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Abstract: The initial contagiousness of a communicable disease within a given population is 
quantified by the basic reproduction number, denoted 𝑅!. The value of 𝑅! gives the expected 
number of new cases generated by an infectious person in a wholly susceptible population and 
depends on both pathogen and population properties. On the basis of compartmental models that 
reproduce Coronavirus Disease 2019 (COVID-19) surveillance data, we estimated region-
specific 𝑅! values for 280 of 384 metropolitan statistical areas (MSAs) in the United States (US), 
which account for 95% of the US population living in urban areas and 82% of the total 
population. Our estimates range from 1.9 to 7.7 and quantify the relative susceptibilities of 
regional populations to spread of respiratory diseases. 
 
One-Sentence Summary: Initial contagiousness of Coronavirus Disease 2019 varied over a 4-
fold range across urban areas of the United States. 
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Main Text:  
Public health surveillance efforts in the US during the COVID-19 pandemic were 

sweeping. In 2020 alone, approximately 254 million diagnostic tests for Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection were administered (1). The data 
generated from these surveillance efforts provide an unprecedented opportunity to gain insights 
into disease transmission dynamics in the US, especially for respiratory diseases similar to 
COVID-19, which is believed to be aerosol-transmitted (2). To gain insights into the 
heterogeneity of disease transmission across the US, we attempted to use COVID-19 
surveillance data, namely daily county-level reports of new cases, which have been collected in 
various repositories (3, 4), to estimate the basic reproduction number of COVID-19 for as many 
distinct geographical regions in the US as possible. 

The basic reproduction number, 𝑅!, is a dimensionless quantity corresponding to the 
expected number of secondary cases generated by an index case in a naïve population (5). 
Although the contagiousness of a communicable disease is commonly characterized by an 𝑅! 
estimate (6), the value of 𝑅! is in fact both pathogen- and population-specific (7), meaning that it 
is a function of not only pathogen properties, including virulence factors, but also of population 
properties, including biological, sociobehavioral, and environmental factors (8). The population 
properties that influence 𝑅! are generally unknown.  

Because many regions in the US were impacted by a common pathogen (i.e., SARS-
CoV-2) around roughly the same time at the beginning of the COVID-19 pandemic (9), we 
reasoned that a comparison of 𝑅! estimates for COVID-19 in different regions would elucidate 
how the population properties of distinct regions combine to determine differential susceptibility 
to disease spread for COVID-19 and similar diseases. Thus, we undertook an effort to generate 
regional COVID-19 𝑅! estimates. 

Estimation of 𝑅! can be pursued in multiple ways (10). Here, we adopted the approach of 
deriving 𝑅! for a region of interest on the basis of a compartmental model parameterized for 
consistency with region-specific surveillance data (11). This approach requires a tractable 
explanatory model (12). An assumption of any compartmental model for an epidemic is that the 
population being considered is homogeneous (13). With this limitation in mind, the population 
considered in a model should be carefully chosen: a population that is more uniformly impacted 
by an epidemic is a better choice for modeling. 

We considered developing models for the populations of either states or metropolitan 
statistical areas (MSAs), the latter of which are delimited by the federal government on the basis 
of socioeconomic ties after each census (14). In the US, there are currently 384 MSAs (14), each 
encompassing a city with 50,000 or more inhabitants and surrounding communities. In the US, 
surveillance data are collected and reported by county-level public health authorities (or 
authorities of comparable jurisdictions) (15), but county-level data can be aggregated to 
characterize disease transmission in MSAs and states. We did not develop models for county 
populations for two reasons. First, county-level surveillance data tend to be noisy, with noise 
arising from the stochastic nature of case detection combined with a small number of cases 
and/or because of irregularities in reporting. It is for these reasons that county-level data are 
commonly aggregated in epidemiological analyses (16). Second, inspection of infection-risk 
curves suggested that counties within MSAs are similar, as illustrated in Fig. 1, which shows risk 
curves for four multi-county MSAs. Risk curves for the other multi-county MSAs are shown in 
Fig. S1.   
 To ascertain whether disease transmission is more homogeneous across the counties of 
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MSAs or states, we defined three different measures for variability in weekly disease incidence 
(i.e., infection risk over a 1-week period) across the counties of a given region (see Supplemental 
Methods). These measures are based on the Fano factor (17), the Gini coefficient (18), and the 
Wasserstein-1 distance (19). We calculated variability measures for epidemiological weeks 5 
through 52, a period starting on 26-January-2020 and ending on 26-December-2020, for all 
multi-county MSAs and the 50 states by aggregating confirmed COVID-19 daily county-level 
case-count data available in the GitHub repository maintained by The New York Times 
newspaper (3). 
 Representative results of our risk variability analysis are shown in Fig. 2. In Fig. 2A, the 
Fano factor, Gini coefficient, and Wasserstein-1 distance variability measures are plotted as a 
function of epidemiological week for each of three selected MSAs and also for overlapping 
states. As can be seen, each variability measure tends to be less for an MSA than for an 
overlapping state. Results for other multi-county MSAs and overlapping states are shown in 
Figs. S2–S4. Histograms of time-averaged Fano factor, Gini coefficient, and Wasserstein-1 
distance variability measures obtained for all multi-county MSAs and states are shown in Figs. 
2B–2D. For each variability measure, the histogram for MSAs is shifted to the left of the 
histogram for states. These results indicate that county-level infection risks are more 
homogeneous for counties within MSAs than for counties within states. For this reason, we 
focused on developing models for MSA populations instead of state populations. 
 In earlier work, we developed a compartmental model that is able to reproduce daily 
COVID-19 case count data for the 15 most populous MSAs in the US and all 50 states (11, 20). 
Here, we found region-specific parameterizations of this model consistent with surveillance data 
for MSAs in the US having more than 200 cumulative cases reported before 21-May-2020 and at 
least 5 new cases on any given day between 21-January-2020 and 21-June-2020. 280 MSAs 
satisfy these criteria. For each of these MSAs, we applied a Bayesian inference approach 
described earlier (11, 20), which is enabled by an adaptive Markov chain Monte Carlo (MCMC) 
sampling procedure. Inference job setup files for PyBioNetFit (21), including files with MSA-
specific surveillance data, are provided for each of the 280 MSAs (Data S1). To ensure that 
MCMC sampling converged, we visually inspected log-likelihood trace plots, parameter trace 
plots, and pairs plots. In addition, to ensure that regional parameterizations are explanatory, we 
compared posterior predictive distributions for case detection against daily counts of new cases 
(https://github.com/lanl/COVID-19-basic-reproduction-numbers). As illustrated in Fig. 3 for four 
selected MSAs, we were able to find parameterizations that are consistent with regional 
surveillance data. 
 For the compartmental model used in our analysis, we previously used the next-
generation matrix method (12) to derive a formula that gives 𝑅! in terms of model parameters 
(20). According to this formula, the value of 𝑅! depends on one inferred region-specific 
parameter, the contact rate parameter 𝛽, and seven fixed parameters describing within host-
dynamics, which were estimated earlier and are expected to be universally applicable across 
regions of interest (11). Using our earlier estimates for fixed parameters (11), region-specific 
samples of the parametric posterior distribution for 𝛽 obtained in Bayesian inference, and the 
formula for 𝑅! (20), for each of 280 MSAs, we found a maximum a posteriori (MAP) estimate 
for 𝑅!, which is equivalent to a maximum likelihood estimate because of the use of a uniform 
proper prior in Bayesian inference, and a 95% credible interval (Table S1). Similarly, through 
numerical solution of an equation obtained earlier (20), for the same MSAs, we obtained a MAP 
estimate for the initial epidemic growth rate 𝜆 and a 95% credible interval (Table S1). 
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Importantly, growth rate estimates are consistent with early surveillance data 
(https://github.com/lanl/COVID-19-basic-reproduction-numbers). 
 
 In Fig. 4, the 𝑅! MAP estimates and 95% credible intervals that we obtained for 280 
MSAs are presented in a rank order plot. The largest 𝑅! estimate was 7.7 (for the MSA 
encompassing Detroit, Michigan) and the smallest was 1.9 (for the MSA encompassing 
Appleton, Wisconsin). These disparate estimates indicate that the population features 
contributing to initial disease spread are geographically heterogeneous and combine (in an 
unknown way) to yield a distribution of initial COVID-19 contagiousness that is spread over a 4-
fold range. The absolute 𝑅! values reported here are COVID-19-specific; however, the relative 
strengths or ratios quantify relative susceptibilities to respiratory disease spread arising from 
MSA-specific population features. 

Using a mechanistic compartmental model in concert with COVID-19 surveillance data 
and Bayesian inference, we have obtained MSA-specific COVID-19 𝑅! estimates that quantify 
differences in population properties across urban areas in the US that affect disease 
contagiousness. This information may help mitigate future respiratory disease outbreaks, as some 
urban areas are evidently far more susceptible to rapid disease spread than others. Our findings 
may be helpful in identifying which population properties contribute to contagiousness, which is 
important because the population properties underlying our 𝑅! estimates may eventually change 
with time. 
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Figure 1. County- and MSA-level infection-risk curves for weekly-aggregated data in the MSAs 
encompassing (A) Atlanta, GA; (B) Washington, DC; (C) New York City, NY; and (D) Virginia 
Beach, VA from 26-January-2020 to 26-December-2020 (inclusive dates). Risk for a time period 
of interest in a given region is defined as the population fraction of new cases reported. MSA-
level risk curves are shown in black and county-level risk curves are shown with a viridis color 
scheme. The four MSAs were chosen as the MSAs with the most counties. Atlanta, GA has 29 
counties; Washington, DC has 25 counties or county equivalents; New York City, NY has 23 
counties or county equivalents; and Virginia Beach, VA has 19 counties or county equivalents. 
States are indicated using two-letter US postal service abbreviations 
(https://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf). 
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Figure 2. Counties in a given MSA are more homogeneous than counties in an overlapping state. 
(A) Plots of three infection-risk variability measures as a function of epidemiological week for 
three selected MSAs. The first, second, and third rows correspond to variability measures based 
on the Fano factor, Gini coefficient, and Wasserstein-1 distance, respectively. The first, second 
and third columns correspond to the MSAs encompassing Atlanta, GA; Washington, DC; and 
New York City, NY, respectively. (B) Time-averaged probability distributions of the Fano factor 
variability measure for states (top panel) and MSAs (bottom panel). (C) Time-averaged 
probability distributions of the Gini coefficient variability measure for states (top panel) and 
MSAs (bottom panel). (D) Time-averaged probability distributions of nation-, state-, and MSA-
level infection risks (top panel), and time-averaged probability distributions of Wasserstein-1 
distance variability measure for states (middle panel) and MSAs (bottom panel). In the panels of 
B, C, and D, the y-axis indicates relative frequency (𝜈). 
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Figure 3. Bayesian posterior predictive distributions for daily confirmed COVID-19 case counts 
in the MSAs encompassing (A) Detroit, MI; (B) Appleton, WI; (C) Miami, FL; and (D) Ocala, 
FL from 21-January-2020 to 5-July-2020 (inclusive dates). The compartmental model used in 
analysis accounts for an initial period of social-distancing/nonpharmaceutical interventions 
(NPIs) (during which a fraction of the population adopts disease-avoiding behaviors and the 
remaining fraction mixes freely without taking special precautions to prevent infection) followed 
by 𝑛 additional periods (11). We considered 𝑛 = 0, 1 and 2 and selected the best 𝑛 using a 
model-selection procedure described previously (11). Plus signs indicate daily case reports up to 
21-June-2020, which were used in inference. The entire shaded region indicates a 95% credible 
interval accounting for prediction uncertainty arising from uncertainty in parameter estimates 
and inferred noise in detection of new cases. The color-coded bands within the shaded region 
indicate the median and credible intervals as indicated in the legend. In each panel, the vertical 
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broken line indicates the onset time of the first social-distancing/NPI period. For MSAs with 𝑛 =
1 (Miami and Ocala), there is an additional vertical dotted line, which indicates the onset time of 
the second social-distancing/NPI period. 
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Figure 4. MAP estimates of the COVID-19 basic reproduction number 𝑅! for the strains of 
SARS-CoV-2 emerging in 280 MSAs in 2020. MSA-specific estimates of 𝑅! are sorted by MSA 
from largest to smallest values according to the 𝑅! estimates inferred from surveillance data 
collected between 21-January-2020 and 21-June-2020. The whiskers associated with each filled 
circle indicate the 95% credible interval. 
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Materials and Methods 
Here, we derive the measures discussed in the Main Text for infection risk variability across counties of a 

specified region. These variability measures are based on the Gini coefficient, Wasserstein-1 distance, and Fano 
factor. Infection risk for a time period of interest in a given region is defined as the population fraction of new cases 
reported. 
 
Gini coefficient risk variability measure: 

 
Let us consider a population of 𝑛 persons. The 𝑖!" person has infection risk 𝑟#. We want to know two quantities. The 
first quantity is MD, the mean absolute difference in risk. We calculate MD as the absolute difference in risk 
averaged over all distinct pairs of persons. The sum of absolute differences is ∑ ∑ %𝑟# − 𝑟$%%

$&#'(
%)(
#&( , which equals 

(½)∑ ∑ %𝑟# − 𝑟$%%
$&(

%
#&( . The number of distinct pairs of persons is *%*+, which is equal to 𝑛(𝑛 − 1)/2. Thus, MD is 

given by	

MD ≡
∑ ∑ %𝑟# − 𝑟$%%

$&(
%
#&(

𝑛(𝑛 − 1) . 

The second quantity of interest is AM, the arithmetic mean risk. AM is given by 

AM ≡
1
𝑛5𝑟#

%

#&(

. 

The ratio MD/AM is RMD, the relative mean absolute difference. RMD is given by 

RMD ≡
MD
AM =

∑ ∑ %𝑟# − 𝑟$%%
$&(

%
#&(

(𝑛 − 1)∑ 𝑟#%
#&(

. 

RMD is equal to twice the Gini coefficient, 𝐺. Thus 𝐺 ≡ RMD/2 is given by 

𝐺 =	
∑ ∑ %𝑟# − 𝑟$%%

$&(
%
#&(

2(𝑛 − 1)∑ 𝑟#%
#&(

. 

Let us consider the case where the 𝑛 persons of interest reside in 𝑘 ≤ 𝑛 counties. All persons with the same county 
have the same risk. Let us denote the county-associated risks as 𝑐(, 𝑐*, … , 𝑐+ . Let us use 𝑛# to denote the population 
of the 𝑖!" county. It follows that 𝑛 = ∑ 𝑛#+

#&( . We want to calculate 𝐺 in terms of county-level risks {𝑐(, … , 𝑐+} 
instead of the individual-level risks {𝑟(, … , 𝑟%}. The number of pairs of persons consisting of a person from county 𝑖 
and a person from a different county 𝑗 ≠ 𝑖 is given by 𝑛#𝑛$. Thus, 

55%𝑟# − 𝑟$%
%

$&(

%

#&(

=	55%𝑐# − 𝑐$%
+

$&(

+

#&(

𝑛#𝑛$ , 

because persons in the same county share the same risk. We also have the following relation: 

5𝑟# =	5𝑛#𝑐#

+

#&(

.
%

#&(

 

It follows that 	

𝐺 =
∑ ∑ %𝑐# − 𝑐$%+

$&(
+
#&( 𝑛#𝑛$
2(𝑛 − 1)∑ 𝑛#𝑐#+

#&(
=

∑ ∑ %𝑐# − 𝑐$%+
$&(

+
#&( 𝑛#𝑛$

2[(∑ 𝑛#+
#&( ) − 1]∑ 𝑛#𝑐#+

#&(
.	

We can take 𝑐# to be the COVID-19 incidence proportion for the 𝑖!" county over a given epidemiological week. If 
𝑛 ≫ 1,  

𝐺 ≈
∑ ∑ %𝑐# − 𝑐$%+

$&(
+
#&( 𝑛#𝑛$
2(∑ 𝑛#+

#&( )∑ 𝑛#𝑐#+
#&(

=
∑ ∑ %𝑐# − 𝑐$%+

$&(
+
#&( 𝑛#𝑛$

2�̅�𝑛* . 

 
Wasserstein-1 distance risk variability measure: 

 
Let 𝑋 denote a finite, non-empty, and ordered set. The Wasserstein-1 distance between two discrete distributions is 
given as 𝑊((𝑝, 𝑞) = 	∑ |𝐹,-∈/ (𝑥) − 𝐹0(𝑥)| where 𝐹,(⋅) ∈ [0,1] and 𝐹0(⋅) ∈ [0,1] are the cumulative distribution 
functions of 𝑝(⋅) and 𝑞(⋅), respectively. 
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Let 𝑘 denote the number of counties in a given region (i.e., an MSA or state) in a given epidemiological week. Let 
us consider the case where all persons within the same county have the same risk. Let us denote the county-
associated risks as 𝑐(, 𝑐*, … , 𝑐+ . Let us denote the population of the 𝑖!" county as 𝑛#. It follows that 𝑛 =	∑ 𝑛#%

#&( , 
where 𝑝 denotes the population of the aggregated region (i.e., an MSA or state.) 
 
We take 𝑐# to be the COVID-19 incidence proportion for the 𝑖!" county in a given epidemiological week. Let us 
denote our random variable by 𝐶, taking on the values 𝑐(, 𝑐*, … , 𝑐+ . After separately sorting the values 𝑐# and the 
populations (or weights) 𝑝# in ascending order, it follows that 0 ≤ 𝑐( < 𝑐* < ⋯ < 𝑐+ ≤ 1 and 0 ≤ 𝑝( < 𝑝* < ⋯ <
𝑝+ ≤ 𝑝.  
 
The weighted empirical cumulative distribution function is then constructed for a given MSA (or state) in a given 
epidemiological week, and is comprised of the values 𝑐# and the normalized weights 𝑝#/𝑝, ordered by the population 
(from small to large). 
 
The reference empirical cumulative distribution function for a given MSA (or state), with averaged risk in a given 
epidemiological week, is comprised of the value ∑ 𝑐#𝑝#/𝑝%

#&(  and the weight 1, with the value on the 𝑥-axis and the 
weight on the 𝑦-axis. 
 
The Wasserstein-1 distance is computed between a given MSA (or state) and the corresponding reference 
distribution. 
 
Fano factor risk variability measure:  
 
For a given region (i.e., MSA or state) and a given epidemiological week, the Fano factor is defined as the variance-
to-mean ratio. The random variable of interest is given by the set of county-level risks, where the risk is defined as 
the confirmed number of new cases in a given week normalized by the county population. 
 
Time-averaging: 
 
As presented in the Main Text (see Figs. 1B to 1D), we obtained average quantities for the infection risk variability 
measures above by averaging over the time domain (i.e., over the epidemiological weeks). 
 
Bayesian inference: 
 
To infer region-specific values of adjustable model parameters (and 𝑅1 estimates), we followed the Bayesian 
inference approach of Lin et al. (11). In inferences, we used all region-relevant confirmed COVID-19 case-count 
data available in the GitHub repository maintained by The New York Times newspaper (3) for the period starting on 
21-January-2020 and ending on 21-June-2020 (inclusive dates). The first case in the US was reported on 21-
January-2020. We focused on early surveillance data (vs. all available surveillance data up to the present time) so as 
to characterize COVID-19 transmission within populations that are nearly wholly susceptible. Markov Chain Monte 
Carlo (MCMC) sampling was performed using the Python code of Lin et al. (11) and a new release of PyBioNetFit 
(21), version 1.1.9, which includes an implementation of the adaptive MCMC method used in the study of Lin et al. 
(11). Inference job setup files for PyBioNetFit, including data files, are provided for each of 280 MSAs (Data S1). 
There are 384 MSAs in the US. We excluded 104 of 384 MSAs from analysis. In each of these cases, there was 
insufficient data to support parameterization; namely, each of these MSAs had fewer than 200 cumulative cases 
reported before 21-May-2020 or no more than 5 new cases reported on any given day between 21-January-2020 and 
21-June-2020. 
 
Fig. S1. County- and MSA-level infection-risk curves for weekly-aggregated data from 26-January-2020 to 26-
December-2020 (inclusive dates) in each of 232 multi-county MSAs, except those encompassing Atlanta, GA; 
Washington, DC; New York City, NY; and Virginia Beach, VA, which are considered in Fig. 1 of the Main Text. 
MSA-level risk curves are shown in black and county-level risk curves are shown with a viridis color scheme. States 
are indicated using two-letter US postal service abbreviations. 
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Fig. S2. Plots of the infection-risk variability measures based on the Fano factor as a function of epidemiological 
week for each of 232 multi-county MSAs, except those encompassing Atlanta, GA; Washington, DC; and New 
York City, NY, which are considered in Fig. 2 of the Main Text. 
 
Fig. S3. Plots of the infection-risk variability measures based on the Gini coefficient as a function of 
epidemiological week for each of 232 multi-county MSAs, except those encompassing Atlanta, GA; Washington, 
DC; and New York City, NY, which are considered in Fig. 2 of the Main Text. 
 
Fig. S4. Plots of the infection-risk variability measures based on the Wasserstein-1 distance as a function of 
epidemiological week for each of 232 multi-county MSAs, except those encompassing Atlanta, GA; Washington, 
DC; and New York City, NY, which are considered in Fig. 2 of the Main Text. 
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