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Abstract

Objectives: To develop cross-validated prediction models for severe outcomes in COVID-19 using blood biomarker and demo-
graphic data; Demonstrate best practices for clinical data curation and statistical modelling decisions, with an emphasis on Bayesian
methods.

Design: Retrospective observational cohort study.
Setting: Multicentre across National Health Service (NHS) trusts in Southwest region, England, UK.
Participants: Hospitalised adult patients with a positive SARS-CoV 2 by PCR during the first wave (March – October 2020).

843 COVID-19 patients (mean age 71, 45% female, 32% died or needed ICU stay) split into training (n=590) and validation groups
(n=253) along with observations on demographics, co-infections, and 30 laboratory blood biomarkers.

Primary outcome measures: ICU admission or death within 28-days of admission to hospital for COVID-19 or a positive
PCR result if already admitted.

Results: Predictive regression models were fit to predict primary outcomes using demographic data and initial results from
biomarker tests collected within 3 days of admission or testing positive if already admitted. Using all variables, a standard logistic
regression yielded an internal validation median AUC of 0.7 (95% Interval [0.64,0.81]), and an external validation AUC of 0.67
[0.61, 0.71], a Bayesian logistic regression using a horseshoe prior yielded an internal validation median AUC of 0.78 [0.71, 0.85],
and an external validation median AUC of 0.70 [0.68, 0.71]. Variable selection performed using Bayesian predictive projection
determined a four variable model using Age, Urea, Prothrombin time and Neutrophil-Lymphocyte ratio, with a median AUC of
0.74 [0.67, 0.82], and external validation AUC of 0.70 [0.69, 0.71].

Conclusions: Our study reiterates the predictive value of previously identified biomarkers for COVID-19 severity assessment.
Given the small data set, the full and reduced models have decent performance, but would require improved external validation
for clinical application. The study highlights a variety of challenges present in complex medical data sets while maintaining best
statistical practices with an emphasis on showcasing recent Bayesian methods.

Introduction

Globally, as of 14 July 2022, there have been 556 million
confirmed cases of COVID-19, including 6.35 million deaths,
with 23.1 million cases in the UK, resulting in over 181,000
deaths (WHO Coronavirus (COVID-19) Dashboard, https:
//covid19.who.int/). COVID-19 has a wide spectrum of
clinical features ranging from asymptomatic to severe systemic
illness with a significant attributable mortality, while clinical
manifestations are variable especially in the most vulnerable
groups and immunocompromised people [1]. COVID-19 is a
multi-system disease resulting in the derangements of home-
ostasis affecting pulmonary, cardiovascular, coagulation, haema-
tological, oxygenation, hepatic, renal and fluid balance [2, 3, 4,
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5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Although the major-
ity of people with COVID-19 will have mild or no symptoms,
a small but significant proportion will suffer from a severe in-
fection needing hospitalisation for supportive care, oxygen, or
admission to intensive care units(ICU) for respiratory support.

Early identification of hospitalised COVID-19 patients who
are likely to deteriorate, i.e. transfer to ICU or who may die,
is vital for clinical decision making. Healthcare systems across
the world including highly developed countries continue to face
challenges in terms of capacity and resources to manage this
pandemic, as lock down measures have been relaxed, including
opening of schools and businesses.

Published prediction models to date have evaluated case
level factors that might predict poor outcomes (critical illness
or death). A recent living systematic review [17] identified 265
prognostic models for mortality and 84 for progression to se-
vere or critical state. The majority of the studies looked at vital
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signs, age, comorbidities, and radiological features. Models
were unlikely to include a broad range of variables concern-
ing co-infection, biochemical factors (outside of C-reactive pro-
tein), and other haematological factors on an individual patient
level. Most of the prognostic models did not describe the target
population or care setting adequately, did not fully describe the
regression equation, showed high or unclear risk of bias and/or
were inadequately evaluated for performance.

Goals

The present study analyzes a range of laboratory blood marker
values across metabolic pathways affected by COVID-19 infec-
tion (i.e. a core set of biomarkers feasible for clinical collec-
tion) and evaluates predictive models of severe outcomes. The
main objectives of the study are: (1) Examine statistical associ-
ations of routinely measured physiological and blood biomark-
ers, and age and gender, to predict severe COVID-19 outcomes.
(2) Develop cross-validated logistic regression prediction mod-
els using the best candidate biomarkers, and highlight biomark-
ers worthy of future research. (3) Use variable selection tech-
niques including least absolute shrinkage and selection operator
(LASSO) regularisation [18] and Bayesian Projective Predic-
tion [19] to illustrate the process of creating a reduced model
that maintains reasonable performance and is more feasible to
use clinically (4) In each of these steps demonstrate best ana-
lytic practices for explaining clinical data curation and statisti-
cal modelling decisions, with an emphasis on showcasing the
capabilities of recent Bayesian methods.

Methods

Study Cohort and Demographics

Pseudonymised data was obtained from laboratory informa-
tion management system (LIMS) linking patient data for lab-
oratory markers to key clinical outcomes. Three hospitals in
the Southwest region of England, UK, participated in the study,
two of them were tertiary teaching hospitals and the third was
a district general hospital (DGH). A system wide data search
was conducted on LIMS for all patients who tested positive
for SARS-CoV-2 by polymerase chain reaction (PCR) at these
three hospitals during the first wave of COVID-19 pandemic
(01/03/2020 to 31/10/2020). The serial pathology data col-
lected as a part of standard of care of patients admitted with/for
COVID-19 were included- bacteriology, virology, mycology,
haematology, and biochemistry. All patients testing negative
for SARS CoV 2 by PCR were excluded. All laboratory mark-
ers including clinical outcomes from LIMS were extracted and
the final dataset was anonymized with no patient identifying
data to link back.

Inclusion and exclusion criteria

We included all adult patients admitted to study hospitals
and tested positive for SARSCoV-2 by PCR. Pediatric patients
(<18 years old) and staff/healthcare workers and their house-
hold contacts were excluded. Figure 1 depicts the decision
flow for inclusion and exclusion of patient data.

Figure 1: Flowchart of patient exclusion and inclusion criteria. The initial set of
1159 candidate patients was narrowed to a training set (n=590) and a validation
set (n=253).
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Data Covariates

The LabMarCS dataset includes a variety of host, clinical
severity indices, microbiological, immunological, haematolog-
ical and biochemistry parameters used as predictive variables
in the regression models. A full list of recorded data items is
shown in Figure 2

Outcomes

For all sites, the primary prediction outcome was death or
transfer to the ICU within 28 days of admission to hospital,
or the first positive COVID-19 PCR test result if already admit-
ted. This generally corresponds to WHO-COVID-19 Outcomes
Scale Score 6–10 (severe) versus 0–5 (mild/moderate) [20].

Patient Timelines

The collected laboratory biomarkers are continuous mea-
sures and provide a time series representation of the course of a
patient’s admission. Figure 3 shows an example of a single pa-
tient’s readings over the course of 18 days between testing pos-
itive for COVID-19 and being released from hospital care. This
provides a representative example of the heterogeneity seen in
our dataset, i.e. not all tests are taken and others are taken regu-
larly or intermittently (further examples in Supplementary Fig-
ures 13 - 17).

Transformation of Biomarker Data

Prediction modelling of irregularly sampled time-series data
is a challenging open research question [21]. In this study we
focused on established and available tools for conventional and
Bayesian prediction. To balance inclusion of test data not avail-
able on the day of admission and the need for clinical deci-
sions to be guided soon after admission, we chose to consider
the first value recorded for each biomarkers within three days
of their ’critical date’. In addition, we transformed continuous
biomarkers into categorical variables via reference ranges for
clinical use in the typical healthy population ranges, see Fig-
ure 2. As an example, Figure 4 shows the histogram of read-
ings for all values recorded for Neutrophils, including clinical
thresholds to transform into categorical data. No missing data
imputation was performed, instead missingness was coded as
as an additional category ’Test not taken’.

For further elaboration on the challenges of these modelling
choices, please see Discussion Sectionc.

Statistical Analysis

Analytics were carried out using the R statistical language
(v4.13) and R Studio (Prairie Trillium release). We used the
following packages: Standard logistic regression analyses used
the R Stats GLM package (v3.6.2); LASSO analyses, GLMnet
(v4.1-4); and for Bayesian analyses, BRMS (v2.17) and Pro-
jPred (v2.1.2). Source code for this analysis pipeline can be
found at https://github.com/biospi/LABMARCS.

Analysis of Individual Biomarkers
Before running full regression models we examined the in-

dependent contribution of individual biomarkers in predicting
ICU entry or death via standard logistic regressions and Bayesian
logistic regressions with either a flat (aka uniform) or horseshoe
prior. This allowed calculation of p-values and odds ratios for
each biomarker. A 5-fold cross-validation repeated 20 times
was run for each biomarker to estimate the median AUC and
95% interquartile intervals. Each individual biomarker model
includes age and gender (except univariate age and gender mod-
els) and was compared against a standard model including only
age and gender. Regressions were fit using all associated dummy
variables for a given biomarker (e.g. ’Mild’, ’Moderate’, ’Se-
vere’) using ’Normal’ as the reference. Only complete cases of
training data available for that marker were considered, i.e. we
did not include data for variables marked ’Test not taken’.

Analysis Using All Valid Biomarker Data
After individual biomarker evaluation, logistic regression

models considering all valid biomarkers (Results Section c) and
demographic variables were fit to the data. Their predictions
were tested via internal and external validation using cross-
validation procedures, additionally we fit models that used all
available training data. The models include a standard logistic
regression, a logistic regression regularised with LASSO, and
two Bayesian models using a flat and a horseshoe prior [22].
LASSO and Bayesian horseshoe prior models (with projective
prediction) and regularization constraints that push models to
converge on sparse solutions with most coefficients near zero,
and lend themselves to variable reduction as discussed in the
Reduced Variable Models Section c.

Analysis Using Reduced Variable Models
While a model using all biomarker data may have strong

predictive power, it is clinically desire-able to have a strong
prediction with the least amount of biomarkers possible to save
on resources devoted to biomarker collection. We used two
methodologies to choose reduced variable models to predict
COVID-19 severe outcomes, LASSO and Bayesian Projective
Prediction.

LASSO is an optimization constraint that shrinks parame-
ters according to their variance, reduces over-fitting, and en-
ables variable selection [18]. The optimal degree of regulari-
sation is determined for each cross-by identifying a tuning pa-
rameter λ within a LASSO specific inner loop of each cross-
validation step. LASSO has a drawback of having biased coef-
ficient and log-odds estimates, as such after evaluating LASSO
models we run a final ’LASSO inspired’ standard GLM model.

To evaluate LASSO coefficient estimates, we performed re-
peated nested cross-validation (5-folds the for the inner LASSO
loop; 5-folds for the outer loop, and 20 repeats).

For a particular dataset fit, LASSO optimises for a sparse
representation with many coefficients close to zero. Across
cross-validated trials these variables will vary. LASSO fits are
statistically biased and are better suited as a guide for vari-
able selection in a reduced variable standard GLM. As recom-
mended in Heinze et al [23], we consider the frequency of how
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Biomarker Abbreviation Place Recorded / Reason
No. of 

Readings
% of 

Patients 
Reference Range/ Criteria Clinical Categories Criteria Description

Activated partial 
thromboplastin time

APTT Admisson 422 50% Normal between 21-33 seconds Normal, Abnormal
Normal: <33; Mild: 33-49.5; Moderate: 
49.5-82.5; Severe: >82.5

Prothrombin Time PT Admisson 435 52%
Normal between 9.5-13 
seconds

Normal, Abnormal Abnormal: >=13

Carbon Dioxide CO2 Arterial/ Point of care 154 18% Normal: 4.6-6.4 seconds Normal, Abnormal Abnormal if outside range
Lactate poctLAC Arterial/ Point of care 154 18% 0.5-2.2 mmol/L Normal, Abnormal Abnormal if <0.5 or >2.2
Oxygen O2 Arterial/ Point of care 154 18% 11.0-14.4 seconds Normal, Abnormal Abnormal if <11 or >14.4

Bicarbonate Excess BE
Arterial or Venous / 

Point of care
418 50% 22-29 Normal, Abnormal Abnormal if outside range

pH acid/base scale pH
Arterial or Venous / 

Point of care
417 49% 7.35-7.45 Normal, Abnormal Abnormal if outside these bounds

Blood Culture bc_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Respiratory resp_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Urine urine_coinfection Admisson 843 100% 34 bacterial strains tested Positive, Negative Postive if one or more postive
Viral viral_coinfection Admisson 843 100% 10 viral infections tested Positive, Negative Postive if one or more postive

Glucose Glucose 
Point of Care / Record 

Often Not Digitized
222 26% Non-fasting: 3.0-7.8 mmol/L Normal, Abnormal Abnormal if outside range

Hemoglobin HB Admisson 772 92%
Male 130-170 g/L, Female 120-
150 g/L

Normal, Mild, 
Moderate, Severe

Normal: >gender specific criteria; Mild: 
100 to gender specific criteria; Moderate: 
80-100; Severe: <80

Platelet Count PLT Admisson 770 91% 150-450 10^9/L
Normal, Mild, 

Moderate, Severe
Normal: >150; Mild: 100-150; Moderate: 
50-100; Severe: <50

Lymphocytes Lymphocyte Admisson 772 92% 1.5-4.5 10^9/L
Normal, Mild, 

Moderate, Severe
Normal 1.5-4.5; Mild 1-1.5; Moderate 0.5-
1; Severe: <0.5 or >4.5

Neutrophils Neutrophil Admisson 772 92% 2.0-7.5 10^9/L
Normal, Mild, 

Moderate, Severe
Normal 2-7.5; Mild 1-2; Moderate: 0.5-1; 
Severe: <0.5 or > 7.5

Neutrophil - Lymphocyte 
Ratio

NLR Admisson 772 92% 0.78 and 3.53
Normal, Mild, 

Moderate, Severe
Normal: <3; Mild: 3-8; Moderate: 8-18; 
Severe: >18

White Cell Count WCC Admisson 772 92% 4.0-11.0 10^9/L
Normal, Mild, 

Moderate, Severe
Normal: 4-11; Mild: 1-4; Moderate: 0.5-1; 
Severe: <0.5 and >11

C-Reactive Protein CRP Admisson 759 90% < 6 mg/L Normal, Abnormal Abnormal if greater than criteria
Estimated Glomerular eGFR Admisson 707 84% >90 Normal, Abnormal Abnormal if greater than criteria
Urea urea Admisson 754 89% 2.5-7 10^9/L Normal, Abnormal Abnormal if outside these bounds

Brain / B-type natriuretic 
peptide

BNP  Cardiac Function 47 6%
Men under 70: <100pg/ml, 
Women under 70: <150 pg/ml, 
All 70yr and over: <300 pg/ml

Normal, Abnormal
Abnormal if greater than age/gender 
specific criteria

D-Dimer DDM 111 13%

Age (Years)  D-dimer (ng/ml) 
<60                <500
61-70           <600 
71-80           <700 
81-90           <800 
>90                <900

Normal, Abnormal
Abnormal if greater than age-specific 
criteria

Ferritin FER 115 14%
Male: 33-490, Female(0-44): 15-
445, Female(45+yrs): 30-470

Normal, Mild, 
Moderate, Severe

Normal: <age/gender appropriate criteria; 
Mild: >criteria-735; Moderate: 735-2450; 
Severe: >2450

Fibrinogen fib 104 12% 1.8-4.0 g/L Normal, Mild, Severe. Normal: >1.8; Mild: 1-1.8; Severe: <1

Glycated haemoglobin HBA1c Diabetes 17 2% >=48 mmol/mol Normal, Abnormal Abnormal if greater than criteria

Lactate dehydrogenase LDH Investigatory 66 8% 240-480 IU/L
Normal, Mild, 

Moderate, Severe
Normal: <=480; Mild: >480-720; 
Moderate: >720-1440; Severe: >1440

Procalcitonin PCT ITU / Bacterial Infection 39 5% Normal range: <0.2ng/mL Normal, Abnormal Abnormal: >=0.2
Triglycerides trig Investigatory 19 2% 0.5-1.7 mmol/L Normal, Abnormal Abnormal if outside these bounds
Troponin-T trop  Cardiac Function 177 21% Normal: <14ng/L Normal, Abnormal Abnormal if greater than criteria

Covid CT Covid CT 843 100%

Threshold unique to type of 
test. Lab reports categorical 
'positive' variable alongside CT 
value 

Positive, Negative Only positives included in current study

Age Age 843 100% Continuous All ages >=18
Gender Gender 843 100% Male, Female
Covid Positive on 
Admission

OnAdmission 843 100% True, False Tested only in univariate evaluation

Outcome Outcome 843 100% Discharge, ICU, Death

Urea & Electrolytes Tests

Investigatory Tests

Covid-19 Test

Other Data

Blood Clotting Tests

Blood Gas Tests

Coinfection Battery

Diabetes

Full Blood Count Tests

Figure 2: Variables recorded in the LabMarCS dataset, including plain text description, abbreviation, place of record, frequency in the dataset, and criteria used for
converting continuous readings into categorical values.
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Figure 3: Example a single patient’s time series laboratory biomarker data. See
Figure 2 for biomarker abbreviations. Biomarker results are normalised to span
0 to 1 via offsetting by the absolute value of the minimum value and dividing
by the maximum value.

Figure 4: Example distribution of biomarker readings for Neutrophil Training
and Validation Data. Vertical lines indicate clinical thresholds for bounds on
Normal, Mild, Moderate, and Severe categorization.

often a particular biomarker has a coefficient greater than zero
and count across cross-validation trials.

For a ’LASSO inspired’ reduced variable standard GLM, it
was chosen that if at least one categorical level for a particular
biomarker (e.g. ’Severe’) met this requirement, all levels for
that biomarker were included in the model. This resulted in a
final set of variables that could then fit with standard logistic
GLM.

The second variable selection method explored was Bayesian
projective prediction [19], a technique for constructing an opti-
mal reference model (in our case a Bayesian logistic regression
with a horseshoe prior /citecarvalho2009handling over the dis-
tribution of coefficient values) that generates a ranking of indi-
vidual variable informativeness via leave-one-out (LOO) cross-
validation. This ranking of variables can be used to create a
projection model where one can arbitrarily remove variables
post-hoc. This approach allows one to evaluate the trade-off be-
tween AUC performance and the number of variables included
in the model and use a reduced model projection at a desired
AUC cutoff. Bayesian methods have the benefit of allowing co-
efficient shrinkage via the horseshoe prior and provide unbiased
odds estimates. Further projective prediction allows the flexi-
bility to train one model on all valid available data, perform
variable selection, and then use any projected sub-model with
reduced variables to predict outcomes for novel data.

Results

Cohort Description

The initial cohort included 1159 patients which was nar-
rowed down to 843 patients who met all inclusion criteria de-
scribed above, see Figure 1. 57% of patients were hospitalised
for COVID-19 and the remainder had nosocomial infection. For
our statistical models, the training cohort (n=590) was defined
as all adults admitted to hospital and testing positive for SARS-
Cov-2 by PCR, or testing positive while already admitted be-
tween March and October 2020. For external validation, we
held the DGH cohort (n=253) out of training. Figure 5 depicts
the distribution of ages and genders in the training and valida-
tion data sets. Patients in the training set had a mean age of 70,
were 44% female, and 29% had severe outcomes. The valida-
tion set had a mean age of 75, were 47% female, and 38% had
a severe outcome.

Prediction Using Individual Variables

Figure 6 shows descriptive statistics on individual biomarker
readings and their odds ratio contributions in a 5-fold 20-repeat
cross-validated logistic regression including the particular biomarker
and age and gender. Figure 7 details performance using the
area under the receiver operating characteristic curve (AUC)
metric, comparing biomarker models (a particular biomarker
plus age and gender) to a model using only age and gender.
Due to the categorical representation of the biomarkers, indi-
vidual levels may be significant while another is not (e.g. ’Se-
vere’ is a predictor, but ’Mild’ is not). Statistically significant
predictors (i.e. odds ratios deviating from one with p-value at
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Figure 5: Distribution of age and gender for hospitalized patients with coron-
avirus disease 2019 (COVID-19) for (Top) training data (n=590) and (Bottom)
hold out validation data (n=253) cohorts.

0.05 or lower) associated with increasing risk of a severe out-
come (as shown in Figure 6) include age, and the biomark-
ers: Activated Partial Thromboplastin Time (Mild), Prothrom-
bin time (Abnormal), blood pH (Abnormal), Haemoglobin (Se-
vere), Platelet count (Moderate), Lymphocytes (Moderate, Se-
vere), Neutrophils (Severe), Neutrophil-Lymphocyte Ratio (Mild,
Moderate, Severe), C-Reactive Protein (Abnormal), Urea (Ab-
normal), and Troponin-T (Abnormal). Nosocomial transmis-
sion was included due to the high number of cases in our cohort
but was not a significant predictor and excluded from further
analyses. Due to small numbers preventing cross validation,
Triglycerides, Glycated Haemoglobin, and Procalcitonin (also
invalid due to being recorded only in ICU) were excluded from
further analysis and require future research.

Regression Models Using All Valid Biomarker Data

Each model was evaluated via 5-fold cross-validation with
20 repeats (100 models total). As such, each model is trained
with a randomised sample of 80% of the training data set (n=472).
Internal validation evaluates a model predictions on the 20%
(n=118) held out. External validation uses the same model, but
is instead tested on the held out validation data set (n=253).
Missing data for each biomarker is coded as ’Test Not Taken’
and is included as a predictor variable. Figure 8 shows the per-
formance of these models (AUC, Sensitivity, Specificity). For
comparison, Figure 9 shows the performance of each model

using all valid training data (n=590) and testing on the same
data (internal validation) and testing on the held out external
validation data (n=253).

Models trained on the full data have improved AUC scores,
but do not provide a direct uncertainty estimate, this could be
done via bootstrapping for a single model but we instead com-
pute inter-quantile ranges across 5-fold 20 repeat cross-validation
models. Cross-validation results provide 95% inter-quantile
ranges that clearly illustrate that in general, all models perform
similarly, with a median AUC in the mid 0.70’s in internal val-
idation, and near the high 0.60’s in external validation. There
is a trend for the models that encourage sparse representations,
LASSO and Bayes with horseshoe prior, to have slightly higher
AUC’s coupled with higher sensitivity and lower specificity.

Reduced Variable Models
The models detailed above are moderately good predictors

of severe COVID-19 outcomes, but for clinicians with limited
time and resources, reduced models can balance predictive per-
formance with ease of clinical use by using only the most infor-
mative biomarkers. To address this, we use two variable selec-
tion approaches, LASSO and projective prediction, that allow
the creation of reduced models with fewer biomarkers but sim-
ilar performance to the larger models.

LASSO Models
After performing 5-fold 20 repeat cross-validation we ex-

amined the frequency of how often a particular biomarker has
a coefficient greater than zero and count across cross-validation
trials. Figure 10 shows the frequency of variables having a
coefficient great than zero in the cross-validated LASSO analy-
sis. If we select variables that appear at least 50% of the time,
our reduced model would include: Age, CRP (abnormal), FER
(mild), FIB (mild), HB (severe), PLT (mild, moderate, severe),
Lymphocytes (Severe), Neutrophils (Mild, Severe), NLR (Se-
vere), APTT (mild, moderate), PT (abnormal), blood pH (ab-
normal), Urea (abnormal), and positive viral and blood culture
co-infections.

For a ’LASSO inspired’ reduced variable standard GLM,
this resulted in a model using the 15 biomarkers above for all
categorical levels, and was evaluated via both cross-validation
and as fit to all available training data. This model had perfor-
mance very similar to the models using all valid biomarker data,
with a median external validation AUC of 0.68 [0.63, 0.72], see
Figures 8 and 9.

Note, ’Test Not Taken’ is a significant predictor for LDH
and Lactate on over 50% of cross-validation trials. The poten-
tial significance of missing data is complex and is addressed in
the Discussion Sectionc. Due to this confounding, biomarkers
whose top predictive contribution was from ’Test Not Taken’
were excluded from both LASSO reduced variable models and
projective prediction models described below.

Projective Prediction Models
When all biomarkers were considered, projective prediction

identifies the following predictors in the top 20, in order of con-
tribution to AUC: Urea (abnormal), Age, PT (abnormal), NLR
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Bayesian Logistic (Flat 
Prior)

Bayesian Logistic 
(Horse Shoe Prior)

Biomarker
Binary 

Categorical 
Variable

% of Patients 
with 

Biomarker 
Recording

# TRUE 
(% of TRUE 

Observations 
with Severe 
Outcome)

# FALSE 
(% of FALSE 

Observations 
with Severe 
Outcome)

P Value
Odds Ratio 

[2.5%, 97.5%]
Odds Ratio 

[2.5%, 97.5%]
Odds Ratio 

[2.5%, 97.5%]

Age - 100% - - 3.22E-05 1.02 [1.01, 1.04] 1.02 [1.01, 1.04] 1.02 [1.01, 1.04]
Gender Female 100% 257 (26%) 333 (32%) 0.08 0.72 [0.50, 1.03] 0.72 [0.50, 1.03] 0.79 [0.54, 1.06]

- - - 2.83E-05 1.02 [1.01, 1.04] 1.02 [1.01, 1.04] 1.02 [1.01, 1.04]
Female 257 (26%) 333 (32%) 0.06 0.70 [0.49, 1.02] 0.70 [0.49, 1.00] 0.82 [0.55, 1.07]

Nosocomial Transmission TRUE 100% 240 (30%) 350 (29%) 0.65 0.92 [0.63, 1.33] 0.92 [0.63, 1.33] 0.98 [0.74, 1.19]

Mild 54% 30 (63%) 291 (320%) 2.44E-03 3.44 [1.57, 7.88] 3.44 [1.55, 7.86] 2.89 [1.12, 6.44]
Moderate 54% 4 (100%) 317 (34%) 0.98 9.91E+06 [0.00, NA] 4.4E+104 [5.4E+04, Inf] 7.86 [0.92, 464.23]

Prothrombin Time Abnormal 56% 45 (58%) 288 (31%) 2.96E-03 2.73 [1.41, 5.36] 2.79 [1.44, 5.37] 2.26 [1.01, 4.63]

Carbon Dioxide Abnormal 21% 68 (59%) 57 (51%) 0.33 1.44 [0.70, 2.99] 1.46 [0.72, 3.02] 1.08 [0.82, 1.95]
Lactate Abnormal 21% 13 (54%) 112 (55%) 0.96 1.03 [0.32, 3.44] 1.04 [0.33, 3.40] 1.02 [0.61, 1.80]
Oxygen Abnormal 21% 105 (55%) 20 (55%) 0.98 1.01 [0.38, 2.66] 1.00 [0.37, 2.68] 0.99 [0.63, 1.53]
Bicarbonate Excess Abnormal 64% 123 (38%) 252 (31%) 0.26 1.30 [0.82, 2.05] 1.31 [0.84, 2.04] 1.09 [0.87, 1.65]
pH acid/base scale Abnormal 63% 136 (46%) 238 (26%) 1.05E-04 2.45 [1.56, 3.87] 2.48 [1.58, 3.97] 2.19 [1.34, 3.53]

Blood Culture TRUE 100% 5 (0%) 585 (30%) 0.98 3.20E-07 [NA, 2.94E+22] 0 [0, 0] 0.42 [0.02, 1.40]
Respiratory TRUE 100% 6 (50%) 584 (29%) 0.20 2.95 [0.52, 16.62] 2.96 [0.46, 18.46] 1.23 [0.70, 4.76]
Urine TRUE 100% 12 (25%) 579 (30%) 0.63 0.72 [0.15, 2.53] 0.63 [0.13, 2.56] 0.94 [0.38, 2.03]
Viral TRUE 100% 7 (71%) 583 (29%) 0.06 4.95 [1.04, 35.13] 5.93 [1.01, 45.18] 1.82 [0.83, 10.36]

Glucose Abnormal 30% 49 (45%) 126 (32%) 0.11 1.77 [0.88, 3.54] 1.77 [0.88, 3.56] 1.28 [0.88, 2.63]

Mild 176 (36%) 368 (27%) 0.13 1.38 [0.91, 2.08] 1.38 [0.91, 2.10] 1.13 [0.90, 1.72]
Moderate 48 (33%) 495 (30%) 0.62 1.19 [0.59, 2.29] 1.18 [0.59, 2.30] 1.02 [0.71, 1.61]
Severe 11 (55%) 532 (30%) 0.03 4.08 [1.16, 15.06] 4.26 [1.17, 16.54] 1.57 [0.82, 6.68]
Mild 67 (39%) 474 (29%) 0.07 1.65 [0.95, 2.83] 1.64 [0.93, 2.79] 1.32 [0.90, 2.30]
Moderate 17 (65%) 524 (29%) 0.01 4.21 [1.54, 12.65] 4.42 [1.59, 13.10] 2.58 [0.96, 8.72]
Severe 4 (75%) 537 (30%) 0.12 6.16 [0.76, 126.83] 9.29 [0.82, 245.54] 1.77 [0.65, 14.71]
Mild 151 (27%) 392 (31%) 0.12 1.69 [0.89, 3.34] 1.70 [0.87, 3.35] 1.10 [0.76, 1.98]
Moderate 217 (31%) 326 (30%) 0.03 1.96 [1.07, 3.75] 1.99 [1.08, 3.81] 1.22 [0.88, 2.26]
Severe 84 (48%) 459 (27%) 4.99E-04 3.48 [1.75, 7.17] 3.53 [1.75, 7.20] 2.08 [1.00, 4.34]
Mild 23 (13%) 520 (31%) 0.23 0.47 [0.11, 1.43] 0.40 [0.09, 1.35] 0.76 [0.26, 1.32]
Moderate 3 (33%) 540 (30%) 0.67 1.71 [0.08, 19.15] 1.27 [0.03, 21.43] 1.01 [0.28, 3.66]
Severe 143 (41%) 400 (26%) 1.88E-03 1.92 [1.27, 2.91] 1.94 [1.28, 2.89] 1.72 [1.08, 2.71]
Mild 237 (28%) 306 (32%) 3.69E-03 2.50 [1.38, 4.79] 2.57 [1.39, 4.98] 1.84 [0.99, 3.50]
Moderate 137 (39%) 406 (27%) 3.18E-05 3.97 [2.12, 7.81] 4.13 [2.19, 8.29] 2.92 [1.44, 5.76]
Severe 54 (54%) 489 (28%) 2.61E-06 6.38 [2.99, 14.14] 6.69 [3.13, 15.02] 4.52 [1.99, 10.44]
Mild 57 (23%) 486 (31%) 0.34 0.72 [0.36, 1.38] 0.71 [0.36, 1.37] 0.86 [0.46, 1.23]
Moderate 2 (50%) 541 (30%) 0.45 3.03 [0.11, 83.24] 3.08 [0.08, 122.91] 1.14 [0.42, 4.94]
Severe 85 (42%) 458 (28%) 0.02 1.84 [1.12, 3.00] 1.84 [1.12, 3.02] 1.50 [0.96, 2.77]

C-Reactive Protein Abnormal 91% 489 (33%) 47 (4%) 1.49E-03 10.23 [3.08, 63.44] 13.12 [3.39, 87.29] 7.45 [2.52, 33.50]
Estimated Glomerular 
Filtration Rate

Abnormal 82% 350 (38%) 131 (18%) 0.06 1.76 [0.98, 3.23] 1.80 [0.99, 3.31] 1.38 [0.88, 2.70]

Urea Abnormal 89% 262 (47%) 264 (15%) 4.23E-11 4.27 [2.79, 6.63] 4.33 [2.82, 6.73] 4.09 [2.67, 6.41]

Brain / B-type natriuretic 
peptide

Abnormal 7% 30 (53%) 14 (29%) 0.13 3.91 [0.73, 27.00] 4.65 [0.77, 31.41] 1.53 [0.73, 8.01]

D-Dimer Abnormal 12% 52 (42%) 18 (33%) 0.67 1.29 [0.40, 4.43] 1.32 [0.40, 4.79] 1.08 [0.59, 2.48]
Mild 14% 11 (64%) 72 (39%) 0.09 3.61 [0.84, 17.70] 4.17 [0.88, 20.84] 1.30 [0.81, 4.78]
Moderate 14% 28 (46%) 55 (40%) 0.27 1.79 [0.64, 5.15] 1.87 [0.63, 5.55] 1.10 [0.72, 2.38]
Severe 14% 6 (33%) 77 (43%) 0.94 0.93 [0.11, 5.90] 0.85 [0.10, 5.65] 0.94 [0.36, 1.70]
Mild 5% 4 (75%) 26 (46%) 0.10 11.27 [0.85, 360.85] 25.22 [1.14, 1.05E+03] 1.44 [0.60, 9.96]
Severe 5% 3 (67%) 27 (48%) 0.40 3.41 [0.23, 105.85] 5.42 [0.21, 308.55] 1.11 [0.46, 4.62]

Glycated haemoglobin* Abnormal 3% 11 (9%) 4 (0%) 1.00 2.98E+08 [0, NA] 2.2E+07 [0.23, 1.3E+39] 1.42 [0.36, 22.68]

Mild 6% 12 (67%) 25 (56%) 0.49 2.61 [0.19, 71.00] 3.93 [0.18, 134.47] 1.14 [0.59, 3.50]

Moderate 6% 16 (63%) 21 (57%) 0.78 1.49 [0.10, 40.47] 1.90 [0.08, 64.73] 1.00 [0.41, 2.27]
Severe 6% 5 (60%) 32 (59%) 0.34 4.63 [0.22, 178.20] 8.20 [0.25, 502.08] 1.08 [0.43, 3.96]

Procalcitonin* Abnormal 4% 21 (86%) 4 (100%) 1.00 1.15E-07 [NA, 1.6E+184] 3.2E-08 [3.07E-39, 7.82] 0.80 [0.08, 2.84]
Triglycerides* Abnormal 3% 10 (90%) 5 (100%) 1.00 1.68E-09 [NA, Inf] 2.1E-06 [5.62E-26, 1.46] 0.75 [0.05, 2.88]
Troponin-T Abnormal 24% 91 (44%) 51 (22%) 0.03 2.96 [1.17, 7.96] 3.09 [1.17, 8.48] 1.75 [0.94, 4.94]
* Biomarkers not included in subsequent models due to small sample size, and recorded only in ICU (PCT)

Coinfection

100%

Investigatory Tests

Platelet Count

Demographics / Other

92%

92%

92%

92%

92%White Cell Count 

Diabetes

Full Blood Count Tests

Urea & Electrolytes Tests

92%

Lymphocytes

Standard Logistic GLM

Age & Gender

Activated partial 
thromboplastin time

Blood Clotting Tests

Blood Gas Tests

Ferritin

Hemoglobin

Lactate dehydrogenase

Neutrophils

Neutrophil - Lymphocyte 
Ratio

Fibrinogen

Figure 6: Descriptive statistics and logistic regression model outcomes (Standard, Bayesian with flat prior, and Bayes with horseshoe prior). All models included
age and gender (except univariate age and gender models). Regressions were fit using all associated dummy variables for a given biomarker (e.g. normal, mild,
moderate, severe) and using only complete cases of training data, i.e. not using a variable for ’Test not taken.’ 95% inter-quantile ranges were calculated via 5-fold
cross-validation with 20 repeats (100 models total). Categorical variables use a reading of ’Normal’ as a reference in the fitted model, except ’Male’ used as the
reference category for gender.
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Demographic / Biomarker
Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age & 

Gender Standard 
[2.5%,97.5%]

Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age & 

Gender Standard 
[2.5%,97.5%]

Median AUC 
[2.5%,97.5%]

Median AUC 
Difference to Age & 

Gender Standard 
[2.5%,97.5%]

Age 0.62 [0.48, 0.71] 0.00, [-0.11, 0.04] 0.62 [0.46, 0.71] 0.00 [-0.10, 0.07] 0.62 [0.45, 0.70] 0.00 [-0.06, 0.09]
Gender 0.55 [0.45, 0.63] 0.08, [-0.05, 0.17] 0.56 [0.48, 0.64] 0.05 [-0.08, 0.14] 0.55 [0.44, 0.63] 0.07 [-0.14, 0.21]
Age & Gender 0.61 [0.50, 0.72] 0.00, [0.00, 0.00] 0.61 [0.48, 0.72] 0.00 [-0.02, 0.02] 0.61 [0.45, 0.72] 0.00 [-0.03, 0.02]

Nosocomial Transmission 0.61 [0.46, 0.73] 0.00, [-0.01, 0.05] 0.61 [0.48, 0.73] 0.00 [-0.02, 0.04] 0.61 [0.46, 0.72] 0.00 [-0.07, 0.02]

Activated partial 
thromboplastin time

0.66 [0.45, 0.78] -0.05, [-0.22, 0.04] 0.66 [0.45, 0.78] -0.04 [-0.23, 0.04] 0.65 [0.45, 0.75] -0.05 [-0.20, 0.05]

Prothrombin Time 0.64 [0.50, 0.76] -0.03 [-0.15, 0.05] 0.64 [0.50, 0.76] -0.03 [-0.15, 0.05] 0.63 [0.44, 0.76] -0.03 [-0.13, 0.05]

Carbon Dioxide 0.56 [0.40, 0.76] 0.01 [-0.13, 0.15] 0.55 [0.43, 0.76] 0.02 [-0.18, 0.17] 0.55 [0.44, 0.74] 0.02 [-0.20, 0.18]
Lactate 0.57 [0.44, 0.79] 0.00 [-0.09, 0.19] 0.58 [0.40, 0.75] -0.01 [-0.24, 0.17] 0.55 [0.37, 0.81] 0.00 [-0.25, 0.16]
Oxygen 0.56 [0.44, 0.78] 0.00 [-0.18, 0.11] 0.56 [0.43, 0.77] 0.00 [-0.16, 0.13] 0.58 [0.45, 0.75] 0.00 [-0.21, 0.14]
Bicarbonate Excess 0.58 [0.43, 0.71] 0.00 [-0.12, 0.14] 0.58 [0.42, 0.71] 0.00 [-0.17, 0.16] 0.60 [0.44, 0.70] 0.00 [-0.07, 0.11]
pH acid/base scale 0.64 [0.43, 0.75] -0.05 [-0.22, 0.10] 0.64 [0.45, 0.75] -0.06 [-0.22, 0.09] 0.64 [0.46, 0.75] -0.05 [-0.16, 0.08]

Blood Culture 0.62 [0.46, 0.73] -0.01 [-0.02, 0.00] 0.62 [0.48, 0.73] -0.01 [-0.03, 0.01] 0.62 [0.47, 0.72] 0.00 [-0.02, 0.02]
Respiratory 0.61 [0.49, 0.73] 0.00 [-0.02, 0.02] 0.62 [0.50, 0.74] 0.00 [-0.04, 0.02] 0.62 [0.47, 0.72] 0.00 [-0.02, 0.03]
Urine 0.61 [0.49, 0.71] 0.00 [-0.01, 0.02] 0.61 [0.47, 0.71] 0.00 [-0.02, 0.03] 0.62 [0.46, 0.72] 0.00 [-0.02, 0.02]
Viral 0.62 [0.43, 0.71] 0.00 [-0.01, 0.01] 0.62 [0.44, 0.71] 0.00 [-0.03, 0.05] 0.62 [0.46, 0.71] 0.00 [-0.03, 0.02]

Glucose 0.61 [0.45, 0.78] -0.02 [-0.10, 0.14] 0.61 [0.47, 0.78] -0.02 [-0.09, 0.09] 0.61 [0.45, 0.78] -0.01 [-0.21, 0.12]

Hemoglobin 0.62 [0.48, 0.71] -0.01 [-0.05, 0.04] 0.62 [0.49, 0.71] -0.01 [-0.05, 0.05] 0.62 [0.48, 0.71] 0.00 [-0.04, 0.03]
Platelet Count 0.64 [0.48, 0.74] -0.01 [-0.07, 0.06] 0.64 [0.52, 0.74] -0.02 [-0.06, 0.05] 0.64 [0.46, 0.74] -0.01 [-0.12, 0.06]
Lymphocytes 0.65 [0.55, 0.73] -0.04 [-0.10, 0.04] 0.65 [0.55, 0.73] -0.04 [-0.10, 0.05] 0.64 [0.52, 0.72] -0.02 [-0.07, 0.02]
Neutrophils 0.63 [0.55, 0.72] -0.02 [-0.12, 0.06] 0.63 [0.53, 0.72] -0.02 [-0.08, 0.07] 0.63 [0.54, 0.72] -0.03 [-0.19, 0.05]
Neutrophil - Lymphocyte 
Ratio

0.67 [0.57, 0.76] -0.06 [-0.16, 0.06] 0.67 [0.57, 0.77] -0.06 [-0.15, 0.06] 0.67 [0.56, 0.76] -0.06 [-0.11, 0.04]

White Cell Count 0.62 [0.48, 0.72] 0.00 [-0.09, 0.08] 0.62 [0.48, 0.72] 0.00 [-0.08, 0.08] 0.62 [0.46, 0.74] -0.01 [-0.05, 0.08]

C-Reactive Protein 0.65 [0.45, 0.74] -0.03 [-0.08, 0.03] 0.65 [0.44, 0.74] -0.03 [-0.09, 0.04] 0.65 [0.44, 0.74] -0.04 [-0.15, 0.05]
Estimated Glomerular 
Filtration Rate

0.62 [0.53, 0.71] -0.01 [-0.03, 0.04] 0.62 [0.52, 0.71] -0.01 [-0.04, 0.04] 0.62 [0.51, 0.71] 0.00 [-0.04, 0.05]

Urea 0.71 [0.59, 0.80] -0.09 [-0.18, -0.02] 0.71 [0.59, 0.80] -0.09 [-0.19, -0.01] 0.71 [0.59, 0.81] -0.09 [-0.20, -0.01]

Brain / B-type natriuretic 
peptide

0.67 [0.44, 0.94] -0.05 [-0.33, 0.25] 0.67 [0.45, 0.94] 0.00 [-0.33, 0.22] 0.65 [0.40, 0.94] 0.00 [-0.33, 0.25]

D-Dimer 0.62 [0.44, 0.85] 0.01 [-0.15, 0.24] 0.63 [0.43, 0.83] 0.00 [-0.21, 0.22] 0.65 [0.42, 0.89] 0.00 [-0.10, 0.17]
Ferritin 0.61 [0.44, 0.83] -0.01 [-0.26, 0.21] 0.61 [0.45, 0.83] 0.00 [-0.29, 0.20] 0.58 [0.43, 0.80] -0.01 [-0.31, 0.20]
Fibrinogen 0.67 [0.38, 1.00] 0.00 [-0.44, 0.50] 0.75 [0.38, 1.00] 0.00 [-0.40, 0.44] 0.75 [0.38, 1.00] 0.00 [-0.44, 0.33]
Glycated haemoglobin* NA NA NA NA NA NA
Lactate dehydrogenase 0.67 [0.40, 1.00] 0.00 [-0.42, 0.33] 0.67 [0.40, 1.00] 0.00 [-0.42, 0.40] 0.67 [0.30, 1.00] 0.00 [-0.25, 0.25]
Procalcitonin* NA NA NA NA NA NA
Triglycerides* NA NA NA NA NA NA
Troponin-T 0.57 [0.40, 0.77] -0.01 [-0.22, 0.20] 0.57 [0.40, 0.76] -0.01 [-0.25, 0.18] 0.59 [0.43, 0.78] -0.01 [-0.25, 0.13]
* Biomarkers not included in subsequent models due to small sample size, and recorded only in ICU (PCT)

Coinfection

Demographics / Other

Blood Clotting Tests

Blood Gas Tests

Investigatory Tests

Urea & Electrolytes Tests

Full Blood Count Tests
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Standard Logistic GLM Bayesian Logistic (Flat Prior) Bayesian Logistic (Horse Shoe Prior)
Cross-Validated 80/20 Split Cross-Validated 80/20 Split Cross-Validated 80/20 Split

Figure 7: Predictive performance of models in 7 as described by the median area under the curve (AUC) in receiver operating curve (ROC) analysis and median
difference between an Age and Gender reference model and the same model with the particular biomarker included (except univariate age and gender models).
Regressions were fit using all associated dummy variables for a given biomarker (e.g. mild, moderate, severe) and using only complete cases of training data
(n=590), i.e. not using a variable for ’Test not taken.’ 95% inter-quantile ranges calculated via 5-fold cross-validation with 20 repeats (100 models total). Categorical
variables use a reading of ’Normal’ as a reference in the fitted model, except ’Male’ used as the reference category for gender.
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Model 
AUC 

[2.5%, 97.5%]

Specificity at 90% 
Sensitivity

[2.5%, 97.5%]

Specificity at 95% 
Sensitivity

[2.5%, 97.5%]

AUC 
[2.5, 97.5]

Specificity at 90% 
Sensitivity

[2.5%, 97.5%]

Specificity at 95% 
Sensitivity

[2.5%, 97.5%]
Standard Logistic GLM 0.70 [0.64, 0.81] 0.39 [0.04, 0.57] 0.20 [0, 0.50] 0.67 [0.61, 0.71] 0.28 [0.16, 0.39] 0.13 [0.01, 0.24]
Standard GLM with LASSO regularisation 0.77 [0.71, 0.86] 0.46 [0.26, 0.60] 0.35 [0.11, 0.52] 0.69 [0.67, 0.71] 0.32 [0.25, 0.40] 0.19 [0.14, 0.27]
Bayesian GLM (Flat Prior) 0.75 [0.67, 0.82] 0.41 [0.02, 0.60] 0.22 [0, 0.49] 0.67 [0.63, 0.71] 0.27 [0.18, 0.38] 0.13 [0.01, 0.24]
Bayesian GLM (Horse Shoe Prior) 0.78 [0.71, 0.85] 0.49 [0.32, 0.67] 0.38 [0.16, 0.59] 0.70 [0.68, 0.71] 0.33 [0.29, 0.39] 0.23 [0.18, 0.26]
LASSO inspired GLM (15 biomarkers) 0.76 [0.35, 0.76] 0.43 [0.08, 0.64] 0.25 [0.01, 0.57] 0.68 [0.63, 0.72] 0.28 [0.2, 0.38] 0.13 [0.03, 0.25]
Projective Prediction (28 Biomarkers) 0.78 [0.70, 0.85] 0.50[0.29,0.67] 0.37 [0.14, 0.59] 0.70 [0.68, 0.71] 0.34 [0.30, 0.39] 0.24 [0.18, 0.25]
Projective Prediction (3 Biomarkers) 0.74 [0.67, 0.82] 0.38 [0.18, 0.58] 0.24 [0.08, 0.50] 0.70 [0.69, 0.71] 0.38 [0.18, 0.58] 0.24 [0.08,0.50]

Data sourced from:
GLM_CV_Generalise_Summary_Compendium.csv
GLM_CV_Train_Summary_Compendium.csv
LASSO_CV_Generalise_Summary_Compendium.csv
LASSO_CV_Train_Summary_Compendium.csv
Flat_BAYES_CV_Generalise_Summary_Compendium.csv
Flat_BAYES_CV_Train_Summary_Compendium.csv
HS_BAYES_CV_Generalise_Summary_Compendium.csv
HS_BAYES_CV_Train_Summary_Compendium.csv

Internal Validation External Validation

Values calcualted via 5-Fold Cross-validation with 20 repeats unless otherwise noted. Internal validation tests on 20% of training data (n=118) held out; External tests on 
separate validation data set (n=253) . 1. The reduced variable standard GLM uses the 15 biomarkers that had non-zero coefficents on >=50% LASSO Cross-validation trials. If 
at least one categorical level for a particular biomarker (e.g. severe) met this requirement, all levels for that biomarker were included in the model. 2. The 21 biomarker 
projective prediction model further omits TROP, PoctLac, O2, CO2, LDH, FIB, and FER due to 'Test not Taken' having greatest predictive power for that biomarker. 3. The 3 
biomarker projective prediction model uses Urea, PT, and NLR. **Interquartile intervales computed via leave one out cross-validation.Figure 8: Cross-validated performance of models trained using valid biomarker data. 95% inter-quantile ranges are presented for each estimate. Specificity is

obtained by evaluating at a set sensitivity of either 90% or 95%. All reduced variable models include age, and a stated number of biomarkers. The reduced variable
LASSO inspired standard GLM uses 15 biomarkers that had non-zero coefficients on >=50% LASSO Cross-validation trials. If at least one categorical level for a
particular biomarker (e.g. severe) met this requirement, all levels for that biomarker were included in the model. The 3 biomarker projective prediction model uses
all categorical levels for Urea, PT, and NLR.

Model Accuracy AUC Brier Sensitivity Specificity Accuracy AUC Brier Sensitivity Specificity
Standard Logistic GLM 0.82 0.87 0.13 0.93 0.56 0.66 0.69 0.13 0.82 0.40
Standard GLM with LASSO regularisation 0.77 0.83 0.23 0.94 0.39 0.62 0.69 0.38 0.93 0.13
LASSO inspired GLM (15 biomarkers) 0.79 0.84 0.14 0.91 0.50 0.67 0.69 0.14 0.88 0.34
Bayesian GLM (Flat Prior) 0.82 0.86 0.18 0.92 0.58 0.64 0.68 0.36 0.79 0.40
Bayesian GLM (Horse Shoe Prior) 0.79 0.84 0.21 0.94 0.45 0.63 0.71 0.37 0.89 0.22
Projective Prediction (28 Biomarkers) 0.79 0.83 0.21 0.94 0.44 0.64 0.71 0.36 0.90 0.24
Projective Prediction (3 Biomarkers) 0.73 0.75 0.27 0.91 0.30 0.67 0.70 0.33 0.94 0.24

Projective Prediction Model (Variable Selection 
over 21 Biomarkers)

0.76 0.80 0.24 0.92 0.38 0.67 0.70 0.33 0.93 0.26

Projective Prediction Model (21 biomarker model, 
projected to use only 3)

0.73 0.75 0.27 0.91 0.29 0.67 0.70 0.33 0.92 0.28

Bayesian Reduced Variable via Projective 
Prediction (20* Biomarkers) fib
note lasso, bayes, glm use all variables (inlcding 
Nas) fer

projpred using NA
0.84 0.71

Brier needs max brier score if prevalance of TP/TN is different across models

The numbers produced here are originally saved in the following files:
Batch_BAYES_Flat_Train_TrainData_Test_GeneraliseData_Summary_Table.csv
Batch_BAYES_Flat_Train_TrainData_Test_TrainData_Summary_Table.csv `
Batch_BAYES_HS_Train_TrainData_Test_GeneraliseData_Summary_Table.csv
Batch_BAYES_HS_Train_TrainData_Test_TrainData_Summary_Table.csv
Batch_GLM_Train_TrainData_Test_GeneraliseData_Summary_Table.csv
Batch_GLM_Train_TrainData_Test_TrainData_Summary_Table.csv
Batch_LASSO_Train_TrainData_Test_GeneraliseData_Summary_Table.csv
Batch_LASSO_Train_TrainData_Test_TrainData_Summary_Table.csv

Internal Validation External Validation

These are same 
remove one

*Accuracy, Specificity & Sensitivity evaluated using a probability threshold of 0.5 (i.e. assumes a well-calibrated model). Note all reduced variable models include age, 
and some number of biomarkers. The Reduced variable standard GLM via LASSO uses the 15 biomarkers that had non-zero coefficents on >=50% LASSO Cross-
validation trials. If at least one categorical level for a particular biomarker (e.g. severe) met this requirement, all levels for that biomarker were included in the model. 
The 21 biomarker projective prediction model further omits TROP, PoctLac, O2, CO2, LDH, FIB, and FER due to 'Test not Taken' having greatest predictive power for 
that biomarker. The 3 biomarker projective prediction model uses Urea, PT, and NLR.

Figure 9: Performance of models using all valid biomarker data trained on all training data available (n=590). Internal validation is trained on all of the training
data and tested on the same. External validation uses the same model and is tested on held out validation data set (n=253). Missing data for each biomarker is
coded as ’Test Not Taken’. Specificity and sensitivity evaluated using a probability threshold of 0.5 (i.e. assumes a well-calibrated model). All reduced variable
models include age, and a stated number of biomarkers. The reduced variable LASSO inspired standard GLM uses 15 biomarkers that had non-zero coefficients on
>=50% LASSO Cross-validation trials. If at least one categorical level for a particular biomarker (e.g. severe) met this requirement, all levels for that biomarker
were included in the model. The 3 biomarker projective prediction model uses uses all categorical levels for Urea, PT, and NLR.
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(Severe), pH (abnormal), Lymphocytes (severe), APPT(mild),
eGFR (abnormal), Neutrophils (Severe), APPT(moderate), CRP
(abnormal), DDM (abnormal), Hemoglobin (severe). Thus age
and 12 biomarkers are candidates for a reduced model. Note,
several predictors of ’Test Not Taken’ were also selected in-
cluding Lactate, O2, CO2, LDH, Ferritin and Fibrinogen. As
mentioned above, these biomarkers are set aside due to this
confounding. Supplementary Figure 11 displays the output
from projective prediction ranking the contribution of each vari-
able to the model. A model using a projection incorporating all
biomarker and demographic data is equivalent to the standard
Bayesian GLM we evaluated in the prior section, see Figures 8
and 9.

Reduced variable projections were evaluated by manual in-
spection of AUC performance among groups of models using
the top biomarkers. Guided by the projective prediction rank-
ing, we ran a model using only the top biomarker, using only
the top two, the top three, and so on. As described above we
omit biomarkers with significant contributions from ’Test Not
Taken’ and include all categorical levels for a given biomarker
as long as one level is highly ranked. Ultimately, we found a 3
biomarker projective prediction model using age and including
urea, prothrombin time, neutrophil-lymphocyte ratios had sim-
ilar performance to larger models with a median internal vali-
dation AUC of 0.74 [0.67, 0.82], and external validation AUC
of 0.70 [0.69, 0.71], as shown in Figures 8 and 9.

Discussion

Challenges of Complex Medical Data

Curating the LabMarCS data is challenging as the data are
heterogeneous in multiple ways. Biomarkers are recorded for
different reasons, e.g. routine upon admission, investigatory
tests, or tests primarily or exclusively taken in ICU. Further
some biomarkers are typically recorded together (but not al-
ways) as part of a test suite, including: Urea and electrolytes,
full blood count, COVID-19 and co-infection swab test, blood
clotting, and blood gas tests (arterial or venous). The schedule
when some these markers are recorded vary by patient and clin-
ical decision, leading to records being present in highly varying
amounts, e.g. only 3% up to 100% of patients depending on the
particular biomarker, see Supplementary Figure 12.

Modelling Choices

When constructing and evaluating models, there are many
choice points that should be explicitly highlighted with justifi-
cation, be it based on convenience, computational complexity,
clinical advice, or a heuristic. The space of potential models
is vast and most studies will constrain the model search space,
delineating why these choices are made will facilitate under-
standing and reproduction by other researchers. These include
key choices relating to: patient inclusion/exclusion criteria, data
missingness protocols, data transformations, training and vali-
dation data selection, and performance evaluation.

Missing Data

Missingness, in the context of this study and in healthcare
data more generally, can sometimes be informative and miss-
ing not at random (MNAR), with the presence or absence of a
test correlated with the measurement of said test. Imputation
of missing data relies on key statistical assumptions that im-
puted variables are missing at random (MAR) or missing com-
pletely at random (MCAR), else the imputation will be faulty
and models may be fit to non-representative data. Conversa-
tions with our clinical colleagues established some routinely
collected biomarkers might be inferred to be MAR. However,
the routines identified were specific to a small a subset of our
cohort and not likely to extrapolate. We ultimately erred to be
conservative and avoid all imputation, and instead include miss-
ing values as a data point [24, 25]. As such, in the current study
we chose to use placeholders for ’Test not taken’ if there was no
recorded value for a particular biomarker within the evaluated
3-day window.

This approach however, allows the possibility that a ’Test
Not Taken’ may be a significant predictor. This has many po-
tential meanings, as it may convey that when a patient is doing
well and unlikely to experience a severe outcome, clinicians are
unlikely to request some biomarker tests. Alternatively, if a pa-
tient is in palliative care and has a poor prognosis, a clinician
may consider further testing unnecessary. As such, the like-
lihood of a test being administered may follow an inverted-U
function as patients to healthy or too ill may not have tests ad-
minister. Furthermore, as our data was collected early in the
pandemic, there may be other underlying clinical decisions or
resource limitations that drove why some tests were taken but
not others. Lastly, because we only consider results from the
first 3 days from a patients critical date, it may be that some
tests are simply taken later in a patient’s stay, and hence may
be more predictive as they were taken closer to the outcome.
Hence, when these instances occurred, we were conservative
and excluded biomarkers with ’Test Not Taken’ as the most in-
formative category from our reduced variable models.

Data Transforms - Time Windows

Ideally clinicians can make a decision based on readings
the day of admission. However, not all tests are administered
on admission. To balance inclusion of test data not available on
the day of admission and the need for clinical decisions to be
guided soon after admission, we chose to consider the first value
recorded for each biomarkers within three days of their ’critical
date’, i.e. date of admission if already COVID-19 positive, or
if already in hospital, the date of testing COVID-19 positive.
However, given the richness of the time series data collected,
further research into models that leverage this extra information
is needed.

Focusing on early detection reflects the intent for the model
to improve early stage clinical decision making when potential
treatments or changes in care may be introduced. This focus
on the first reading in a 3-day interval loses information, but
greatly simplifies the modelling approach. Note, this choice is
not without risk of reducing statistical power, increasing the risk
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of false positives, and underestimation of the extent of variation
in biomarker readings and outcomes between groups [26]. It is
likely that representing biomarker data as time series (assuming
regular measures across patients) instead of single points would
add considerable information.

Data Transforms - Continuous vs. Categorical
A key modelling decision must be made on whether to use

continuous data or transformed categorical data. Clinicians of-
ten use biomarker thresholds to provide semantic categories
(e.g. normal, mild, moderate, severe) which sometimes use
non-linear or discontinuous mappings that require special care
if using continuous data. While clinical thresholds are likely
established with evidence, it may be the case that thresholds
for one use may not apply to a novel one. This led [27, 28] to
use machine learning approaches to build categorisation models
on continuous biomarker data dependent on the training data at
hand. However, using machine learning to establish categorisa-
tion thresholds on our biomarker data is difficult with a small
training data set and the heterogeneity of biomarker recordings.
If missing data imputation is done, it raises another decision
point on whether to impute the continuous or the transformed
categorical data.

Another important factor to recognise is that some biomark-
ers lack a linear relationship between a reading and a seman-
tic category. Biomarkers can have a lower and upper bound
for what is considered normal, and both below and above this
range reflects clinically meaningful yet sometimes separate ab-
normalities. This means modelling needs to factor in non-linear
curves if persevering continuous data or trying to map to a cat-
egorical space. In our position, categorical transforms had the
advantage as we were able to collaborate with ICU consultants
in conjunction with using pre-established clinically acceptable
ranges defined our categorisation, see Figure 2.

Training and Validation Data Selection
There are multiple ways that our data set could be split be-

tween training and validation sets, e.g. randomly sampling 1/3
of the data to hold out as a validation set. Given our rather
small sample, random selection of training data should in prin-
ciple generate data more representative of the validation set left
out. However, realistically hospitals may have differing prac-
tices and randomization of may inflate performance at the cost
of real world validity. We chose to separate our training and
validation datasets by hospital to provide a stronger test of gen-
eralisation that should mimic generalisation to novel hospitals
completely outside the original training data .

Model Performance Evaluation and Dissemination
There are a variety of ways statistical model performance

can be evaluated. Here we have chose here to emphasize cross-
validated estimates of AUC, sensitivity, and specificity. Inter-
quartile intervals over these measures reveal that the variety of
models perform in similar ways. While the full models have
higher median performance, the reduced models are within the
95% bounds of the other models. With a larger data set trade-
offs may become more apparent.

Advantages of Bayesian Modelling

While the predictive performance across models presented
here is generally quite similar, there are several reasons for re-
searchers to favor Bayesian approaches. The coefficients esti-
mated via Bayes should on average deliver slightly better pre-
dictive performance. Additionally, if a sparse model is needed,
a horseshoe prior can provide advantages similar to LASSO
without biased coefficient estimates. Computationally, Bayesian
techniques can be slow due Markov Chain Monte Carlo used
to sample the coefficient space. If one is interested in vari-
able selection, projective prediction offers the ability to take
a single Bayesian model fit, run a variable selection algorithm
to rank variable contributions, and then arbitrarily create sub-
model projections with any number of original variables. While
the initial model fit and variable selection are computationally
intensive, sub-model projections are fast to create and perfor-
mance test.

Summary & Conclusions

Limitations: This is a retrospective cohort study involving a
relatively small cohort in Southwest England where case num-
bers have varied widely, and were well below national figures
during the first wave. This results in less precise parameter es-
timates for prediction models (less power/smaller sample size)
and likely reduced generalizability of the model to other set-
tings. The timing of biomarker collection was highly varied
both within and between patients, with many types of readings
missing. While we replicated prior findings on several biomark-
ers, gender was not significant, suggesting our sample may not
be representative.

Strengths: The primary strength of our study is the granu-
larity of serial laboratory data available linked to clinical out-
comes. This study was performed during the first wave where
there was the original Wuhan strain circulating amongst the un-
vaccinated naı̈ve population without any specific immunomod-
ulating therapies such as steroids or antiviral agents, reflecting
the “true” homeostasis derangements at a population level.

This study highlights a variety of challenges present in com-
plex medical data sets while maintaining best statistical prac-
tices with an emphasis on recent Bayesian methodology. Our
study reiterates the predictive value of previously identified biomark-
ers for COVID-19 severity assessment (e.g. age, urea, pro-
thrombin time, and neutrophil-lymphocyte ratio). Both the full
and reduced variable models have moderately good training
performance, but improved external validation is needed for
all models to be clinically viable. The methods presented here
should generalise well to a larger dataset.

Ethics approval

The study [IRAS project ID: 283439] underwent a rigorous
ethical and regulatory approval process, and a favourable opin-
ion was gained from Research Ethics Service, Wales REC 7,
c/o Public Health Wales, Building 1, Jobswell Road, St David’s
Park, SA31 3HB on 11/09/2020.

11

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.16.22279985doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.16.22279985


Funding

This work is funded by Health Data Research UK via the
Better Care Partnership Southwest (HDR CF0129), Medical
Research Council Research Grant MR/T005408/1, and the Eliz-
abeth Blackwell Institute for Health Research, University of
Bristol and the Wellcome Trust Institutional Strategic Support
Fund.

Declaration of competing interest

The authors have no competing interests.

Acknowledgements

This research was supported by the National Institute for
Health and Care Research (NIHR) Applied Research Collab-
oration West (NIHR ARC West). The views expressed in this
article are those of the author(s) and not necessarily those of the
NIHR or the Department of Health and Social Care.

References

[1] A. B. Docherty, E. M. Harrison, C. A. Green, H. Hardwick, R. Pius,
L. Norman, K. A. Holden, J. M. Read, F. Dondelinger, G. Carson, L. Mer-
son, J. Lee, D. Plotkin, L. Sigfrid, S. Halpin, C. Jackson, C. Gam-
ble, P. W. Horby, J. S. Nguyen-Van-Tam, I. Investigators, J. Dunning,
P. J. M. Openshaw, J. K. Baillie, M. G. Semple, Features of 16,749 hos-
pitalised UK patients with COVID-19 using the ISARIC WHO Clinical
Characterisation Protocol, medRxiv (2020) 2020.04.23.20076042doi:
10.1101/2020.04.23.20076042.

[2] C. Wu, X. Chen, Y. Cai, J. Xia, X. Zhou, S. Xu, H. Huang, L. Zhang,
X. Zhou, C. Du, Y. Zhang, J. Song, S. Wang, Y. Chao, Z. Yang, J. Xu,
X. Zhou, D. Chen, W. Xiong, L. Xu, F. Zhou, J. Jiang, C. Bai, J. Zheng,
Y. Song, Risk Factors Associated With Acute Respiratory Distress Syn-
drome and Death in Patients With Coronavirus Disease 2019 Pneumo-
nia in Wuhan, China, JAMA internal medicine 180 (7) (2020) 934–943.
doi:10.1001/jamainternmed.2020.0994.

[3] L. Bowles, S. Platton, N. Yartey, M. Dave, K. Lee, D. P. Hart, V. Mac-
Donald, L. Green, S. Sivapalaratnam, K. J. Pasi, P. MacCallum, Lupus
Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-
19, New England Journal of Medicine 383 (3) (2020) 288–290. doi:

10.1056/NEJMc2013656.
[4] N. Tang, D. Li, X. Wang, Z. Sun, Abnormal coagulation parameters are

associated with poor prognosis in patients with novel coronavirus pneu-
monia, Journal of thrombosis and haemostasis: JTH 18 (4) (2020) 844–
847. doi:10.1111/jth.14768.

[5] H. Han, L. Yang, R. Liu, F. Liu, K.-L. Wu, J. Li, X.-H. Liu, C.-L. Zhu,
Prominent changes in blood coagulation of patients with SARS-CoV-
2 infection, Clinical Chemistry and Laboratory Medicine 58 (7) (2020)
1116–1120. doi:10.1515/cclm-2020-0188.

[6] X. Bi, Z. Su, H. Yan, J. Du, J. Wang, L. Chen, M. Peng, S. Chen, B. Shen,
J. Li, Prediction of severe illness due to COVID-19 based on an analysis
of initial Fibrinogen to Albumin Ratio and Platelet count, Platelets 31 (5)
(2020) 674–679. doi:10.1080/09537104.2020.1760230.

[7] F. Liu, L. Li, M. Xu, J. Wu, D. Luo, Y. Zhu, B. Li, X. Song, X. Zhou,
Prognostic value of interleukin-6, C-reactive protein, and procalcitonin
in patients with COVID-19, Journal of Clinical Virology: The Official
Publication of the Pan American Society for Clinical Virology 127 (2020)
104370. doi:10.1016/j.jcv.2020.104370.

[8] G. Vaseghi, M. Mansourian, R. Karimi, K. Heshmat-Ghahdarijani,
P. Rouhi, M. Shariati, S. H. Javanmard, Inflammatory markers in Covid-
19 Patients: A systematic review and meta-analysis, medRxiv (2020)
2020.04.29.20084863doi:10.1101/2020.04.29.20084863.

[9] Q. Ruan, K. Yang, W. Wang, L. Jiang, J. Song, Clinical predictors of
mortality due to COVID-19 based on an analysis of data of 150 patients
from Wuhan, China, Intensive Care Medicine 46 (5) (2020) 846–848.
doi:10.1007/s00134-020-05991-x.

[10] B. E. Young, S. W. X. Ong, S. Kalimuddin, J. G. Low, S. Y. Tan, J. Loh,
O.-T. Ng, K. Marimuthu, L. W. Ang, T. M. Mak, S. K. Lau, D. E. An-
derson, K. S. Chan, T. Y. Tan, T. Y. Ng, L. Cui, Z. Said, L. Kurupatham,
M. I.-C. Chen, M. Chan, S. Vasoo, L.-F. Wang, B. H. Tan, R. T. P. Lin,
V. J. M. Lee, Y.-S. Leo, D. C. Lye, Singapore 2019 Novel Coronavirus
Outbreak Research Team, Epidemiologic Features and Clinical Course
of Patients Infected With SARS-CoV-2 in Singapore, JAMA 323 (15)
(2020) 1488–1494. doi:10.1001/jama.2020.3204.

[11] J. Liu, Y. Liu, P. Xiang, L. Pu, H. Xiong, C. Li, M. Zhang, J. Tan, Y. Xu,
R. Song, M. Song, L. Wang, W. Zhang, B. Han, L. Yang, X. Wang,
G. Zhou, T. Zhang, B. Li, Y. Wang, Z. Chen, X. Wang, Neutrophil-to-
Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coro-
navirus in the Early Stage, medRxiv (2020) 2020.02.10.20021584doi:
10.1101/2020.02.10.20021584.

[12] L. E. Gralinski, A. Bankhead, S. Jeng, V. D. Menachery, S. Proll, S. E.
Belisle, M. Matzke, B.-J. M. Webb-Robertson, M. L. Luna, A. K. Shukla,
M. T. Ferris, M. Bolles, J. Chang, L. Aicher, K. M. Waters, R. D. Smith,
T. O. Metz, G. L. Law, M. G. Katze, S. McWeeney, R. S. Baric, Mech-
anisms of severe acute respiratory syndrome coronavirus-induced acute
lung injury, mBio 4 (4) (Aug. 2013). doi:10.1128/mBio.00271-13.

[13] Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang, S. Liu, P. Zhao,
H. Liu, L. Zhu, Y. Tai, C. Bai, T. Gao, J. Song, P. Xia, J. Dong, J. Zhao,
F.-S. Wang, Pathological findings of COVID-19 associated with acute res-
piratory distress syndrome, The Lancet Respiratory Medicine 8 (4) (2020)
420–422. doi:10.1016/S2213-2600(20)30076-X.

[14] M. Arentz, E. Yim, L. Klaff, S. Lokhandwala, F. X. Riedo, M. Chong,
M. Lee, Characteristics and Outcomes of 21 Critically Ill Patients With
COVID-19 in Washington State, JAMA 323 (16) (2020) 1612–1614.
doi:10.1001/jama.2020.4326.

[15] N. Wilson, A. Kvalsvig, L. T. Barnard, M. G. Baker, Case-Fatality Risk
Estimates for COVID-19 Calculated by Using a Lag Time for Fatality
- Volume 26, Number 6—June 2020 - Emerging Infectious Diseases
journal - CDC, Emerging Infectious Diseases (2020). doi:10.3201/

eid2606.200320.
[16] H. Barrasa, J. Rello, S. Tejada, A. Martı́n, G. Balziskueta, C. Vin-

uesa, B. Fernández-Miret, A. Villagra, A. Vallejo, A. San Sebastián,
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Figure 10: Frequency of LASSO logistic regression variables having a coefficient greater or less than 0. Red and black lines indicate thresholds for 20% and 50%
frequency.
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Solution Terms AUC Difference
ELPD 
LOO

Standard 
Error

Difference
Standard 

Error
<NA> 0 -0.8 -358.5 9.7 -61.6 10.7
UreaAbnormal 0.5 -0.3 -326.3 11.4 -29.4 8.3
poctLACNA 0.6 -0.2 -310.6 12.2 -13.6 6.4
O2NA 0.6 -0.2 -310.6 12.2 -13.6 6.4
CO2NA 0.6 -0.2 -310.5 12.1 -13.6 6.3
Age 0.8 0 -302.2 11.9 -5.3 5
PTAbnormal 0.8 0 -299.2 12 -2.2 4.3
NLRSevere 0.8 0 -307.6 12.3 -10.7 4
LDHNA 0.8 0 -304.7 12.5 -7.8 3.7
poctpHAbnormal 0.8 0 -302.3 12.4 -5.4 3.4
LymphocytesSevere 0.8 0 -302.9 12.4 -5.9 3.4
APTTMild 0.8 0 -301.4 12.4 -4.5 3.4
eGFRAbnormal 0.8 0 -299 12.4 -2 3.3
NeutrophilsSevere 0.8 0 -301.8 12.6 -4.8 3.1
APTTModerate 0.8 0 -302.5 12.8 -5.6 3
FERNA 0.8 0 -304.7 12.8 -7.8 2.9
fibNA 0.8 0 -302.4 12.8 -5.4 2.8
CRPAbnormal 0.8 0 -303.1 12.7 -6.2 2.8
CO2Abnormal 0.8 0 -301.2 12.8 -4.3 2.7
DDMAbnormal 0.8 0 -302.4 12.7 -5.5 2.6
HBSevere 0.8 0 -302.9 12.8 -6 2.6

Figure 11: Summary statistics of Bayesian projective prediction ranking the contribution of each variable by change in AUC and expected log-predictive density
(ELPD)
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Figure 12: Heat map displaying missing values across recorded biomarkers.
Light blue indicates a value is missing and dark blue indicate it is present

Figure 13: Example biomarker time series for a patient admitted to hospital
COVID-19 positive and who subsequently died almost two weeks later.

Figure 14: Example biomarker time series for a patient admitted to hospital
with subsequent nosocomial transmission and discharge a week later.

Figure 15: Example biomarker time series for a patient admitted to hospital
COVID-19 positive, with subsequent entrance to ICU and death over one month
later.

Figure 16: Example biomarker time series for a patient admitted to hospital and
ICU, with subsequent nosocomial transmission and discharge about one week
later.
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Figure 17: Example biomarker time series for a patient with two hospital ad-
missions and testing COVID-19 positive on the first, with discharge almost two
weeks after second admission.

Figure 18: Distribution of D-Dimer readings with clinical classification requir-
ing age and gender bands

Biomarker
Binary 

Categorical 
Variable

P-Value
Odds Ratio 

(Composite Model)
CI [2.5%, 97.5%]

Age - 6.30E-05 1.04 [1.02, 1.06]
Gender Female 0.43 1.21 [0.75, 1.97]

Mild 0.07 2.79 [0.93, 8.35]
Moderate 0.99 3.23E+07 [0, Inf]
Not Taken 0.50 0.45 [0.05, 4.51]
Abnormal 0.16 2.02 [0.75, 5.44]
Not Taken 0.46 2.38 [0.24, 23.86]

Abnormal 0.80 1.13 [0.44, 2.95]
Not Taken NA NA
Abnormal 0.63 0.67 [0.13, 3.34]
Not Taken 0.02 0.16 [0.04, 0.72]
Abnormal 0.95 1.05 [0.26, 4.15]
Not Taken NA NA
Abnormal 0.24 1.48 [0.76, 2.87]
Not Taken 0.99 0 [0, Inf]
Abnormal 0.13 1.59 [0.87, 2.91]
Not Taken 0.99 9.4E06 [0, Inf]

Blood Culture TRUE 0.99 0 [0, Inf]
Respiratory TRUE 0.36 2.71 [0.32, 22.69]
Urine TRUE 0.43 0.45 [0.06, 3.24]
Viral TRUE 0.02 16.64 [1.7, 162.66]

Abnormal 0.36 1.55 [0.61, 3.92]
Not Taken 0.60 0.84 [0.44, 1.61]

Mild 0.05 1.76 [1.01, 3.09]
Moderate 0.99 1.01 [0.40, 2.51]

Severe 0.15 4.62 [0.58, 37.05]
Not Taken 0.99 1.3E9 [0, Inf]

Mild 0.01 2.8 [1.33, 5.90]
Moderate 0.03 5.81 [1.21, 28.03]

Severe 0.10 20.44 [0.57, 734.84]
Not Taken 0.99 0 [0, Inf]

Mild 0.12 1.98 [0.83, 4.73]
Moderate 0.23 1.81 [0.69, 4.76]

Severe 0.14 2.61 [0.74, 9.22]
Not Taken NA NA

Mild 0.02 0.05 [4E-3, 0.59]
Moderate 0.73 0.22 [3.1E-5, 1.4E3]

Severe 0.38 1.45 [0.63, 3.32]
Not Taken NA NA

Mild 0.82 1.1 [0.48, 2.52]
Moderate 0.80 1.15 [0.39, 3.44]

Severe 0.41 1.89 [0.41, 8.69]
Not Taken NA NA

Mild 0.72 0.83 [0.29, 2.38]
Moderate 0.73 0.21 [2.5E-5, 1.6E3] .

Severe 0.83 1.11 [0.43, 2.83]
Not Taken NA NA

Abnormal 0.07 4.46 [0.91, 21.93]
Not Taken 0.94 0.90 [0.07, 12.34]

Abnormal 0.41 0.72 [0.33, 1.58]

Not Taken 0.04 0.25 [0.06, 0.95]
Abnormal 3.71E-04 2.74 [1.57, 4.77]
Not Taken 0.95 0.94 [0.11, 7.76]

Abnormal 0.72 1.47 [0.18, 11.76]

Not Taken 0.81 1.24 [0.21, 7.40]
Abnormal 0.31 0.42 [0.08, 2.24]
Not Taken 0.23 0.37 [0.07, 1.89]

Mild 0.10 5.65 [0.71, 45.00]
Moderate 0.61 1.52 [0.30, 7.58]

Severe 0.84 1.30 [0.10, 17.54]
Not Taken 0.63 1.30 [0.45, 3.72]

Mild 0.21 11.93 [0.26, 552.59]
Severe 0.42 0.26 [0.01, 6.77]

Not Taken 0.92 1.07 [0.27, 4.22]
Mild 0.13 14.88 [0.46, 477.41]

Moderate 0.31 5.41 [0.20, 145.69]
Severe 0.48 4.20 [0.08, 217.62]

Not Taken 0.61 2.13 [0.12, 39.40]

Abnormal 0.68 1.31 [0.37, 4.65]

Not Taken 0.58 1.40 [0.43, 4.53]

Lactate dehydrogenase

Troponin-T

Standard Logistic GLM

Demographics / Other

Coinfection

Blood Clotting Tests

Blood Gas Tests

Investigatory Tests

Urea & Electrolytes Tests

Full Blood Count Tests
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Brain / B-type natriuretic 
peptide

D-Dimer
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Neutrophil - Lymphocyte 
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White Cell Count 

C-Reactive Protein
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Filtration Rate

Glucose
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Lymphocytes

Diabetes
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Activated partial 
thromboplastin time

Prothrombin Time

Figure 19: Standard logistic regression odds ratio and confidence intervals per
biomarker using all valid biomarker training data available (n=590). Note most
biomarkers include a ’Test Not Taken’ stand in variable.
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