensitivity

[2.5%, 97.5%]

Specificity at 95% 
Sensitivity

[2.5%, 97.5%]

AUC 
[2.5, 97.5]

Specificity at 90% 
Sensitivity

[2.5%, 97.5%]

Specificity at 95% 
Sensitivity

[2.5%, 97.5%]
Standard Logistic GLM 0.70 [0.64, 0.81] 0.39 [0.04, 0.57] 0.20 [0.00, 0.50] 0.67 [0.61, 0.71] 0.28 [0.16, 0.39] 0.13 [0.01, 0.24]
Standard GLM with LASSO regularisation 0.77 [0.71, 0.86] 0.46 [0.26, 0.60] 0.35 [0.11, 0.52] 0.69 [0.67, 0.71] 0.32 [0.25, 0.40] 0.19 [0.14, 0.27]
Bayesian GLM (Flat Prior) 0.75 [0.67, 0.82] 0.41 [0.02, 0.60] 0.22 [0.00, 0.49] 0.67 [0.63, 0.71] 0.27 [0.18, 0.38] 0.13 [0.01, 0.24]
Bayesian GLM (Horse Shoe Prior) 0.78 [0.71, 0.85] 0.49 [0.32, 0.67] 0.38 [0.16, 0.59] 0.70 [0.68, 0.71] 0.33 [0.29, 0.39] 0.23 [0.18, 0.26]
LASSO inspired GLM (15 biomarkers) 0.76 [0.35, 0.76] 0.43 [0.08, 0.64] 0.25 [0.01, 0.57] 0.68 [0.63, 0.72] 0.28 [0.20, 0.38] 0.13 [0.03, 0.25]
Projective Prediction (28 Biomarkers) 0.78 [0.70, 0.85] 0.50 [0.29, 0.67] 0.37 [0.14, 0.59] 0.70 [0.68, 0.71] 0.34 [0.30, 0.39] 0.24 [0.18, 0.25]
Projective Prediction (3 Biomarkers) 0.74 [0.67, 0.82] 0.38 [0.18, 0.58] 0.24 [0.08, 0.50] 0.70 [0.69, 0.71] 0.38 [0.18, 0.58] 0.24 [0.08,0.50]

Data sourced from:
GLM_CV_Generalise_Summary_Compendium.csv
GLM_CV_Train_Summary_Compendium.csv
LASSO_CV_Generalise_Summary_Compendium.csv
LASSO_CV_Train_Summary_Compendium.csv
Flat_BAYES_CV_Generalise_Summary_Compendium.csv
Flat_BAYES_CV_Train_Summary_Compendium.csv
HS_BAYES_CV_Generalise_Summary_Compendium.csv
HS_BAYES_CV_Train_Summary_Compendium.csv

Internal Validation External Validation

Values calcualted via 5-Fold Cross-validation with 20 repeats unless otherwise noted. Internal validation tests on 20% of training data (n=118) held out; External tests on 
separate validation data set (n=253) . 1. The reduced variable standard GLM uses the 15 biomarkers that had non-zero coefficents on >=50% LASSO Cross-validation trials. If 
at least one categorical level for a particular biomarker (e.g. severe) met this requirement, all levels for that biomarker were included in the model. 2. The 21 biomarker 
projective prediction model further omits TROP, PoctLac, O2, CO2, LDH, FIB, and FER due to 'Test not Taken' having greatest predictive power for that biomarker. 3. The 3 
biomarker projective prediction model uses Urea, PT, and NLR. **Interquartile intervales computed via leave one out cross-validation.

Figure 8: Cross-validated performance of models trained using valid biomarker data. 95% inter-quantile ranges are presented for each estimate. Specificity is
obtained by evaluating at a set sensitivity of either 90% or 95%. All reduced variable models include age, and a stated number of biomarkers. The reduced variable
LASSO inspired standard GLM uses 15 biomarkers that had non-zero coefficients on >=50% LASSO Cross-validation trials. If at least one categorical level for a
particular biomarker (e.g. severe) met this requirement, all levels for that biomarker were included in the model. The 3 biomarker projective prediction model uses
all categorical levels for Urea, PT, and NLR.

Model Accuracy AUC Brier Sensitivity Specificity Accuracy AUC Brier Sensitivity Specificity
Standard Logistic GLM 0.82 0.87 0.13 0.93 0.56 0.66 0.69 0.13 0.82 0.40
Standard GLM with LASSO regularisation 0.77 0.83 0.23 0.94 0.39 0.62 0.69 0.38 0.93 0.13
LASSO inspired GLM (15 biomarkers) 0.79 0.84 0.14 0.91 0.50 0.67 0.69 0.14 0.88 0.34
Bayesian GLM (Flat Prior) 0.82 0.86 0.18 0.92 0.58 0.64 0.68 0.36 0.79 0.40
Bayesian GLM (Horse Shoe Prior) 0.79 0.84 0.21 0.94 0.45 0.63 0.71 0.37 0.89 0.22
Projective Prediction (28 Biomarkers) 0.79 0.83 0.21 0.94 0.44 0.64 0.71 0.36 0.90 0.24
Projective Prediction (3 Biomarkers) 0.73 0.75 0.27 0.91 0.30 0.67 0.70 0.33 0.94 0.24

Projective Prediction Model (Variable Selection 
over 21 Biomarkers)

0.76 0.80 0.24 0.92 0.38 0.67 0.70 0.33 0.93 0.26

Projective Prediction Model (21 biomarker model, 
projected to use only 3)

0.73 0.75 0.27 0.91 0.29 0.67 0.70 0.33 0.92 0.28

Bayesian Reduced Variable via Projective 
Prediction (20* Biomarkers) fib
note lasso, bayes, glm use all variables (inlcding 
Nas) fer

projpred using NA
0.84 0.71

Brier needs max brier score if prevalance of TP/TN is different across models

The numbers produced here are originally saved in the following files:
Batch_BAYES_Flat_Train_TrainData_Test_GeneraliseData_Summary_Table.csv
Batch_BAYES_Flat_Train_TrainData_Test_TrainData_Summary_Table.csv `
Batch_BAYES_HS_Train_TrainData_Test_GeneraliseData_Summary_Table.csv
Batch_BAYES_HS_Train_TrainData_Test_TrainData_Summary_Table.csv
Batch_GLM_Train_TrainData_Test_GeneraliseData_Summary_Table.csv
Batch_GLM_Train_TrainData_Test_TrainData_Summary_Table.csv
Batch_LASSO_Train_TrainData_Test_GeneraliseData_Summary_Table.csv
Batch_LASSO_Train_TrainData_Test_TrainData_Summary_Table.csv

Internal Validation External Validation

These are same 
remove one

*Accuracy, Specificity & Sensitivity evaluated using a probability threshold of 0.5 (i.e. assumes a well-calibrated model). Note all reduced variable models include age, 
and some number of biomarkers. The Reduced variable standard GLM via LASSO uses the 15 biomarkers that had non-zero coefficents on >=50% LASSO Cross-
validation trials. If at least one categorical level for a particular biomarker (e.g. severe) met this requirement, all levels for that biomarker were included in the model. 
The 21 biomarker projective prediction model further omits TROP, PoctLac, O2, CO2, LDH, FIB, and FER due to 'Test not Taken' having greatest predictive power for 
that biomarker. The 3 biomarker projective prediction model uses Urea, PT, and NLR.

Figure 9: Performance of models using all valid biomarker data trained on all training data available (n=590). Internal validation is trained on all of the training
data and tested on the same. External validation uses the same model and is tested on held out validation data set (n=253). Missing data for each biomarker is
coded as ’Test Not Taken’. Specificity and sensitivity evaluated using a probability threshold of 0.5 (i.e. assumes a well-calibrated model). All reduced variable
models include age, and a stated number of biomarkers. The reduced variable LASSO inspired standard GLM uses 15 biomarkers that had non-zero coefficients on
>=50% LASSO Cross-validation trials. If at least one categorical level for a particular biomarker (e.g. severe) met this requirement, all levels for that biomarker
were included in the model. The 3 biomarker projective prediction model uses uses all categorical levels for Urea, PT, and NLR.
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Projective Prediction Models317

When all biomarkers were considered, projective prediction318

identifies the following predictors in the top 20, in order of con-319

tribution to AUC: Urea (abnormal), Age, PT (abnormal), NLR320

(Severe), pH (abnormal), Lymphocytes (severe), APPT(mild),321

eGFR (abnormal), Neutrophils (Severe), APPT(moderate), CRP322

(abnormal), DDM (abnormal), Hemoglobin (severe). Thus age323

and 12 biomarkers are candidates for a reduced model. Note,324

several predictors of ’Test Not Taken’ were also selected in-325

cluding Lactate, O2, CO2, LDH, Ferritin and Fibrinogen. As326

mentioned above, these biomarkers are set aside due to this327

confounding. Supplementary Figures S11 and S12 display328

the output from projective prediction ranking the contribution329

of each variable to the model. A model using a projection in-330

corporating all biomarker and demographic data is equivalent to331

the standard Bayesian GLM we evaluated in the prior section,332

see Figures 8 and 9.333

Reduced variable projections were evaluated by manual in-334

spection of AUC performance among groups of models using335

the top biomarkers. Guided by the projective prediction rank-336

ing, we ran a model using only the top biomarker, using only337

the top two, the top three, and so on. As described above we338

omit biomarkers with significant contributions from ’Test Not339

Taken’ and include all categorical levels for a given biomarker340

as long as one level is highly ranked. Ultimately, we found a 3341

biomarker projective prediction model using age and including342

urea, prothrombin time, neutrophil-lymphocyte ratios had sim-343

ilar performance to larger models with a median internal vali-344

dation AUC of 0.74 [0.67, 0.82], and external validation AUC345

of 0.70 [0.69, 0.71], as shown in Figures 8 and 9. Odds ra-346

tios for the full Bayesian model and the reduced 3-biomarker347

model can be found in Supplementary Table S13. The calibra-348

tion of the model is reasonably good on the training data but349

has poor calibration on the validation set, see Supplementary350

Figure S14.351

Discussion352

Challenges of Complex Medical Data353

Curating the LabMarCS data is challenging as the data are354

heterogeneous in multiple ways. Biomarkers are recorded for355

different reasons, e.g. routine upon admission, investigatory356

tests, or tests primarily or exclusively taken in ICU. Further357

some biomarkers are typically recorded together (but not al-358

ways) as part of a test suite, including: Urea and electrolytes,359

full blood count, COVID-19 and co-infection swab test, blood360

clotting, and blood gas tests (arterial or venous). The schedule361

when some these markers are recorded vary by patient and clin-362

ical decision, leading to records being present in highly varying363

amounts, e.g. only 3% up to 100% of patients depending on the364

particular biomarker, see Supplementary Figure S1.365

Modelling Choices366

When constructing and evaluating models, there are many367

choice points that should be explicitly highlighted with justifi-368

cation, be it based on convenience, computational complexity,369

clinical advice, or a heuristic. The space of potential models370

is vast and most studies will constrain the model search space,371

delineating why these choices are made will facilitate under-372

standing and reproduction by other researchers. These include373

key choices relating to: patient inclusion/exclusion criteria, data374

missingness protocols, data transformations, training and vali-375

dation data selection, and performance evaluation.376

Missing Data377

Missingness, in the context of this study and in healthcare378

data more generally, can sometimes be informative and miss-379

ing not at random (MNAR), with the presence or absence of a380

test correlated with the measurement of said test. Imputation381

of missing data relies on key statistical assumptions that im-382

puted variables are missing at random (MAR) or missing com-383

pletely at random (MCAR), else the imputation will be faulty384

and models may be fit to non-representative data. Conversa-385

tions with our clinical colleagues established some routinely386

collected biomarkers might be inferred to be MAR. However,387

the routines identified were specific to a small a subset of our388

cohort and not likely to extrapolate. We ultimately erred to be389

conservative and avoid all imputation, and instead include miss-390

ing values as a data point [24, 25]. As such, in the current study391

we chose to use placeholders for ’Test not taken’ if there was no392

recorded value for a particular biomarker within the evaluated393

3-day window.394

This approach however, allows the possibility that a ’Test395

Not Taken’ may be a significant predictor. This has many po-396

tential meanings, as it may convey that when a patient is doing397

well and unlikely to experience a severe outcome, clinicians are398

unlikely to request some biomarker tests. Alternatively, if a pa-399

tient is in palliative care and has a poor prognosis, a clinician400

may consider further testing unnecessary. As such, the like-401

lihood of a test being administered may follow an inverted-U402

function as patients to healthy or too ill may not have tests ad-403

minister. Furthermore, as our data was collected early in the404

pandemic, there may be other underlying clinical decisions or405

resource limitations that drove why some tests were taken but406

not others. Lastly, because we only consider results from the407

first 3 days from a patients critical date, it may be that some408

tests are simply taken later in a patient’s stay, and hence may409

be more predictive as they were taken closer to the outcome.410

Hence, when these instances occurred, we were conservative411

and excluded biomarkers with ’Test Not Taken’ as the most in-412

formative category from our reduced variable models.413

Data Transforms - Time Windows414

Ideally clinicians can make a decision based on readings415

the day of admission. However, not all tests are administered416

on admission. To balance inclusion of test data not available on417

the day of admission and the need for clinical decisions to be418

guided soon after admission, we chose to consider the first value419

recorded for each biomarkers within three days of their ’critical420

date’, i.e. date of admission if already COVID-19 positive, or421

if already in hospital, the date of testing COVID-19 positive.422

However, given the richness of the time series data collected,423
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further research into models that leverage this extra information424

is needed.425

Focusing on early detection reflects the intent for the model426

to improve early stage clinical decision making when potential427

treatments or changes in care may be introduced. This focus428

on the first reading in a 3-day interval loses information, but429

greatly simplifies the modelling approach. Note, this choice is430

not without risk of reducing statistical power, increasing the risk431

of false positives, and underestimation of the extent of variation432

in biomarker readings and outcomes between groups [26]. It is433

likely that representing biomarker data as time series (assuming434

regular measures across patients) instead of single points would435

add considerable information.436

Data Transforms - Continuous vs. Categorical437

A key modelling decision must be made on whether to use438

continuous data or transformed categorical data. Clinicians of-439

ten use biomarker thresholds to provide semantic categories440

(e.g. normal, mild, moderate, severe) which sometimes use441

non-linear or discontinuous mappings that require special care442

if using continuous data. While clinical thresholds are likely443

established with evidence, it may be the case that thresholds444

for one use may not apply to a novel one. This led [27, 28] to445

use machine learning approaches to build categorisation models446

on continuous biomarker data dependent on the training data at447

hand. However, using machine learning to establish categorisa-448

tion thresholds on our biomarker data is difficult with a small449

training data set and the heterogeneity of biomarker recordings.450

If missing data imputation is done, it raises another decision451

point on whether to impute the continuous or the transformed452

categorical data.453

Another important factor to recognise is that some biomark-454

ers lack a linear relationship between a reading and a seman-455

tic category. Biomarkers can have a lower and upper bound456

for what is considered normal, and both below and above this457

range reflects clinically meaningful yet sometimes separate ab-458

normalities. This means modelling needs to factor in non-linear459

curves if persevering continuous data or trying to map to a cat-460

egorical space. In our position, categorical transforms had the461

advantage as we were able to collaborate with ICU consultants462

in conjunction with using pre-established clinically acceptable463

ranges defined our categorisation, see Figure 2.464

Training and Validation Data Selection465

There are multiple ways that our data set could be split be-466

tween training and validation sets, e.g. randomly sampling 1/3467

of the data to hold out as a validation set. Given our rather468

small sample, random selection of training data should in prin-469

ciple generate data more representative of the validation set left470

out. However, realistically hospitals may have differing prac-471

tices and randomization of may inflate performance at the cost472

of real world validity. We chose to separate our training and473

validation datasets by hospital to provide a stronger test of gen-474

eralisation that should mimic generalisation to novel hospitals475

completely outside the original training data .476

Model Performance Evaluation and Dissemination477

There are a variety of ways statistical model performance478

can be evaluated. Here we have chose here to emphasize cross-479

validated estimates of AUC, sensitivity, and specificity. Inter-480

quartile intervals over these measures reveal that the variety of481

models perform in similar ways. While the full models have482

higher median performance, the reduced models are within the483

95% bounds of the other models. With a larger data set trade-484

offs may become more apparent. Model calibration on the val-485

idation set is a clear weak point. While the models have de-486

cent calibration for training data, generalisation performance is487

weak and suggestive of the lack of sufficient data.488

Comparison to Contemporary Models489

Despite our dataset being relatively small, we found several490

biomarkers previously highlighted by other groups to have sig-491

nificant predictive power, including: Urea, Neutrophil-Lymphocyte492

Ratio, Lymphoctyes, APTT, eGFR, and CRP. Our highly re-493

duced 3-biomarker model (plus age) uses Urea (highlighted by494

all prior models), Neutrophil-Lymphocyte ratio (highlighted by495

[29, 11, 28]), and APPT (highlighted by [28]). With a larger496

dataset, further vetting of these and other biomarkers would497

be possible, but it gives reassurance that despite our data and498

model limitations, we find similar predictive biomarkers.499

Advantages of Bayesian Modelling500

While the predictive performance across models presented501

here is generally quite similar, there are several reasons for re-502

searchers to favor Bayesian approaches. The coefficients esti-503

mated via Bayes should on average deliver slightly better pre-504

dictive performance. Additionally, if a sparse model is needed,505

a horseshoe prior can provide advantages similar to LASSO506

without biased coefficient estimates. Computationally, Bayesian507

techniques can be slow due Markov Chain Monte Carlo used508

to sample the coefficient space. If one is interested in vari-509

able selection, projective prediction offers the ability to take510

a single Bayesian model fit, run a variable selection algorithm511

to rank variable contributions, and then arbitrarily create sub-512

model projections with any number of original variables. While513

the initial model fit and variable selection are computationally514

intensive, sub-model projections are fast to create and perfor-515

mance test.516

Summary & Conclusions517

Limitations: This is a retrospective cohort study involving a518

relatively small cohort in Southwest England where case num-519

bers have varied widely, and were well below national figures520

during the first wave. This results in less precise parameter es-521

timates for prediction models (less power/smaller sample size)522

and likely reduced generalizability of the model to other set-523

tings. The timing of biomarker collection was highly varied524

both within and between patients, with many types of readings525

missing. While we replicated prior findings on several biomark-526

ers, gender was not significant, suggesting our sample may not527

be representative.528

11

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 27, 2023. ; https://doi.org/10.1101/2022.09.16.22279985doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.16.22279985


Strengths: The primary strength of our study is the granu-529

larity of serial laboratory data available linked to clinical out-530

comes. This study was performed during the first wave where531

there was the original Wuhan strain circulating amongst the un-532

vaccinated naı̈ve population without any specific immunomod-533

ulating therapies such as steroids or antiviral agents, reflecting534

the “true” homeostasis derangements at a population level.535

This study highlights a variety of challenges present in com-536

plex medical data sets while maintaining best statistical prac-537

tices with an emphasis on recent Bayesian methodology. Our538

study reiterates the predictive value of previously identified biomark-539

ers for COVID-19 severity assessment (e.g. age, urea, pro-540

thrombin time, and neutrophil-lymphocyte ratio). Both the full541

and reduced variable models have moderately good training542

performance, but improved external validation is needed for543

all models to be clinically viable. The methods presented here544

should generalise well to a larger dataset.545
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Figure S1: Heat map displaying missing values across recorded biomarkers.
Light blue indicates a value is missing and dark blue indicate it is present
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Figure S2: Example biomarker time series for a patient admitted to hospital
COVID-19 positive and who subsequently died almost two weeks later.
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Figure S3: Example biomarker time series for a patient admitted to hospital
with subsequent nosocomial transmission and discharge a week later.
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Figure S4: Example biomarker time series for a patient admitted to hospital
COVID-19 positive, with subsequent entrance to ICU and death over one month
later.
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Figure S5: Example biomarker time series for a patient admitted to hospital and
ICU, with subsequent nosocomial transmission and discharge about one week
later.
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Figure S6: Example biomarker time series for a patient with two hospital ad-
missions and testing COVID-19 positive on the first, with discharge almost two
weeks after second admission.

Figure S7: Distribution of D-Dimer readings with clinical classification requir-
ing age and gender bands
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Biomarker
Binary 

Categorical 
Variable

P-Value
Odds Ratio

CI [2.5%, 97.5%]

Age - 6.30E-05 1.04 [1.02, 1.06]
Gender Female 0.43 1.21 [0.75, 1.97]

Mild 0.07 2.79 [0.93, 8.35]
Moderate 0.99 3.23E+07 [0, Inf]
Not Taken 0.50 0.45 [0.05, 4.51]
Abnormal 0.16 2.02 [0.75, 5.44]
Not Taken 0.46 2.38 [0.24, 23.86]

Abnormal 0.80 1.13 [0.44, 2.95]
Not Taken NA NA
Abnormal 0.63 0.67 [0.13, 3.34]
Not Taken 0.02 0.16 [0.04, 0.72]
Abnormal 0.95 1.05 [0.26, 4.15]
Not Taken NA NA
Abnormal 0.24 1.48 [0.76, 2.87]
Not Taken 0.99 0 [0, Inf]
Abnormal 0.13 1.59 [0.87, 2.91]
Not Taken 0.99 9.4E06 [0, Inf]

Blood Culture TRUE 0.99 0 [0, Inf]
Respiratory TRUE 0.36 2.71 [0.32, 22.69]

Urine TRUE 0.43 0.45 [0.06, 3.24]
Viral TRUE 0.02 16.64 [1.7, 162.66]

Abnormal 0.36 1.55 [0.61, 3.92]
Not Taken 0.60 0.84 [0.44, 1.61]

Mild 0.05 1.76 [1.01, 3.09]
Moderate 0.99 1.01 [0.40, 2.51]

Severe 0.15 4.62 [0.58, 37.05]
Not Taken 0.99 1.3E9 [0, Inf]

Mild 0.01 2.8 [1.33, 5.90]
Moderate 0.03 5.81 [1.21, 28.03]

Severe 0.10 20.44 [0.57, 734.84]
Not Taken 0.99 0 [0, Inf]

Mild 0.12 1.98 [0.83, 4.73]
Moderate 0.23 1.81 [0.69, 4.76]

Severe 0.14 2.61 [0.74, 9.22]
Not Taken NA NA

Mild 0.02 0.05 [4E-3, 0.59]
Moderate 0.73 0.22 [3.1E-5, 1.4E3]

Severe 0.38 1.45 [0.63, 3.32]
Not Taken NA NA

Mild 0.82 1.1 [0.48, 2.52]
Moderate 0.80 1.15 [0.39, 3.44]

Severe 0.41 1.89 [0.41, 8.69]
Not Taken NA NA

Mild 0.72 0.83 [0.29, 2.38]
Moderate 0.73 0.21 [2.5E-5, 1.6E3]

Severe 0.83 1.11 [0.43, 2.83]
Not Taken NA NA

Abnormal 0.07 4.46 [0.91, 21.93]
Not Taken 0.94 0.90 [0.07, 12.34]

Abnormal 0.41 0.72 [0.33, 1.58]

Not Taken 0.04 0.25 [0.06, 0.95]
Abnormal 3.71E-04 2.74 [1.57, 4.77]
Not Taken 0.95 0.94 [0.11, 7.76]

Abnormal 0.72 1.47 [0.18, 11.76]

Not Taken 0.81 1.24 [0.21, 7.40]
Abnormal 0.31 0.42 [0.08, 2.24]
Not Taken 0.23 0.37 [0.07, 1.89]

Mild 0.10 5.65 [0.71, 45.00]
Moderate 0.61 1.52 [0.30, 7.58]

Severe 0.84 1.30 [0.10, 17.54]
Not Taken 0.63 1.30 [0.45, 3.72]

Mild 0.21 11.93 [0.26, 552.59]
Severe 0.42 0.26 [0.01, 6.77]

Not Taken 0.92 1.07 [0.27, 4.22]
Mild 0.13 14.88 [0.46, 477.41]

Moderate 0.31 5.41 [0.20, 145.69]
Severe 0.48 4.20 [0.08, 217.62]

Not Taken 0.61 2.13 [0.12, 39.40]

Abnormal 0.68 1.31 [0.37, 4.65]

Not Taken 0.58 1.40 [0.43, 4.53]

Intercept - 0.004 0.001 [0.0, 0.11]
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Figure S8: Standard logistic regression odds ratio and confidence intervals per
biomarker using all valid biomarker training data available (n=590). Note most
biomarkers include a ’Test Not Taken’ stand in variable.
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Figure S9: Model calibration depicting a standard GLM model trained on:
(Top) all data and tested on all data (Middle); training data (n=590) and tested
on the same; (Bottom) training data and tested on validation data (n=293). A
well calibrated model should evenly distribute outcome probabilities, i.e. be
close to unity.
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Figure S10: Frequency of LASSO logistic regression variables having a coefficient greater or less than 0. Red and black lines indicate thresholds for 20% and 50%
frequency.
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Figure S11: Heatmap representation of the LOO variable selection output from Bayesian projective prediction ranking predictive power as a function in change of
AUC. The color of an individual cell shows the proportion of times in the LOO process a variable was chosen at that particular rank of predictive strength. Note
this demonstrates a reduced 15-biomarker model (51 variables total), where biomarkers that had ’Test Not Taken’ ranked as their most important predictive element
were removed from the model.
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Solution Terms AUC Difference
ELPD 
LOO

Standard 
Error

Difference
Standard 

Error
<NA> 0 -0.8 -358.5 9.7 -61.6 10.7
UreaAbnormal 0.5 -0.3 -326.3 11.4 -29.4 8.3
poctLACNA 0.6 -0.2 -310.6 12.2 -13.6 6.4
O2NA 0.6 -0.2 -310.6 12.2 -13.6 6.4
CO2NA 0.6 -0.2 -310.5 12.1 -13.6 6.3
Age 0.8 0 -302.2 11.9 -5.3 5
PTAbnormal 0.8 0 -299.2 12 -2.2 4.3
NLRSevere 0.8 0 -307.6 12.3 -10.7 4
LDHNA 0.8 0 -304.7 12.5 -7.8 3.7
poctpHAbnormal 0.8 0 -302.3 12.4 -5.4 3.4
LymphocytesSevere 0.8 0 -302.9 12.4 -5.9 3.4
APTTMild 0.8 0 -301.4 12.4 -4.5 3.4
eGFRAbnormal 0.8 0 -299 12.4 -2 3.3
NeutrophilsSevere 0.8 0 -301.8 12.6 -4.8 3.1
APTTModerate 0.8 0 -302.5 12.8 -5.6 3
FERNA 0.8 0 -304.7 12.8 -7.8 2.9
fibNA 0.8 0 -302.4 12.8 -5.4 2.8
CRPAbnormal 0.8 0 -303.1 12.7 -6.2 2.8
CO2Abnormal 0.8 0 -301.2 12.8 -4.3 2.7
DDMAbnormal 0.8 0 -302.4 12.7 -5.5 2.6
HBSevere 0.8 0 -302.9 12.8 -6 2.6

Figure S12: Summary statistics of Bayesian projective prediction ranking the contribution of each variable by change in AUC and expected log-predictive density
(ELPD)
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Biomarker
Binary 

Categorical 
Variable

Bayesian Horshoe 
Odds Ratios

CI [2.5%, 97.5%]

Projective Prediction 
3-Biomarker Model

Odds Ratios
CI [2.5%, 97.5%]

Age - 1.03 [1.02, 1.05] 1.02 [1, 1.03]
Gender Female 0.99 [0.74, 1.3]

Mild 1.57 [0.87, 4.63]
Moderate 3.24 [0.81, 112.13]
Not Taken 0.93 [0.55, 1.32]
Abnormal 1.66 [0.91, 4.18] 2.32 [1.15, 4.61]
Not Taken 0.99 [0.64, 1.55] 0.63 [0.41, 0.9]

Abnormal 1.05 [0.69, 1.81]
Not Taken 0.64 [0.13, 1.6]
Abnormal 0.89 [0.36, 1.53]
Not Taken 0.63 [0.13, 1.58]
Abnormal 1.1 [0.66, 2.52]
Not Taken 0.63 [0.13, 1.56]
Abnormal 1.13 [0.84, 1.91]
Not Taken 1.1 [0.68, 2.17]
Abnormal 1.3 [0.91, 2.31]
Not Taken 1.17 [0.78, 2.54]

Blood Culture TRUE 0.6 [0.04, 1.4]
Respiratory TRUE 1.1 [0.56, 3.19]

Urine TRUE 0.94 [0.39, 1.72]
Viral TRUE 1.81 [0.77, 14.79]

Abnormal 1.1 [0.76, 2.01]
Not Taken 0.96 [0.66, 1.3]

Mild 1.11 [0.85, 1.7]
Moderate 1 [0.63, 1.54]

Severe 1.57 [0.77, 8.07]
Not Taken 1.3 [0.55, 8.27]

Mild 1.35 [0.89, 2.83]
Moderate 1.58 [0.83, 6.12]

Severe 1.41 [0.64, 11.32]
Not Taken 0.97 [0.34, 2.29]

Mild 1.05 [0.76, 1.6]
Moderate 1.02 [0.75, 1.48]

Severe 1.2 [0.84, 2.35]
Not Taken 1.31 [0.56, 8.86]

Mild 0.66 [0.13, 1.27]
Moderate 1 [0.33, 2.96]

Severe 1.14 [0.82, 1.95]
Not Taken 1.31 [0.57, 8.9]

Mild 1.04 [0.77, 1.55] 1.32 [0.92, 2.29]
Moderate 1.08 [0.79, 1.78] 1.98 [1.34, 3.38]

Severe 1.38 [0.86, 3.41] 2.55 [1.5, 5.34]
Not Taken 1.31 [0.57, 8.84] 3.22 [0.94, 14.32]

Mild 0.91 [0.48, 1.35]
Moderate 1.04 [0.37, 3.61]

Severe 1.12 [0.78, 2]
Not Taken 1.29 [.055, 8.15]

Abnormal 2.04 [0.93, 7.61]
Not Taken 1.11 [0.55, 3.54]

Abnormal 1.03 [0.71, 1.6]

Not Taken 0.72 [0.26, 1.16]
Abnormal 2.83 [1.72, 4.65] 3.28 [2.2, 5.2]
Not Taken 1.07 [0.56, 2.53] 0.84 [0.25, 1.81]

Abnormal 1.05 [0.64, 1.99]

Not Taken 0.95 [0.53, 1.49]
Abnormal 1.07 [0.66, 2.08]
Not Taken 0.85 [0.4, 1.3]

Mild 1.43 [0.75, 6.87]
Moderate 1.07 [0.65, 2.14]

Severe 1.01 [0.44, 2.35]
Not Taken 0.93 [0.56, 1.34]

Mild 1.32 [0.61, 8.49]
Severe 0.92 [0.26, 2.21]

Not Taken 0.87 [0.39, 1.37]
Mild 1.29 [0.7, 5.43]

Moderate 1.07 [0.56, 2.51]
Severe 1.05 [0.47, 2.96]

Not Taken 0.71 [0.24, 1.22]

Abnormal 1.01 [0.68, 1.55]

Not Taken 1.02 [0.71 ,1.57]

Intercept - 0.04 [0.0, 0.28] 0.05 [0.02, 0.11]
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Figure S13: Odds ratios for full Bayesian model and reduced 3-biomarker model via projective prediction19
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Figure S14: Model calibration depicting Projective Prediction 3-biomarker
model tested on: (Top) training data (n=590); (Bottom) validation data
(n=293). Note the models do not have points for each of the 10 probability
bins because some ranges, e.g. 0.9-1.0 had no patients in this band as judged
by the model output. A well calibrated model should evenly distribute outcome
probabilities, i.e. be close to unity.
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