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Abstract 

Elevated vascular disease risk associates with poorer cognitive function, but the mechanism for 

this link is poorly understood. A leading theory, the structural-functional model argues that 

vascular risk may drive adverse cardiac remodelling, which in turn leads to chronic cerebral 

hypoperfusion and subsequent brain structural damage. This model predicts that variation in 

heart and brain structure should associate with both greater vascular risk and lower cognitive 

function. This study tests that prediction in a large sample of the UK Biobank (N=11,962). We 

assemble and summarise vascular risk factors, cardiac magnetic resonance radiomics, brain 

structural and diffusion MRI indices, and cognitive assessment. We also extract ‘heart-brain 

axes’ capturing the covariation in heart and brain structure. Many heart and brain measures 

partially explain the vascular risk – cognitive function association, like left ventricular end-

diastolic volume and grey matter volume. Notably, a heart-brain axis, capturing correlation 

between lower myocardial intensity, lower grey matter volume, and poorer thalamic white matter 

integrity, completely mediates the association, supporting the structural-functional model. Our 

findings also complicate this theory by finding that brain structural variation cannot completely 

explain the heart structure – cognitive function association. Our results broadly offer evidence 

for the structural functional hypothesis, identify imaging biomarkers for this association by 

considering covariation in heart and brain structure, and generate novel hypotheses about how 

cardiovascular risk may link to cognitive function.  
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Introduction 

With ageing populations throughout the world, cognitive decline now affects an increasingly 

large portion of society and contributes to significant financial burden and death.1,2 Of the drivers 

of age-related cognitive decline, neurovascular health has gained attention due to its widespread 

impact and relative ease of intervention.3–6  

Substantial work has shown diverse associations between vascular disease risk factors (VRFs, 

such as diabetes, high body mass index (BMI), and hypertension) and cognitive function (CF). 

Greater vascular risk in middle and old age associates with both poorer cognitive function and 

accelerated cognitive decline,7–11 and controlling vascular risk factors can lead to a decrease in 

onset of mild cognitive impairment.12  

Better understanding of the mechanism of this heart-brain axis will facilitate biomarker 

development and treatment discovery for neurovascular health. A few mechanistic theories exist 

but lack evidence. One popular model, the structural-functional model, argues that VRFs might 

drive pathologic cardiac and cerebrovascular remodelling, which could then result in chronic 

cerebral hypoperfusion, brain structural damage, and poorer CF.6,13–16 Direct evidence for this 

theory has remained unclear but could be found by simultaneously measuring vascular risk 

factors, cognitive function, and heart and brain structure.  

Cardiac and brain imaging derived phenotypes (IDPs) have become popular methods for 

measuring heart and brain structure due to their minimally invasive nature and widespread use. 

Both are strong candidate biomarkers of the modest but well-replicated association between 

elevated vascular risk and lower cognitive function in middle and older age.7,17 However, to-date, 

most of our knowledge about associations between 1) VRFs and 2) cardiac structure, 3) brain 

structure and 4) cognitive measures come from separate reports, which only simultaneously 

consider two phenotypes of interest.7,18–21 Several recent works have indicated the value in 

extending analyses across three of the four phenotype categories above; for example, lower grey 

matter volume can explain part of the association between hypertension, greater BMI, and lower 

performance on some UK Biobank cognitive exams.17,22–24 However, these studies have only 

studied a restricted set of risk factors or neuroimaging measures, and have yet to incorporate 

heart structure and model the heart-brain axis in this context.  
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We hypothesise that, for the structural-functional model to adequately explain the VRF-CF 

association, separate heart and brain structures should associate with both greater vascular risk 

and lower cognitive function. In other words, heart and brain structural variation should mediate 

the VRF-CF association. Additionally, heart mediators should associate with brain mediators. 

Finally, for all steps of the structural-functional model to be supported by the data, heart 

structural variation should mediate the VRF - brain structure association, and brain structural 

variation should mediate the heart structure - CF association. The extent to which these 

associations all align in a cohort of subjects modelled together is understudied.17,24,25 

Furthermore, the relative strength of the association between cardiac and brain structural features 

and the disease endpoints (vascular risk and cognitive decline) is unknown. Along with 

validating the structural functional hypothesis, this comparative approach could identify novel 

biomarkers associated specifically with the VRF-CF association (rather than each dataset alone) 

and guide future decision-making comparing and prioritising organ-specific interventions in 

vascular and cognitive health.2,4,25 

To test the structural-functional hypothesis, in this work, we measure the extent that variation in 

heart and brain structure explains the association between vascular risk and cognitive function in 

the UK Biobank. We gather vascular risk factors, cognitive exam performance, CMR radiomics 

features, and brain MRI IDPs for 11,962 UK Biobank participants. We perform dimensionality 

reduction on all datasets separately. We discover novel measures of the heart-brain axis by 

capturing correlated variance in heart and brain imaging. We compute single and multiple 

mediation models asking how well imaging latent variables explain the VRF - CF association. 

We then measure how well imaging latent variables explain associations between individual 

VRFs and cognitive exams. We finally explore how well individual heart and brain structural 

measures mediate the VRF - CF association. Along with myriad smaller mediating effects, we 

find that myocardial intensity, grey matter volume, and thalamic white matter tract integrity all 

associate with each other, and a joint factor capturing their variability most strongly associates 

with both elevated vascular risk and poorer cognitive function.  
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Results 

Quantifying Heart Brain Axes 

After our data preparation pipeline yielded 11,962 subjects (Supplementary Figure 1, 

Supplementary Table 1), we quantified key axes of variation in all four of our datasets. We 

extracted latent measures of vascular risk (gVRF), cognitive function (g), and brain structure as 

reported previously (see Methods).7,17,19,26,27 Along with traditional measures, we performed 

PCA of heart and brain imaging separately and a novel CCA to capture correlated variability in 

heart and brain structure (Figure 1). For cardiac radiomics, the first three PCs explain 25, 20, 

and 12% of the variance and represent myocardial size, intensity, and textural complexity 

respectively (Supplementary Figure 4, Supplementary Table 4). For brain MRI indices, the 

first three PCs explain 30, 12, and 8% of the variance and represent WM integrity of the fasciculi 

and thalamic radiata, WM integrity of the corticospinal tract, and brain volume respectively 

(Supplementary Figure 6, Supplementary Table 6). For the joint heart brain axes, the first 

three modes have a Pearson correlation of 0.71, 0.48, and 0.32 respectively (Supplementary 

Figure 7, Supplementary Table 7). Based on the loadings, we interpreted that the heart brain 

axes correspond to 1) heart and brain volume, 2) end-systolic myocardial intensity, grey matter 

and thalamic volume, and thalamic radiation WM integrity, and 3) end-diastolic myocardial 

intensity and WM pathology.  

Descriptive Statistics 

Nearly all latent variables have a significant association with age and sex (Supplementary 

Figure 8, Supplementary Tables 8, 9). Older subjects show lower aggregate performance on 

cognitive exams (β=-0.183) and greater vascular risk (β=0.171).7,19 Among the heart structural 

latents, old age associates with slightly greater myocardial volume (CMR PC1, β=0.035), lower 

myocardial intensity (PC2, β=-0.173), and lower myocardial textural complexity (PC3, β=-

0.109).28  
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Figure 1: Latent Factors 

A schematic illustrating all of the extracted latent factors and a simple interpretation of their 

meaning. The loadings for all the factors can be found in the Supplementary Tables and more 

detailed interpretations of the meaning of each factor can be found in the Supplementary 

Methods.   

Among the brain structural latents, old age associates with lower total and grey matter volume 

and lower white matter integrity (β range -0.363 to -0.249). Age also strongly negatively 

associates with the components of the second CCA mode, representing lower myocardial 

intensity, grey matter and thalamic volume, and thalamic white matter integrity (β range -0.591 

to -0.441).  

Associations Between Vascular Risk, Heart, Brain, and Cognition 

Associations among each pair of latent variables were modeled separately, controlling for age 

and sex (Figure 2, Supplementary Tables 10, 11). There is a small but significant negative 

association between gVRF and g (β=-0.036), consistent with prior reports.7,17 Many imaging 

latents across heart and brain associate with both greater gVRF and lower g: lower myocardial 

intensity, lower total and grey matter volume, and lower white matter tract integrity (Figure 2, 

Supplementary Table 11).  
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Figure 2: Pairwise Latent Associations 

We modelled the association between every pair of latent variables. (A) A schematic diagram of 

the modelling process. Every latent variable (e.g.VRF agg) is linearly modelled as a function of 

another latent variable (e.g. gVRF), sex, and age. The derived coefficients for the example first 

model are illustrated. We repeat this for every variable, and the coefficient from these analyses 

compose the first row of the adjacent heatmap. (B) Heatmap of standardised coefficients from all 

342 separate pairwise linear models. Each row lists the dependent variable, and each column lists 

the independent variable in the linear models. (C) With gVRF set as the dependent variable, we 

compare the R-squared of the linear model for each latent grouped by whether it was derived 

from the heart or brain imaging. (D) With g set as the dependent variable, we compare the R-

squared of the linear model for each latent grouped by whether it was derived from the heart or 

brain imaging. All model estimates reported in Supplementary Table 11. 
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All of the heart PCs explained at least an order of magnitude more variance in gVRF (additional 

R2: 0.002–0.166) than in g (aR2: 0–0.004) (Figure 2). Similarly, the brain volume latents 

(atrophy, grey matter volume, PC3) explained at least an order of magnitude greater variance in 

g (aR2: 0.012–0.027) than in gVRF (aR2: 0.0006–0.003). Interestingly, the second joint factor 

(CC2) explains more similar amounts of variance in both g (aR2: 0.009–0.013) and gVRF (aR2: 

0.089–0.164), and it explains at least an order of magnitude more variance in both g and gVRF 

than the white matter latents. This suggests that leveraging information from both heart and brain 

structure is useful in deriving factors that explain a relatively large and equal amount of variance 

in both vascular risk and cognitive function.  

Matched Analysis 

Aware that the latent measures are all in arbitrary units, we used propensity score matching to 

provide more practically interpretable information on how those with high and low vascular risk 

differ across heart, brain and cognitive measures, in native units. We assembled two groups of 

425 subjects matched by sex, age, head size, and BSA (Supplementary Table 12). On average, 

when compared to matched individuals with no VRFs, subjects with 4 or more VRFs have 13.09 

mL (8.29%) lower LVEDV, 7.56 mL (11.50%) lower LVESV, and 5.52 mL (5.99%) lower 

LVSV. Consistent with mild ventricular hypertrophy, the subjects with 4 or more VRFs have 

1.51% (2.58%) greater ejection fraction. We find lower average intensities of the myocardium in 

end- systole (23.53%) and diastole (19.65%). We also find greater uniformity of the myocardial 

tissue appearance (5.25–8.37%). These subjects also have 14,357 mm3 (2.31%) less grey matter 

volume and additionally lower subcortical volumes. They also have lower FA in many tracts 

(range 0.96% and 1.92%). Compared to matched healthy controls, subjects with 4 or more VRFs 

also score on average 0.48 (6.67%) fewer points on verbal-numerical reasoning. These subjects 

also have notable differences in their latent measures, like greater myocardial size, poorer white 

matter tracts, and lower second heart-brain axis (myocardial intensity, grey matter volume, 

thalamic WM tract integrity). Simply summing risk factors correlates with gVRF (Figure 2, 

Supplementary Table 11), and this matched analysis shows that the sum manifests with 

clinically observable phenotypes in heart imaging, brain imaging, and cognitive exam 

performance.  
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Latent Single Mediation Modelling 

Initially, we asked the degree to which each brain or heart measure, in isolation, mediates the 

association between vascular risk and CF. Results are presented in Figure 3, Supplementary 

Tables 13, 14. Consistent with prior reports, measures of brain structure - irrespective of how 

they were measured - only modestly mediated the association (4.97–38.12%), with white matter 

measures being the smallest, but still significant, mediators. However, myocardial intensity 

(heart PC2) and the heart-brain axis capturing myocardial intensity, grey matter volume, and 

thalamic white matter integrity (CC2) all completely mediate the gVRF-g association (117%-

150%; attenuated to be indistinguishable from β =0 in each case). For example, one standard 

deviation (SD) lower gVRF associates with 0.55 standard deviation lower latent myocardial 

intensity. This 0.55 SD lower intensity associates with 0.043 SD lower cognitive function.  

As a control, we address two possible counterarguments: (1) that the BMI - cognitive function 

association is the only VRF well explained by myocardial intensity and (2) that myocardial 

intensity is just a proxy for myocardial size. First, since gVRF most strongly weights BMI and 

WHR (Supplementary Table 2), it’s possible that the gVRF-g association is driven primarily by 

BMI and that myocardial intensity only mediates the BMI - g association. However, covarying 

for BMI partly attenuated, but did not remove, myocardial intensity’s mediation of the gVRF-g 

association (40.18%) (Supplementary Table 15). Second, since myocardial intensity and 

myocardial volume are associated (Supplementary Table 11), it is possible that myocardial 

intensity is just a measure of myocardial size not well adjusted by regressing out BSA. However, 

we show that myocardial intensity associates with BMI independent of body and myocardial size 

(Supplementary Table 15). Therefore, myocardial intensity’s mediation of the gVRF-g 

association is not just explained by the BMI - g association and, furthermore, the BMI - 

myocardial intensity association is not just due to the myocardium being larger.  
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Figure 3: Latent Single Mediation Modelling 

We performed serial mediation modelling of the gVRF-g association, testing each imaging latent 

as a potential mediator. (A) Schematic for the CMR radiomics modelling procedure. gVRF and g 

were maintained as the known association, and we iterated over all CMR imaging latent factors. 

Equations demonstrate the derivation of the direct and indirect effect. (B) Schematic for the brain 

MRI modelling procedure. (C) Example computation of the measured effects. Confidence 

intervals reported in Supplementary Table 14. (C) The estimates for the direct and indirect 

effects for all potential mediators, sorted by indirect effect size, closed circles are significant 

(p<0.05) and open are not. Error bars derived from bootstrapping (see Supplementary 

Methods). 

Latent Multiple Mediation Modelling 

The structural functional model argues that heart structural variation impacts cognitive function 

via its impact on brain structure. To model this within our data, we constructed two related 

multiple mediation models (Figure 4). In the first model, we performed ‘parallel’ multiple 

mediation that does not account for the heart-brain association. In the second model, we 

performed ‘sequential’ multiple mediation that does account for the heart-brain association.  
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Figure 4: Latent Multiple Mediation Modelling 

We performed both parallel and sequential multiple mediation modelling of the gVRF-g 

association, including heart PC2 as the first mediator and then considering all brain latents as 

second mediators. (A) Schematic of the parallel modelling procedure with a single direct effect 

and two indirect effects, one for each potential mediator. We list values from an example 

mediation effect in which grey matter volume was the second mediator. Confidence intervals 

reported in Supplementary Table 17. The direct effect is fixed for all mediators at 0.009. (B) 

Analogous schematic for the sequential modelling procedure. Values reported from an example 

model with grey matter as the second mediator. (C) A bar chart of the estimates for the indirect 

effect for heart PC2 when each brain latent was used, closed is significant (p<0.05) and open is 

not. (D) A bar chart of the estimates for the indirect effect for each brain latent when either using 

parallel (left) or sequential (right) mediation. 
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We performed this analysis for myocardial intensity paired with every brain latent since 

myocardial intensity was the only significant heart mediator. Comparing the heart indirect effects 

between the single mediation (Figure 3) and the parallel multiple mediation (Figure 4C, 

Supplementary Tables 16, 17) allows us to assess the impact of brain structure on the heart-

cognitive function association. The heart indirect effect slightly decreases when accounting for 

brain volumes but not brain white matter measures. Therefore, brain volume variation can 

explain some but not all of the association between heart intensity and cognitive function. 

Comparing the brain indirect effects between the parallel and sequential mediation allows 

assessment of the impact of heart intensity on the VRF-brain association. In this case, the brain 

volume measure indirect effects go to zero but the white matter indirect effects do not decrease 

(Figure 4D, Supplementary Tables 18, 19). Thus, heart intensity variation can explain all of the 

association between VRFs and brain volume but not VRFs and white matter intensity.  

Latent Single Mediation Modelling of Individual VRF-Cognitive Pairs 

Since recent work has noted the potential for spurious mediations when modelling with 

composite measures, we spend the next two sections analysing mediation using combinations of 

individual measures. We first consider pairs of individual VRFs and cognitive exams (Figure 5, 

Supplementary Tables 20, 21). We found that pack years and VNR (β =-0.028), WHR and 

VNR (β =-0.061), and WHR and RT (β =0.032) all had independent associations in the expected 

directions. Brain volumetric latents most strongly mediated the pack year - VNR association 

(12.11–47.64%) while myocardial intensity associated latents most strongly mediated the WHR-

VNR association (27.33–42.76%). The myocardial intensity features are also the only significant 

mediators of the WHR-RT association (34.75–49.52%). Likely because they capture some 

relevant variation in brain volumes, white matter tracts, and myocardial intensity, the 

components of the second joint factor strongly mediate both the pack-year and WHR cognitive 

exam associations (21.63–49.52%).  
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Figure 5:  Latent Single Mediation Modelling of VRF-Cognitive Pairs 

We performed serial mediation modelling for all latent imaging measures for each VRF- 

cognitive exam pair. (A) Schematic for a mediation model using different VRFs as the 

independent variable rather than gVRF. We tested all VRFs. (B) Schematic for a mediation 

model using cognitive exams as the dependent variable rather than g. We tested all exams. (C) 

Example mediation model for an individual latent factor and an example pair of VRF and 

cognitive exam. Confidence intervals for all coefficient estimates in Supplementary Table 21. 

(D) Direct and indirect effects for three significant VRF-exam pairs. Latents ordered by indirect 

effect size and separated by organ. RT shows lower values for better performance while VNR 

shows higher values for higher performance. 
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Individual Feature Mediation Modelling 

Although the latent imaging features capture large amounts of the variance in the imaging 

datasets (Supplementary Figure 4, Supplementary Figure 6), each imaging dataset contains 

many features and much variance beyond the latents used in the previous analyses. To offer a 

comprehensive picture of how heart and brain structure mediate the gVRF-g association, we 

perform single mediation analysis for every individual imaging feature (Figure 6, 

Supplementary Tables 22, 23, 24, 25).  

As expected, many individual features associated with myocardial intensity show complete 

mediation (Figure 6, Supplementary Tables 22, 23). However, a number of CMR measures 

showed mediating effects that were previously difficult to appreciate via latent modelling. While 

the latent measure of myocardial volume did not mediate the association (Figure 3), both the 

right and left ventricular volumes partially mediated the association (32.5–61.1%). Although the 

latent measure of myocardial tissue complexity was just below significance (Supplementary 

Table 14), some measures of local nonuniformity and local homogeneity partially mediated the 

association (32.5–48.5%). Greater local nonuniformity associated with lower vascular risk (β = -

0.347– -0.284) and greater cognitive function (β = 0.051–0.054), and measures of local 

homogeneity show the opposite associations (Supplementary Table 23).  

Compared to the heart, the brain IDPs show an order of magnitude lower indirect effects and 

proportionally lower percent mediation (Figure 6,  Supplementary Tables 24, 25). Of the brain 

IDPs, volumes have the largest mediating effect, particularly grey matter (38.1%) and thalamic 

volume (35.9–36.4%). The largest white matter microstructural mediating effects are from the 

thalamic radiation tracts (Supplementary Figure 9). For example, MD of all the thalamic 

radiation tracts significantly mediates the association (5.17–8.26%), and the FA of the left 

posterior thalamic radiation tract has the greatest mediation of all the white matter 

microstructural mediating effects (18.3%).  
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Figure 6: Individual Feature Single Mediation Modelling 

We performed serial mediation modelling for all individual imaging features. (A) Schematic for 

the modelling procedure for CMR IDPs. Same as Figure 3, except all potential mediators are 

now individual features (IDPs) instead of latent variables. (B) Schematic for Brain IDPs. (C) 

Example mediation model for an individual feature with the left thalamic volume (Volume 

Thalamus) as a potential mediator. Confidence intervals reported in Supplementary Table 25. 

(D) Direct and indirect effects for all tested CMR radiomics grouped by cluster and brain MRI 

IDPs grouped by their feature type. For visualisation, we grouped the brain IDPs by their IDP 

categories and the CMR radiomics by previously reported clusters extracted from imaging of 

healthy individuals.18 We also include conventional CMR indices as a separate cluster.  
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Discussion 

Interpretation 

This study supports the structural-functional model for the link between vascular risk and 

cognitive function. Many heart and brain structural measures separately mediate the vascular risk 

- cognitive function association (Figure 3, 6). Despite these initial results, it was still possible 

that the mediating measures from the heart and brain shared no inter-associations. This would 

violate the structural-functional model’s claim that vascular risk causes vascular and cardiac 

remodelling, which in turn causes cerebral damage. Our results argue against this possible 

negative result in three ways. First, we find significant associations among the separate heart and 

brain mediators, like between heart PC2 and grey matter volume (Figure 2). Second, we find 

that these associated mediators have partially overlapping mediating effects (Figure 4). Third, 

we find that one of the major axes of covariance between heart and brain structure (CC2) 

significantly mediated the VRF-CF association (Figure 3). Therefore, the heart and brain do 

indeed share mediating effects, indicating that their variation may be linked via the structural-

functional model.  

Our results also complicate the structural functional model. When comparing the multiple 

mediation models (Figure 4), we found that myocardial intensity variation can fully explain the 

VRF-grey matter association, but grey matter variation cannot fully explain the myocardial 

intensity - cognitive function association. This suggests that heart structural variation can 

associate with cognitive function in ways independent of brain structural variation. This violation 

of the structural functional model could be explained by brain changes not well captured by our 

metrics (e.g. smaller cortical grey matter changes). Additionally, we found that myocardial 

intensity cannot explain the VRF-white matter integrity association (Figure 4). Therefore, the 

brain associates with risk factors in manners independent of cardiac variation. Mechanisms for 

this break in the model could be explained by direct impact of metabolic hormonal dysregulation 

on the brain or brain vasculature, without affecting heart structure.  

Consistent with prior reports, considering brain structural measures alone only accounted for a 

minority of the VRF-CF association.17 Although important features from these brain latents all 
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have relatively large coefficients in the second heart-brain CCA mode (Supplementary Table 

7), these latents alone show much smaller indirect effects than the second heart-brain CCA mode 

(Supplementary Table 14). The strong alignment of the second CCA mode with the VRF-CF 

association suggests that leveraging the association between heart and brain structure is 

informative to deriving a brain imaging latent factor that associates with both vascular risk and 

cognitive decline. In other words, without considering vascular risk or cognitive function in their 

derivation, one can discover brain biomarkers that better explain the VRF-CF association by 

using the heart-brain structural association.  

Focusing on the brain structures identified, this work unifies separate findings that have shown 

that lower grey matter and thalamic volume associates with greater vascular risk and lower 

cognitive function.17,19,22,26 Furthermore, this work supports the association of deteriorating 

thalamic tract white matter microstructure with elevated vascular risk and poorer cognitive 

function.19,26 Previous work has argued that the thalamus is both central to integrative signalling 

in the brain and potentially susceptible to changes in cerebrovascular perfusion.29–32 Crucially, 

this works links variation in these structures to myocardial intensity. Why exactly thalamic 

volume and thalamic white matter integrity associate with myocardial intensity is still unknown 

and will be of interest in future work.  

Our analyses of individual VRFs and cognitive exams revealed subtle trends not apparent in our 

more global/latent results, where brain and heart had differential importance. For example, 

whereas brain volumes more strongly mediate the pack year - VNR association than the WHR-

VNR association, myocardial intensity exhibited the reverse pattern (Figure 5, Supplementary 

Table 21). This result highlights the utility of a comparative approach between heart and brain 

structural variation. However, the individual VRF cognitive exam analysis also revealed the 

complexity in some of these phenotypes, replicating a previous finding of a positive association 

between BMI and visual memory (Supplementary Table 21).17 

Beyond supporting findings from the latent analysis, the individual gVRF-g mediation analysis 

of imaging features revealed that lower right and left ventricular volume for body size associates 

with greater vascular risk and lower cognitive function (Figure 6, Supplementary Table 23). 

This result could point to a simple mechanistic step in the structural-functional hypothesis in 

which lower stroke volume for body size decreases cerebral perfusion.28 Analysis of the 
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individual brain features highlights grey matter, some subcortical volumes, and thalamic white 

matter tract measures as most mediating the gVRF-g association (Figure 6, Supplementary 

Table 25). This provides independent support from the joint analysis that these specific brain 

structures are key to the heart-brain axis.  

Lower myocardial intensity has previously been associated with specific vascular risk factors and 

greater red meat consumption, and, here, we quantify its association with both greater aggregate 

vascular risk and lower cognitive function.18,33,34 Lower myocardial intensity strongly associates 

with higher BMI in a manner not explained by body or heart size (Supplementary Table 15), 

possibly representing fatty transformation of myocardial tissue. Alternatively, previous imaging 

studies have detected myocardial fibrosis in cohorts of patients with vascular risk factors, 

suggesting that the low intensity features common to vascular risk and cognitive decline could be 

signs of a common myocardial fibrotic pathology driven by vascular risk factors.35–37 We also 

found some mediation via greater myocardial textural uniformity (Supplementary Table 23), 

which could also associate with the speculated fibrosis. These results motivate further work to 

confirm these hypotheses through tissue pathology.  

Limitations 

Although this study uses an exceptionally large dataset of adults across a wide range of middle- 

and older-ages, this work does not analyse longitudinal data. Therefore, we cannot disambiguate 

whether cardiovascular risk is causing decreased cognitive function, lower cognitive function is 

causing increased cardiovascular risk, or some mix of both effects. However, numerous 

longitudinal studies in other cohorts support that cardiovascular risk associates with accelerated 

cognitive decline.9–12,38,39 Furthermore, without longitudinal imaging, we cannot assess the 

temporal relationship between cardiac and brain imaging phenotypes, vascular risk, and 

cognitive function. However, we argue that our results still offer novel cross-sectional support 

for the structural-functional model linking elevated vascular risk and poorer cognitive function.  

In this work, we focus on the structural functional model linking vascular risk and cognitive 

function. Importantly, the VRF - CF association could be equally well explained by unmeasured 

mechanisms (e.g. metabolic hormonal dysregulation could directly impact neuronal function)40 

or by reverse causation (e.g. poor cognitive function could decrease healthy lifestyle 
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maintenance).41,42 Testing these hypotheses adequately would require longitudinal and 

biochemical data not yet available via the UK Biobank. Additionally, we do not adjust for 

ethnicity in this study due to the low numbers of non-White British participants and the 

heterogeneity of those minority participants (Supplementary Table 1).  

Whereas some have questioned the reliability of the UK Biobank cognitive exams,27 recent work 

has supported their validity and psychometric properties.43 Additionally, as reported in previous 

work, the effect sizes for the association between individual VRFs and cognitive exams is small, 

and we find no unique association for many VRFs and at least two associations pointing in the 

‘opposite direction’ as hypothesised  (Figure 5, Supplementary Tables 21).7 Results from the 

full UK Biobank study suggest that large studies are needed to consistently detect these small 

effects and future increases to the imaging subset will help refine our results.17,24 We argue that 

the approach implemented here, via obtaining a latent measure g, minimises the impact of 

individual exam variability by obtaining an estimate of a robust, replicable, and test-invariant 

cognitive construct.26,27,43  

Conclusion 

The structural-functional model explaining the VRF-CF association rests on the argument that 

vascular risk drives changes in cardiovascular structure that lead to alterations in brain structure 

that lead to cognitive decline. Definitive support for the causal sequence of this model would 

require experimental or longitudinal work. However, our models (using cross-sectional data) are 

consistent with the hypothesis that vascular risk-associated cognitive ageing associates with 

distinctive variation in cardiac and brain structure. This is the first large-scale work to show that 

there is correlated variance in both heart and brain structure that mediates the association 

between vascular risk and cognitive function, providing a more extensive multi-modal 

framework to important prior work.7,17–22,24,26 One of the many hypotheses generated from 

analysing these data together is the identification of a key link to explain: how myocardial 

hypointensity could associate with cerebrovascular hypoperfusion impacting particular 

subcortical structures, like the thalamus.  
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Methods 

Acquisition and Processing 

Assessment  

This work utilises clinical and imaging data from the United Kingdom (UK) Biobank via access 

application 2964.44 The UK Biobank is a large-scale longitudinal dataset derived from 500,000 

volunteers recruited between 2006 and 2010 from across the UK. At visits, participants 

completed both a touchscreen questionnaire and medical history interview with a nurse. The 

project recorded information regarding participants’ health, lifestyle, and family history and 

collected physical measurements, biological samples, and genome. Moreover, since 2015, over 

50,000 participants have received CMR and brain MR imaging at followup imaging visits.  

Vascular Risk Factors  

We analysed hypercholesterolemia, diabetes, hypertension, smoking pack years, blood pressure, 

and anthropomorphic measures (BMI and waist-to-hip ratio, WHR).3,13–15,19,45 All vascular risk 

factors were collected at the baseline UK and prepared as reported previously.18,19 We summarise 

the process here. During the medical history interview, participants reported whether they had 

received a diagnosis of diabetes, hypertension, or hypercholesterolaemia. Diagnosis was 

confirmed through a combination of HES records and blood biochemistry data.18 Participants 

provided information on cigarette smoking in the touchscreen questionnaire, and smoking pack 

years were computed from this data.19 Blood pressure was collected twice, moments apart, using 

an Omron 705IT monitor. Mean systolic and diastolic blood pressure were computed. 

Anthropometric measures were taken after participants had removed bulky clothing and shoes. 

Waist and hip measurements were conducted to provide WHR. BMI was computed by dividing 

weight by squared height. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 20, 2023. ; https://doi.org/10.1101/2022.09.15.22279275doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.15.22279275


Cognitive Exams  

We examined four tests that were included as part of the UK Biobank baseline cognitive 

assessment. The complete battery and assessment of its repeatability and reliability have been 

detailed previously.7,27,43 We used the four tests commonly used in analysis and dimensionality 

reduction of the baseline cognitive assessment: the fluid intelligence task (verbal numerical 

reasoning, VNR), the visual memory task (vismem), the reaction time task (RT), and the 

prospective memory task (prosmem).27 As previously reported,27 the reaction time scores were 

positively skewed, so we applied a natural log transformation (LN). Additionally, the visual 

memory scores were zero-inflated and positively skewed, so we applied a LN+1 transformation.  

Cardiac Imaging 

Cardiac imaging acquisition and preparation discussed in Supplementary Methods. Using the 

CMR images and their corresponding segmentations, we performed radiomics phenotyping 

based on the open-source python-based pyradiomics library.46 Radiomics extracts features 

quantifying myocardial and ventricular structure (shape radiomics), myocardial imaging intensity 

(first-order radiomics), and myocardial visual textures (texture radiomics).47 In total, 212 features 

per region were extracted at end-diastole and end-systole. Right and left ventricular cavity first-

order and texture features were excluded from analysis because they do not encompass clinically 

relevant information. We incorporate conventional CMR indices into the matching analysis and 

final mediation by individual features, computed as previously reported.20,21,34 

Brain Imaging 

Brain imaging acquisition and preparation is discussed in Supplementary Methods. The global 

tissue volumes and white matter tract-averaged water molecular diffusion indices were processed 

by the UK Biobank team and made available to approved researchers as imaging-derived 

phenotypes (IDPs); the full details of the image processing and QC pipeline are available in an 

open access article.48 The IDPs in this study included total brain volume, grey matter volume, 

subcortical volumes, and tract-averaged white matter microstructural measures. A detailed list of 

volumes, white matter tracts, and white matter tract measures is provided in Supplementary 

Methods. 
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Analysis 

Workflow 

We began with 19408 subjects with completed CMR radiomics analysis of their short-axis 

imaging from the UK Biobank Imaging Extension. We downloaded and prepared the vascular 

risk factor, cognitive testing, brain imaging data, heart imaging, and covariates for these subjects 

(see Acquisition and Preparation). For each dataset separately, we dropped all subjects without 

complete data, merged all datasets, and selected only subjects without cardiovascular or brain 

disease (defined in Supplementary Methods). We then performed dimensionality reduction on 

each data type separately. We performed joint factorization of the heart and brain imaging data. 

We regressed out imaging confounders from the latent factors (Supplementary Methods). We 

merged the latent factors and performed all downstream analyses. We corrected all comparisons 

for multiple hypothesis testing with a Benjamini-Hochberg False Discovery Rate (BH-FDR) 

correction. Entire pipeline with number of subjects retained at each step reported in 

Supplementary Figure 1 and population statistics reported in Supplementary Table 1. For 

every analysis, we present both raw and deconfounded results as paired Supplementary Tables, 

but we only discuss deconfounded results in the text. All code was open-sourced, see Data and 

Code Availability; the list of packages and settings used is in Supplementary Methods. 

Dimensionality Reduction 

Latent Variables for Vascular Risk (gVRF) 

First, we derived an aggregate measure of vascular risk for each individual, counting instances of 

a self-reported diagnosis of hypertension, diabetes, or hypercholesterolaemia, having ever 

smoked, having a BMI >25, and having a high WHR (>0.85 for females and >0.90 for 

males).19,49 

We derived an additional latent factor of general vascular risk (gVRF) following prior work in 

this and other cohorts, using confirmatory factor analysis in structural equation modeling.19,50 

This latent measure captures the tendency for VRFs to co-occur. gVRF was derived from 

smoking pack years, diastolic and systolic blood pressure, BMI, WHR, self-reported 
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hypertension, diabetes and hypercholesterolaemia. The model fit the data well, though loadings 

were inconsistent (range 0.189–0.745), with the factor more strongly loaded towards BMI and 

WHR (Supplementary Figure 2, Supplementary Table 2).  

Latent Variables for Cognitive Function (general intelligence, g)  

As previously reported,7 we performed a CFA of the four cognitive tests. We hypothesised that 

the four tests would correlate moderately-highly (with intercorrelations of r > 0.40) and would 

form a single latent general factor across the four tests with good fit to the data. We found this to 

be the case (Supplementary Figure 3, Supplementary Table 3).  

Latent Variables for Heart Structure  

Since principal component analysis (PCA) is commonly used in radiomics to extract lower 

dimensional representations of the data,47,51–53 we performed PCA on the z-scored radiomics. We 

chose the number of principal components using cross validation, detailed in the Supplementary 

Methods. We kept the first 3 unrotated PCs (Supplementary Figure 4, Supplementary Table 

4). We extracted the scores of these components for each subject and used them for downstream 

analyses.  

Latent Variables for Brain Structure  

We isolated brain volume (‘atrophy’ after controlling for head size) and grey matter volume.19 

Latent measures of general white matter fractional anisotropy (gFA) and mean diffusivity (gMD) 

were derived using confirmatory factor analysis, as previously reported in this cohort.19,32 The 

factor analysis models fit well with the lowest loadings for the corticospinal tracts and cingulate 

gyri and the highest loadings for the thalamic radiata and fasciculi (Supplementary Figure 5, 

Supplementary Table 5) .  

Since principal component analysis has been used to capture variation in brain imaging in 

previous work and since we are using it to summarise the heart imaging in this work,54–57 we also 

computed PCA over all z-scored brain IDPs and selected the number of principal components to 

retain as before (Supplementary Methods). We kept three PCs (Supplementary Figure 6, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 20, 2023. ; https://doi.org/10.1101/2022.09.15.22279275doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.15.22279275


Supplementary Table 6). We extracted their scores for each subject and utilised them in 

downstream analyses.  

Joint Heart-Brain Factor Analysis 

Along with the factor analysis of the individual datasets described above, we also sought to 

derive latent factors that captured the main modes of correlated variation between heart and brain 

structural imaging. That is, we aimed to identify components of brain structure and components 

of heart structure that were maximally correlated. Through canonical correlation analysis (CCA) 

on the z-scored heart radiomics and brain IDPs, we derived ten modes.55 Each mode consists of 

two components: (1) a linear combination of heart radiomics features and (2) a separate linear 

combination of brain IDPs that have highly similar variation in the population. The modes are 

ranked by the amount of correlation between the heart and brain components. We chose the 

number of modes to keep via cross validation (Supplementary Methods), kept three modes 

(Supplementary Figure 7, Supplementary Table 7), extracted the component scores for each 

subject in each dataset, and used them in downstream analyses.  

Descriptive Statistics and Associations 

First, we conducted descriptive analyses, testing the association of age and sex with all of our 

latent variables using linear regression. We then examined the pairwise linear association 

between all latent variables by linearly modeling each latent variable as a function of sex, age, 

and each other latent variable. See Supplementary Methods for modelling details and how 

additional R^2 is computed. Results reported for both raw and deconfounding imaging latents.  

Propensity Score Matching 

Since all other analyses are performed on corrected, standardised, and latent measures of the 

data, we performed propensity score matching to yield real-units measurements of the 

differences between subjects with and without VRFs. We matched subjects with four or more 

VRFs with their nearest neighbour with no VRFs, requiring an exact match for sex 

(Supplementary Methods). We then performed repeated t-tests to compare the cognitive exam 

performance, CMR measures, and brain IDPs of the matched groups of subjects.  
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Mediation Modelling 

To measure how well heart and brain structural features explain the VRF-CF association, we 

perform a series of mediation analyses. This method allows us to directly quantify the degree to 

which any identified associations between vascular risk and cognitive ability are accounted for 

by brain or heart-based measures. The primary outcome is therefore the % of the gVRF-g 

association that is mediated when brain/heart measures are included in the model. In more 

complex models with more than one mediator, one can also identify which mediator is 

contributing the largest unique mediating effect. Thus, these analyses offer an elegant 

quantitative solution for identification of important heart and brain biomarkers underpinning 

VRF-cognitive associations. We report a more complete description of the mediation model in 

the Supplementary Methods. 

We first performed mediation models on solely the latent representations of each data set. We 

found the association between gVRF and g and then modelled how well each imaging latent 

variable mediated this association (more details in Supplementary Methods). At first, we only 

modelled one imaging latent at a time, calling this the ‘Latent Single Mediation Model.’ Then we 

performed both parallel and sequential multiple mediation analyses, fixing heart PC2 as the first 

mediator and then adding brain latents as the second mediator, called ‘Latent Multiple Mediation 

Model.’ Next, we replaced the gVRF-g association with pairs of individual VRFs and cognitive 

exams, testing imaging latents one at a time again, calling this ‘Latent Single Mediation 

Modelling of VRF-Cognitive Pairs.’ Given the high association between the VRFs 

(Supplementary Figure 2, Supplementary Table 2), we control each VRF-exam association 

for all other VRFs to identify unique associations between each VRF and cognitive exam.  

To explore the role of individual imaging features in explaining the association between VRFs 

and CF, we returned to the gVRF-g association and performed mediation modelling for each 

imaging feature individually, calling this the ‘Individual Feature Single Mediation Model.’ We 

perform modelling as described in Supplementary Methods. 

Given that all latent measures across domains (vascular risk, heart, brain and cognitive) were 

standardised, reported coefficients are standardised regression coefficients (i.e. β range [-1 ,1]) 

throughout, allowing direct comparison of effect magnitudes across modalities.  
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