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Abstract 23 

Background: Cardiometabolic multimorbidity (CMM) with at least two cardiometabolic diseases 24 

(CMDs) including type II diabetes (T2D), ischemic heart disease (IHD), and stroke, is a global health 25 

problem with multiplicative mortality risk and deserves to be investigated as a top priority. Although 26 

air pollution is a leading modifiable environmental risk for individual CMD, its impacts on CMM 27 

progression were poorly understood. 28 

Objective: To elucidate the impact of air pollution on CMM progression, individually and in the 29 

context of genetic preposition. 30 

Design: Multi-state modeling cohort study.  31 

Setting: Data were extracted from the UK Biobank. 32 

Participants: 415,855 eligible UK Biobank adults that were free of CMDs at baseline. 33 

Measurements: Annual concentrations of particulate matter (PM) with a diameter of ≤2.5 µm 34 

(PM2.5), 2.5-10 µm (PM2.5-10), and ≤10 µm (PM10), and nitrogen oxides (NOx and NO2) were 35 

estimated using Land Use Regression model.  36 

Results: During a median follow-up of 8.93 years, 33,375 participants had a first CMD (FCMD), 37 

and 3,257 subsequently developed CMM. PM2.5, PM10, NO2, and NOx levels, as well as their 38 

combined exposure were associated with increased FCMD risks and even higher risks of CMM. 39 

Particularly, per a 5-μg/m3 increase in PM2.5, risks for FCMD and CMM increased by 27% (95% 40 

confidence interval: 20%-34%) and 41% (18%-68%), respectively. By FCMD types, participants 41 

with IHD had a higher risk of CMM than those with T2D or stroke. Eighty-five CMD-related genetic 42 

variants were associated with CMM trajectories in our study and associations of air pollution with 43 

FCMD and CMM risks could be aggravated progressively with increasing genetic risks.  44 
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Limitations: Other major air pollutants including ozone and SO2 were not considered due to the data 45 

availability.  46 

Conclusions: Air pollution has profound adverse health impacts on the progression of CMM through 47 

multi-stage dynamics, especially for individuals with IHD and high genetic risk.  48 
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Introduction 49 

Multimorbidity is defined as the simultaneous presence of two or more chronic diseases and is an 50 

increasing global health problem with impaired quality of life, reduced life expectancy, and elevated 51 

cost of health care resources by a larger scale than any chronic conditions individually (1). 52 

Cardiometabolic multimorbidity (CMM), as one of the most common multimorbidity patterns (2), 53 

refers to the coexistence of two or three most prevalent cardiometabolic diseases (CMDs), including 54 

type II diabetes (T2D), ischemic heart disease (IHD), and stroke (2, 3). A study based on 91 cohorts 55 

identified that any combination of these CMDs was associated with multiplicative mortality risk, and 56 

life expectancy was substantially lower in people with CMM with a reduction of life expectancy up 57 

to 15 years (3). CMM, therefore, is not simply an accumulation of the three healthy conditions but 58 

rather a collision of risk factors promoting death. Up to date, there is a dearth of studies on the 59 

determinants of CMM, which is urgently needed to seek appropriate management approaches to 60 

early prevent and control CMM development (4).  61 

 62 

Ambient air pollution, especially fine particulate matter (PM2.5, aerodynamic diameter <2.5 μm), has 63 

been recognized as a modifiable risk factor for CMDs (5, 6). For instance, a meta-analysis identified 64 

a robust positive association between PM exposure and the incidence of T2D (7). Petal et al. also 65 

reported that a 10 μg/m3 increase in PM2.5 and particulate matter (PM) of sizes 10 μm (PM10) was 66 

associated with 0.25% higher IHD mortality and 0.27% higher IHD morbidity (8). Short-term air 67 

pollution exposure could also increase the daily hospital admissions for ischemic stroke (9). 68 

Understanding the impact of air pollution on the dynamics of CMM thereby could hint targeted 69 

population of CMM prevention. Nevertheless, this is not sufficient to depict the risks of CMM 70 
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coming from air pollution exposure without accounting for the temporal development of CMM using 71 

traditional time-to-event analyses. Additionally, CMDs have been suggested to be affected mutually 72 

by environmental exposures and genetic profiles (10), but knowledge on whether the genetic 73 

predisposition of CMM and air pollution could jointly promote the CMM development remains 74 

unknown.  75 

 76 

Therefore, we aimed to investigate the associations of five pollutants (PM2.5, PM2.5-10, PM10, NO2, 77 

and NOx) with the CMM trajectories using the scheme of multi-state modeling in the UK Biobank. 78 

The multi-state model could evaluate the risk of five transient states (baseline CMD-free to first 79 

CMD [FCMD], baseline to death, FCMD to CMM, FCMD to death, and CMM to death) on 80 

occupying another state (11). Leveraging in-depth genetic information, this study additionally 81 

allowed us to explore the potential synergetic effect of genetic profile and air pollution on CMM.   82 
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Methods 83 

Study design and participants 84 

UK Biobank is a large population-based prospective cohort study (12). As previously described, 85 

about 0.5 million UK residents aged 37-73 years were enrolled from 2006-2010, and the end date of 86 

follow-up was 31 December 2018. Their information collected includes lifestyle and health data, 87 

physical measurements, and biological samples. After excluding participants without information on 88 

air pollution, CMDs, and selected covariates, and those with T2D, IHD, and stroke at baseline, a total 89 

of 415,855 participants without diagnosis of the three CMDs were included in our study for further 90 

analyses to exclude the impact of baseline CMD on the association between air pollution and CMM 91 

trajectories (Figure S1). The UK Biobank was approved by the North West Multicenter Research 92 

Ethical Committee. All participants provided informed written consent. This research has been 93 

conducted using the UK Biobank Resource under Application Number 44430. 94 

 95 

Cardiometabolic diseases and mortality 96 

Incident IHD, stroke, and T2D cases, as well as relevant mortality, were retrieved from primary care 97 

and hospital admission data using the UK National Health Services register. We used the 98 

International Classification of Diseases 10th revision (ICD-10) and primary care health records to 99 

identify relevant diagnoses. IHD was defined by codes I20 to I25. Stroke was defined by codes I60 100 

to I69. T2D was diagnosed based on the following criteria: having fasting glucose ≥7.0 mmol/L or 2-101 

hour plasma glucose ≥11.1 mmol/L, having physician-diagnosed diabetes, using diabetes medication, 102 

or with ICD-10 code E11. 103 

 104 
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Exposure assessments 105 

Annual 1-year moving average ambient concentrations of PM2.5, PM2.5–10, PM10, NO2, and NOx were 106 

calculated with a Land Use Regression (LUR) model. Details about the LUR model are in the 107 

supplement methods. Previous reports using leave-one-out cross-validation demonstrated good 108 

model performance for PM2.5, PM10, NO2 and NOx (R2 of cross-validation =77%, 88%, 87% and 109 

88%, respectively) and a moderate performance for PMcoarse (cross-validation R2=57%). 110 

Concentrations of PM2.5, PM2.5–10, and NOx were available in 2010 only, while concentrations of 111 

PM10 (2007 and 2010) and NO2 (2005, 2006, 2007, and 2010) were collected for multiple years. 112 

Since the baseline enrollment was conducted from 2006 to 2010, to better fit the time frame of 113 

baseline survey, we used averaged levels of PM10 and NO2 in this study. 114 

 115 

To explore the combined impact of air pollutants, we weighted the levels of PM2.5, PM10, NOx, and 116 

NO2 using the β coefficients retrieved from the transition process from baseline to FCMD based on 117 

Cox regression models adjusting for all covariates described below. PM2.5-10 was removed due to its 118 

null associations with CMDs (see the Result section for details). This approach was validated in a 119 

10-fold cross-validation analysis in a previous air pollution-related study based on UK Biobank (13, 120 

14). Weighted indicator (termed as “co-exposure score”) was estimated as: co-exposure score = 121 

(β[PM2.5] ×PM2.5 + β[PM10] × PM10 + β[NO2] × NO2 +β[NOx] × NOx)×(4/sum of the β coefficients). 122 

The co-exposure score ranged from 36.50 to 141.78. Participants were divided into five groups based 123 

on the quintiles. 124 

 125 

Genetic information and genetic risk scores 126 
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Detailed information about genotyping, imputation, and quality control in UK Biobank has been 127 

described previously (15) and provide in supplement methods. Based on previous genome-wide 128 

association studies (GWASs) (16-18), we retrieved 74 single-nucleotide polymorphisms (SNPs) for 129 

T2D, 55 for IHD, and 32 for stroke (Table S1). We first coded each SNP as 0 and 1 according to the 130 

existence of risk alleles to test their independent associations with CMM using MSM and then 131 

selected 85 SNPs that were nominal significantly related to any processes of CMM development (see 132 

the Result section for details) to create a weighted genetic risk score (GRS). Each selected SNP was 133 

then recoded as 0, 1, or 2 according to the number of risk alleles, and multiplied by the logarithmic 134 

odds ratios (ORs) obtained from the previous GWAS to calculate the GRS as previously described 135 

(19). The GRS ranged from 57.4 to 117.9, with a higher score indicating a higher genetic risk of 136 

CMM.  137 

 138 

Covariates    139 

As previously reported (20), the following potential covariates were retrieved from the baseline 140 

questionnaires and physical examinations, including age, sex (male/female), body mass index (BMI), 141 

years of education (<10 years/ ≥10 years), race (based on UK Biobank question “self-reported ethnic 142 

group”, categorized into White, Black, Asian, and other; other included those reported “white and 143 

black mixed” and “other ethnic group” to the question), smoking status (never, former, current), 144 

employment status (employed/unemployed), total household income (≥₤31000/ <₤31000), moderate 145 

alcohol intake status (yes/no), and high-level physical activity status (yes/no). Detailed measures of 146 

the covariates were described in supplement methods. 147 

 148 
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Statistical analysis 149 

Survival time for each participant was calculated as the duration from the response date of baseline 150 

to the date of incident, death, or date of censoring, whichever came first. We first used Cox 151 

regression to examine the associations of five pollutants with FCMD, CMM, and death, separately. 152 

Proportional hazard assumptions were not violated based on the Schoenfeld residuals test. Previously 153 

described covariates were adjusted in the models. We then used the unidirectional multi-state model 154 

(MSM) to assess five pollutants in the temporal disease development from free of CMDs to FCMD, 155 

CMM, and death. The MSM was carried out with Markov proportional hazards (21, 22), which is an 156 

extension of competing risks survival analysis allowing estimation of the role of a certain factor in 157 

different phases of a process. If a participant was recorded with at least two events (CMDs and/or 158 

death) at the same time point simultaneously, we theoretically assumed that the order of disease 159 

occurrence was T2D, IHD, and stroke according to previous evidence (3, 23, 24), and died 160 

eventually. Times for the previous disease were accordingly minus 0.5 days.  161 

 162 

First, five transition processes were constructed according to the natural history of CMM and 163 

previous studies (24, 25) (transition pattern A, Figure 1): (I) from baseline to FCMD; (II) from 164 

baseline to death from a disease other than T2D, IHD, and stroke; (III) from FCMD to CMM; (IV) 165 

from FCMD to death from any causes; and (V) from CMM to death from any causes. Processes I, 166 

III, and V were the primary ones with the most interest of study in our analysis. Then, to explore 167 

which CMD was associated with higher risks of CMM, we further used the MSMs to analyze the 168 

effects of air pollutants on different pathways from baseline to CMM by dividing the FCMDs into 169 

T2D, IHD, and stroke separately. Thus, along with processes II and V of pattern A, the processes I, 170 
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III, and IV of pattern A were further divided into nine sub-transitions (Ia-Ic; IIIa-IIIc, IVa-IVc) in 171 

pattern B (transition pattern B, Figure 1). Restricted cubic spline regression models were then used to 172 

evaluate the dose−response relationship between air pollutants and each CMM processes with 3 173 

knots (10th, 50th, and 90th percentiles of exposures).  174 

 175 

To clarify the effects of genetic susceptibility and air pollution on CMM, we tested the gene–air 176 

pollution interaction first using the MSM with an interaction term of the continuous co-exposure 177 

score and CMM-related SNPs and continuous GRS to examine the potential modifying effect of 178 

genetic background. In the case that interaction effect did not meet criteria for statistical significance 179 

(p-values<0.05), we generated a series of categorical variable based on the quintiles of co-exposure 180 

score and binary GRS (by median) to assess their joint effects on CMM development. 181 

 182 

Six sensitivity analyses were conducted to validate the robustness of our findings. First, we 183 

constructed another weighted co-exposure score based on PM2.5, NO2, and NOx to understand 184 

whether the marginal association of PM10 with CMM may distort the findings towards null. Then we 185 

conducted the MSM of pattern A by adjusting for baseline diet behavior, and levels of low-density 186 

lipoprotein, high-density lipoprotein, triglycerides, total cholesterol, systolic blood pressure, and 187 

diastolic blood pressure, all of which were established to be related to CMD and their subsequent 188 

outcomes (26). Furthermore, we conducted the MSM of pattern A by adjusting for ten genetic 189 

principal components of UK Biobank and also in the white participants only to ensure the reliability 190 

of our findings across different ethnicities. To understand the impact of mobilization on our findings, 191 

we additionally conducted the MSM of pattern A in participants who self-reported that he/she had 192 
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been living at the same baseline address for more than five years. Last, we evaluated whether the age 193 

at FCMD onset (<65 years or ≥65 years) could modify the association between air pollution and 194 

subsequent CMM. 195 

 196 

All analyses were conducted using R (version 4.0.1). MSM was performed using “mstate” package 197 

of R. A two-tailed p-value <0.05 indicated statistical significance.  198 
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Results 199 

Descriptive analysis 200 

Detailed characteristics of the eligible 415,855 participants are shown in Table S2. The mean ± 201 

standard deviation (SD) age at baseline was 56.23±8.09 years. Most participants (94.83%) were 202 

white. Nearly half of the participants were former or never smokers with moderate alcohol intake, 203 

and had a total household income ≥₤31,000. During a median follow-up of 8.93 years, a total of 204 

33,375 participants (8.03%) experienced FCMD. Among them, about half experienced IHD 205 

(N=16,385), 13,533 experienced T2D, and 3,007 experienced strokes (Figure 1). The mean (SD) 206 

ambient levels of PM2.5, PM2.5–10, PM10, NO2, and NOx were 9.97 (1.05), 6.42 (0.90), 19.28 (1.95), 207 

29.08 (9.21), and 43.74 (15.56) µg/m3, respectively. The pollutants were mutually correlated with 208 

each other (Figure S2, p-values <0.001). 209 

 210 

Associations between air pollution and cardiometabolic multimorbidity 211 

Patten A was our primary model of CMM development (Figure 1). Fully-adjusted Cox models 212 

showed that PM2.5, PM10, NO2, and NOx were associated with the risks of FCMD, CMM, and death, 213 

respectively (Table S3). The MSM was therefore useful to uncover the underlying risks of CMM 214 

development. Figure 2 depicted that PM2.5, NO2, and NOx were significantly associated with all 215 

CMM processes except for CMM-death. PM10 was marginally related to baseline-FCMD and 216 

subsequently to CMM. The risk estimates of the four air pollutants were much higher for FCMD-217 

CMM or FCMD-death than for baseline-FCMD. For instance, per 5-μg/m3 increment, PM2.5 was 218 

associated with 27% higher risk of the whole population to develop FCMD from baseline (95% 219 

confidence intervals [CIs]: 20%-34%), 41% higher risk of individuals with FCMD to progress from 220 
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FCMD to CMM (95% CI: 18%-68%), and 35% higher risk of individuals with FCMD to progress 221 

from FCMD to death (95% CI: 11%-63%). Same increases in NOx and NO2 demonstrated similar 222 

significant magnitudes but with reduced estimates. PM2.5-10 had null associations with all CMM 223 

processes. Monotonic increasing dose-response relationships were observed for the associations of 224 

PM2.5, NOx, and NO2 with the processes of baseline-FCMD, FCMD-CMM, and FCMD-death 225 

(Figures 3 & S3).  226 

 227 

Strong associations between the co-exposure score based on PM2.5, PM10, NOx, and NO2 and the 228 

CMM processes were also observed, except for CMM-death (Figures 2 & S3-S4). Compared to the 229 

1st quintile of the co-exposure score, the 5th quintile was associated with 14% (95% CI: 10%-18%), 230 

22% (95% CI: 7%-38%), and 22% (95% CI: 7%-40%) higher risks for processes of baseline-FCMD, 231 

FCMD-CMM, and FCMD-death, respectively. A sensitivity analysis using the modified co-exposure 232 

score based on PM2.5, NO2, and NOx also yielded similar estimates (Table S4).  233 

 234 

In transition pattern B which classified FCMDs into three CMDs (Figure 1), we found baseline 235 

participants were more likely to initially develop T2D than IHD or stroke (Tables S5 & S6). 236 

However, FCMD participants with IHD were more likely to develop CMM than those with T2D or 237 

stroke in response to PM2.5, NO2, NOx, and the co-exposure score (Table 1). For instance, per a 5-238 

μg/m3 increase in PM2.5, the corresponding hazard ratios (HRs) of CMM were 1.51 (95% CI: 1.08-239 

2.10), 1.05 (95% CI: 1.01-1.10), and 1.01 (95% CI: 0.88-1.15) for FCMD participants with IHD, 240 

T2D, and stroke, respectively.  241 

 242 
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Genetic susceptibility of cardiometabolic multimorbidity and joint effects with air pollution 243 

For the retrieved CMD-related SNPs, 38 T2D-related, 32 IHD-related, and 15 stroke-related loci 244 

were nominally associated with any CMM trajectories of pattern A (Tables S1 & S7 a-c, nominal p-245 

values <0.05). Genes ABO, EDNRA, FURIN, MIA3, and CDKN2B-AS1 had ≥2 unique SNPs, and 246 

CDKN2B-AS1 had the most including rs3217992, rs4977574, and rs7859727. The weighted GRS 247 

based on these CMM-related loci was robustly associated with CMM transitions (Table S7). 248 

However, none of the SNPs or the continuous GRS could interact with the co-exposure score in 249 

relation to CMM trajectories (Table S6 d-f, interaction FDR-corrected p>0.05; Table S9, interaction 250 

p-values >0.1). And in the mutual adjustment model, the coefficients of GRS and the co-exposure 251 

score remained essentially unchanged compared to models with either factor (Table S9). We 252 

suggested that the environmental and genetic factors were independently associated with CMM 253 

development.  254 

 255 

Given no interaction was observed, we generated a series of categorical variable based on the 256 

quintiles of co-exposure score and dichotomized GRS (by median) to test the joint effects of both 257 

factors. We observed gradients in associations of higher GRS and co-exposure score for the 258 

processes of baseline-FCMD and FCMD-CMM (Figure 4). For instance, FCMD participants with the 259 

5th quintile co-exposure score and a high GRS had a higher risk of CMM compared to those with the 260 

1st quintile of co-exposure score and a low GRS with a HR of 1.40 (95% CI: 1.16-1.70) (Table S19). 261 

But no significant joint effects on baseline-death, FCMD-death, or CMM-death was found. 262 

 263 

Sensitivity analyses 264 
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In the model which further adjusted for baseline diet behavior, lipoprotein levels, and blood pressure, 265 

(Table S11), the estimates of PM2.5, NO2, NOx, and the co-exposure score remained essentially 266 

unchanged in relation to the risks of CMM development. Results from models with additional 267 

adjustment with genetic principal components (Table S12) and from models conducted in white 268 

participants only (Table S13) also showed similar risks, both of which suggested the robustness of 269 

our findings across the ethnicities. Similar estimates were also yielded in participants living in the 270 

address for more than five years (Tables S14), suggesting that out primary results were fairly robust 271 

regardless of the mobilization. Moreover, although the interactions between the age of FCMD onset 272 

(<65 years or ≥65 years) and air pollution on the CMM risks were not significant (Table S15, 273 

interaction p-values >0.2), air pollution–CMM associations were stronger among the elderly aged 274 

<65 years than those aged ≥65 years.  275 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.22280006doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.15.22280006


16 

 

Discussion 276 

Utilizing the prospective data of ~0.42 million participants of the UK Biobank, we uniquely found 277 

that PM2.5, NO2, and NOx levels were associated with the CMM individually and jointly as a 278 

weighted co-exposure score in a multi-state nature. For participants with any FCMD, those with IHD 279 

had higher risks of incident CMM and death than those who had T2D or stroke as FCMD. Risks for 280 

developing FCMD and CMM under long-term air pollution could be enhanced by the CMM genetic 281 

susceptibility. Our findings will help broaden the scope of public health recommendations 282 

encompassing patients with CMDs and to better characterize and distinguish individuals with a high 283 

risk of developing CMM under environmental insults. 284 

 285 

To date, there is an evident lack of studies that have specifically investigated the temporal association 286 

between air pollution and CMM through methods that involve a stochastic process covering the 287 

possible stages of multimorbidity rather than simply counting the numbers of non-communicable 288 

diseases without considering disease-disease interactions (27). This study is the first investigation 289 

showing the critical role of air pollution on the dynamics of CMM, which indicates that historical air 290 

pollution exposure, especially to PM2.5 may have profound and lasting impacts on cardiovascular and 291 

metabolic systems. In consistent with previous studies of individual CMDs (6, 7, 28), our study 292 

yielded robust associations of air pollution, especially PM2.5, NO2, and NOx, with FCMD. Moreover, 293 

we identified a stepwise increasing magnitude of the associations of each air pollutant with the risks 294 

of CMM and death after the occurrence of FCMD. This pattern highlights the value of the secondary 295 

prevention of individuals with FCMD to mitigate the additive risks of subsequent CMDs or death. 296 

Additionally, although not statistically significant, individuals with a younger age at FCMD 297 
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diagnosis (<65 years) had higher CMM risk than those older. Future studies are warranted to 298 

elucidate whether the age at FCMD onset could be recognized as a potential risk indicator of 299 

subsequent CMM risk for the precision prevention of CMM along with environmental risk factors.  300 

 301 

More intriguingly, we found that participants were more likely to develop T2D first from baseline 302 

under air pollution. This may be plausible that increased blood glucose level has been recognized as 303 

a critical pathophysiology mechanism for the risks of IHD and stroke (23). We thus believed that 304 

T2D could occur ahead of the onset of IHD or stroke and could be easily diagnosed in routine health 305 

examinations. Furthermore, previous evidence implied that those with IHD or stroke could have 306 

relatively higher glucose levels or were pre-diabetic because cardiovascular events may impair 307 

fasting glucose (29). Even not yet reached the diagnosis criteria of T2D, we anticipated those with 308 

IHD or stroke to be more likely to develop T2D and CMM. However, in our study, participants with 309 

IHD as FCMD showed higher risks of developing CMM or death than others who first had T2D and 310 

stroke. The attenuated risks related to stroke could be explained by better medical care of stroke 311 

patients than those with IHD because of the sudden onset of stroke and higher mortality than IHD. 312 

Additionally, stroke patients usually receive better and systematic blood pressure and glucose 313 

management over rehabilitation period which may considerably lower their risks of IHD, T2D, 314 

and/or death (30, 31). Therefore, for areas with relatively higher stroke incidence and heavier burden 315 

of air pollution, for instance, in developing countries, CMM prevention for stroke patients may be 316 

more than valuable (32). Additionally, except for the limited death numbers, null associations 317 

between air pollution and the CMM-death process may be explained by better medical care for 318 

CMM patients. A recent study of CMM and mortality in UK general practices have demonstrated 319 
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that compared with people with individual CMDs, those with multimorbidity could have a higher 320 

likelihood of receiving evidence-based treatment to lower the exceeded risk of coexisting 321 

cardiovascular and metabolic diseases (33). 322 

 323 

Accumulating evidence has suggested the biological pathway of CMD resulting from air pollution 324 

(34), including pro-hypertension, insulin resistance, and endothelial damage resulting from oxidative 325 

stress and/or inflammation, which could further promote CMM (28, 34). Beyond these common 326 

etiological pathways, a recent study showed that the comorbidity of cardiovascular and metabolic 327 

diseases could be explained by overlapping genetic profiles along with protein-protein interactions 328 

(PPIs) as a complex network (35). In line with this, our study found that four out of the five CMM-329 

related genes (i.e., ABO, EDNRA, FURIN, and MIA3) that had ≥2 unique SNPs were related to 330 

protein-coding and could additionally participate in PPIs of the cardiovascular network. Gene 331 

CDKN2B-AS1 with the most CMM-related SNPs is not a protein-coding gene, but it produces a long 332 

non-coding RNA that interacts with nearby genes and impairs the interferon-γ signaling response to 333 

elevate the susceptibility of CMDs (36). Since this gene has also been related to multiple aging-334 

related diseases including cancer and glaucoma, as well as abnormalities in blood cell counts (37), 335 

more work is required to uncover its role in the development of multimorbidity. Moreover, 336 

insignificant interaction between air pollution and GRS was observed, but moderate additive effect 337 

of genetic background on the associations of air pollution with the baseline-FCMD and FCMD-338 

CMM processes were shown. Therefore, we believe that genetic susceptibility could be considered in 339 

CMM prevention in response to air pollution. Such mild clues based on SNPs reported by previous 340 
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GWAS of CMDs further suggest the identification of novel CMM-related variants is highly 341 

recommended to empower the risk prediction of CMM.  342 

 343 

This study has several strengths including the large sample size and detailed records of CMD with 344 

information on lifestyle and covariates that allowed us to conduct the state-of-art multi-state analysis. 345 

Several limitations should also be noted in the result interpretation. First, we only focused on the 346 

CMM defined with the co-occurrence of three diseases including IHD, stoke, and T2D only because 347 

this multimorbidity pattern is the most observed and studied in previous literature (2, 3). Other 348 

important CMDs such as hyperlipidemia, and nonalcoholic fatty liver disease could be investigated 349 

in future studies. Second, UK Biobank is a volunteer cohort with participants who were likely 350 

healthier than the general population, and we excluded those with pre-existing CMDs. Both may 351 

cause selection bias influencing the effect of air pollution on CMM development towards null as 352 

relatively healthier people usually have lower risks of CMDs. Furthermore, the air pollution data was 353 

mostly a single measurement of the annual average level without any further measures within a 354 

shorter time interval. This prohibited further explorations on the lag or short-term (<1 month) 355 

influences of air pollution. Meanwhile, we did not have the data on other major air pollutants, such 356 

as ozone and sulfur dioxide, which have been associated with CVD and T2D (38, 39) and could be 357 

studied in future multi-state investigations. Additionally, in processing the data to match the multi-358 

state algorithm, we theoretically ascertained the occurrence orders of events if subjects have two or 359 

more events reported on the same day. This may reduce the power of MSM but very slightly because 360 

the number of cases with such conditions was comparatively tiny (N=1192, ~3.6% of FCMD 361 

participants). Moreover, despite that we created the GRS using a GWAS of CMM based on well-362 
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established SNPs that were highly related to any CMD in previous GWASs, its generalizability in 363 

predicting CMM may be required to be further validated. Last, we did not have the drug use 364 

information of the participants during follow-up, which may considerably mitigate the risks of 365 

subsequent adverse cardiometabolic health outcomes. Given the CMD information was mostly 366 

retrieved from linkage to electronic health records, we believe that most CMD participants received 367 

appropriate treatment. Such well-received CMD management may have underestimated the 368 

substantial relevant detrimental impacts of air pollution on CMM development we observed.  369 

 370 

Notwithstanding the improved awareness of the public on the harms of air pollution, knowledge is 371 

quite limited about whether the impact of environmental exposure on cardiovascular or metabolic 372 

systems may further lead to relevant comorbidities. In this study, we suggest air pollution could 373 

increase the risk of CMM in almost a decade through multi-stage dynamics, especially for FCMD 374 

participants with IHD and participants with high genetic risk. Our results further elucidate the 375 

importance of CMM prevention after long-term air pollution exposure regardless of the genetic risk, 376 

especially for locations where air quality is poorer than in the UK and the burden of CMDs resulting 377 

from air pollution is thus expected to be heavier. For health professionals, general practitioners, and 378 

stakeholders, more efforts may be warranted to better protect the vulnerable population from 379 

environmental risks of CMM.  380 
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Figure Legends 485 

Figure 1 Numbers (percentages) of participants in transition pattern A (solid line) and B (dashed 486 

line) from baseline to first cardiometabolic disease (FCMD), cardiometabolic multimorbidity 487 

(CMM), and death.  488 

 489 

Figure 2 Associations of five air pollutants and co-exposure score with the risks of first 490 

cardiometabolic disease and cardiometabolic multimorbidity of pattern A using multi-state model 491 

Models adjusted for age, sex, ethnicity, BMI, years of education, smoking status, moderate alcohol 492 

intake, high-level physical activity, total household income, and employment status. Estimates of air 493 

pollutants were demonstrated per 5-μg/m3 increase and estimates of co-exposure score were 494 

demonstrated per one SD increase. Dots: Point estimate; Error bar: 95% confidence limits; 495 

 496 

Figure 3 Graphs of the dose-response relationships of five air pollutants and co-exposure score with 497 

the processes from baseline to FCMD and from FCMD to CMM of pattern A 498 

Solid lines: point estimates; Shadows: 95% confidence limits; 499 

 500 

Figure 4 Joint associations of weighted genetic risk and air pollution levels of five transition 501 

processes on pattern A using multi-state model 502 

0: low GRS & 1st quintile of co-exposure score (reference); 1: low GRS & 2nd quintile of co-503 

exposure score; 2: low GRS & 3rd quintile of co-exposure score; 3: low GRS & 4th quintile of co-504 

exposure score; 4: low GRS & 5th quintile of co-exposure score; 5: high GRS & 1st quintile of co-505 

exposure score; 6: high GRS & 2nd quintile of co-exposure score; 7: high GRS & 3rd quintile of co-506 

exposure score; 8: high GRS & 4th quintile of co-exposure score; 9: high GRS & 5th quintile of co-507 

exposure score;   508 
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Supplementary Materials 509 

Figure S1 Flowchart of participant selection 510 

Figure S2 Correlation matrix of the ambient levels of five air pollutants 511 

Figure S3 Graphs of the dose-response relationships of five air pollutants and co-exposure score 512 

with the trajectories of cardiometabolic multimorbidity of pattern A (a: PM2.5; b: PM2.5–10; c: PM10; d: 513 

NO2, e: NOx, f: co-exposure score) 514 

Figure S4 Associations of categorical co-exposure score (quintiles) with the trajectories of 515 

cardiometabolic multimorbidity of pattern A using multi-state model 516 

Models adjusted for age, sex, ethnicity, BMI, years of education, smoking status, moderate alcohol 517 

intake, high-level physical activity, total household income, and employment status. 518 

 519 

 520 

Table S1 Characteristics of genetic variants associated with type II diabetes, ischemic heart disease, 521 

and stroke 522 

Table S2 Baseline characteristics of 415,855 participants by incident disease status during follow-up 523 

Table S3 Associations of five air pollutants with the risks of first cardiometabolic disease, 524 

cardiometabolic multimorbidity, and mortality using Cox model 525 

Table S4 Associations of the co-exposure score based on PM2.5, NO2, and NOx with the trajectories 526 

of cardiometabolic multimorbidity of pattern A using multi-state model  527 

Table S5 Associations of air pollution with the trajectories of cardiometabolic multimorbidity of 528 

pattern B using multi-state model  529 

Table S6 Associations of categorical co-exposure score (quintiles) with the trajectories of 530 

cardiometabolic multimorbidity of pattern B using multi-state model 531 
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Table S7 Associations of CMD-related genetic variants with the trajectories of cardiometabolic 532 

multimorbidity of pattern A using multi-state model (a-c) and their interactions with co-exposure 533 

score (d-f) 534 

Table S8 Associations of weighted genetic risk score with the trajectories of cardiometabolic 535 

multimorbidity of pattern A using multi-state model 536 

Table S9 Mutual associations of co-exposure score and genetic risk score with the trajectories of 537 

cardiometabolic multimorbidity of pattern A using multi-state model in model with and without 538 

interaction terms 539 

Table S10 Joint associations of weighted genetic risk score and co-exposure score of five transition 540 

states on pattern A using multi-state model  541 

Table S11 Associations of air pollution with the trajectories of cardiometabolic multimorbidity of 542 

pattern A using multi-state model additionally adjusted for baseline diet behaviors, cholesterol levels, 543 

and blood pressure 544 

Table S12 Associations of air pollution with the trajectories of cardiometabolic multimorbidity of 545 

pattern A using multi-state model additionally adjusted for genetic principal components 546 

Table S13 Associations of air pollution with the trajectories of cardiometabolic multimorbidity of 547 

pattern A using multi-state model in white participants 548 

Table S14 Associations of air pollution with the trajectories of cardiometabolic multimorbidity of 549 

pattern A using multi-state model in participants living in the baseline address for more than five 550 

years 551 

Table S15 Associations of air pollution with the trajectories of cardiometabolic multimorbidity of 552 

pattern A using multi-state model by the age of having the first cardiometabolic disease 553 
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Table 2 Associations of five air pollutants and co-exposure score with the risks of first cardiometabolic disease, cardiometabolic multimorbidity, 

and death after the first cardiometabolic disease of pattern B using multi-state model a 

 

a: Models adjusted for age, sex, ethnicity, BMI, years of education, smoking status, moderate alcohol intake, high-level physical activity, total 

household income, and employment status. Estimates of air pollutants were demonstrated per 5-μg/m3 increase and estimates of co-exposure 

score were demonstrated per one SD increase. Bolded-values were statistically significant (p-values <0.05). 

 

Air pollutants PM2.5 PM2.5-10 PM10 NO2 NOX Co-exposure scorea 

Trajectories HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Baseline→T2D 1.47 (1.34, 1.60) 1.86 (1.12, 3.08) 1.79 (1.40, 2.30) 1.21 (1.15, 1.28) 1.12 (1.09, 1.15) 1.08 (1.06, 1.10) 

Baseline→IHD 1.13 (1.04, 1.22) 0.76 (0.48, 1.21) 0.76 (0.61, 0.95) 0.98 (0.93, 1.02) 1.03 (1.00, 1.05) 1.01 (1.00, 1.03) 

Baseline→Stroke 1.23 (1.02, 1.48) 1.89 (0.65, 5.51) 1.26 (0.75, 2.11) 1.04 (0.93, 1.16) 1.05 (0.98, 1.11) 1.03 (0.99, 1.08) 

T2D→CMM 1.05 (1.01, 1.10) 1.01 (0.96, 1.06) 1.01 (0.99, 1.04) 1.00 (1.00, 1.01) 1.00 (1.00, 1.01) 1.05 (1.00, 1.10) 

IHD→CMM 1.51 (1.08, 2.10) 0.90 (0.12, 6.56) 1.24 (0.46, 3.35) 1.28 (1.04, 1.58) 1.15 (1.04, 1.27) 1.10 (1.02, 1.18) 

Stroke→CMM 1.01 (0.88, 1.15) 0.92 (0.78, 1.09) 0.98 (0.91, 1.06) 1.01 (1.00, 1.02) 1.00 (0.98, 1.01) 0.99 (0.85, 1.14) 

T2D→Death 1.03 (0.97, 1.10) 0.99 (0.92, 1.07) 1.01 (0.98, 1.05) 1.00 (1.00, 1.01) 1.00 (1.00, 1.01) 1.04 (0.97, 1.11) 

IHD→Death 1.10 (1.04, 1.17) 0.95 (0.88, 1.02) 1.03 (1.00, 1.07) 1.01 (1.01, 1.02) 1.01 (1.00, 1.01) 1.13 (1.06, 1.20) 

Stroke→Death 1.01 (0.92, 1.10) 0.94 (0.84, 1.04) 1.01 (0.96, 1.07) 1.01 (1.00, 1.02) 1.00 (0.99, 1.01) 1.02 (0.93, 1.12) 
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