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Abstract

Most disease pathogens require onward transmission for their continued persistence. It is
necessary to have continuous replenishment of the population of susceptibles, either through
births, immigration, or waning immunity in recovered individuals.
Consider the introduction of an unknown infectious disease into a fully susceptible population
where it is not known how long immunity is conferred once an individual recovers. If the
disease takes off, the number of infectives will typically decrease to a low level after the
first major outbreak. During this period, the disease dynamics will be highly influenced by
stochastic effects and there is a non-zero probability that the epidemic will die out. This is
known as an epidemic fade-out. If the disease does not die out, the susceptible population
may be replenished by the waning of immunity, and a second wave may start.
In this study, we describe an experiment where we generated synthetic outbreak data from
independent stochastic SIRS models in multiple communities. Some of the outbreaks faded-
out and some did not. By conducting Bayesian parameter estimation independently on each
outbreak, as well as under a hierarchical framework, we investigated if the waning immunity
rate could be correctly identified. When the outbreaks were considered independently, the
waning immunity rate was incorrectly estimated when an epidemic fade-out was observed.
However, the hierarchical approach improved the parameter estimates. This was particularly
the case for those communities where the epidemic faded out.

1 Introduction

Infectious diseases do not always provide life-long or long-term protective immunity after infection (Heffernan
& Keeling, 2009; Mathews, McCaw, McVernon, McBryde, & McCaw, 2007). Some common examples are
pertussis (Mooi, Van Der Maas, & De Melker, 2014), flu (Camacho & Cazelles, 2013), and the A/H3N2
epidemic that occurred on the remote island of Tristan da Cunha in 1971 (Camacho et al., 2011). Furthermore,
for emerging infectious diseases, sufficient biological evidence to hypothesise that either re-infection or life-long
immunity is possible is often limited. One example is the early stages of the recent COVID-19 pandemic
(Lavine, Bjornstad, & Antia, 2021; Telenti et al., 2021).

Mathematical epidemic models rely on compartmentalisation of the population into different states that
are related to the infectious diseases of interest (Camacho & Cazelles, 2013; Heffernan & Keeling, 2009;
Kermack & McKendrick, 1927). Deterministic epidemic models that allow for replenishment of susceptibles
via re-infection, births or immigration display damped oscillatory behaviour (Keeling & Rohani, 2011). The
simplest model for such a situation is the one that allows for re-infection, the SIRS model. In this model,
recovered individuals have immunity that wanes resulting in them becoming susceptible again.

In contrast to a deterministic model, the number of infectives in a stochastic SIRS model can drop to
zero. This occurs due to random effects at low disease prevalence levels. Once an outbreak avoids the initial
fade-out (disease extinction during the start of the epidemic), there exists a trough following the first major
outbreak Lloyd (2004). There is a non-zero probability that disease extinction will occur during this trough
(Lloyd-Smith et al., 2005). This is known as an epidemic fade-out (Alahakoon, McCaw, & Taylor, 2022;
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Ballard, Bean, & Ross, 2016; Bartlett, 1960; Camacho et al., 2011; Camacho & Cazelles, 2013; Lloyd-Smith
et al., 2005; Meerson & Sasorov, 2009; van Herwaarden, 1997). If epidemic fade-out does not take place, the
susceptible fraction will increase due to the waning of immunity, and once the effective reproduction number
is greater than one, a second wave may be started. The likelihood of the occurrence of epidemic fade-out or
non-fade-out depends on the model parameters of which the outbreak is modeled Anderson and May (1992).

Here, we consider a hypothetical pathogen where there is insufficient evidence to suggest that recovered
individuals remain immune from infection forever. We consider outbreaks of this disease observed in
small closed communities (sub-populations) during short periods of time where demographic factors can be
ignored. We assume outbreaks in these sub-populations take place independently. Due to stochastic effects
and variability in the characteristics of the sub-populations, we might observe epidemic fade-out in some
sub-populations and not in others. This setup is an extension of our previous work Alahakoon et al. (2022).

Conditional on an epidemic taking off, we attempt to recover parameters of waning immunity rates when
epidemic fade-outs are observed. We conduct a simulation-based experiment where multiple outbreaks of
synthetic data are generated from a stochastic SIRS model. Some outbreaks display fade-outs while others
display non-fade-outs. We estimate model parameters by considering each outbreak independently as well as
under a Bayesian hierarchical framework. We further consider two assumptions for the prior distributions
under the Bayesian framework: one where we allow the waning immunity rate of an SIRS model to be zero
and one where we constrain the waning immunity rate to be non-zero. We illustrate that when the estimation
is conducted independently, the waning immunity rate is incorrectly estimated under both assumptions when
an epidemic fade-out is observed. We further show that the estimates of the waning immunity rate are
improved when the estimation is carried out under a hierarchical framework irrespective of the assumption
used. Additionally, we show that the waning immunity rate is still identifiable under a hierarchical framework
even under incomplete data conditions.

2 Background

2.1 The Markovian SIRS model in a closed sub-population

In a well-mixed sub-population of size N , we will denote the number of susceptibles, infectious individuals
and recovered individuals by S(t), I(t), and R(t) respectively at time t. An SIRS model is parameterised by
β, the transmission rate, γ, the rate of recovery, and µ, the waning immunity rate. The stochastic SIRS
system can be formulated as a continuous-time Markov chain with bi-variate states (S(t), I(t)). The model
structure is illustrated in Figure 1 and the transition rates are presented in Table 1. When µ = 0, the
dynamics of this model are identical to those of the SIR model.

Figure 1: SIRS model structure.

Table 1: Transition rates of an SIRS model
Event Transition Rates

Infection (s, i) → (s − 1, i + 1) βsi/(N − 1)
Recovery (s, i) → (s, i − 1) γi

Loss of immunity (s, i) → (s + 1, i) µr, ( r = N − s − i)
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2.2 A Bayesian hierarchical modelling framework

In this study, we consider the estimation of parameters under a hierarchical modeling approach. Let us
assume that we are studying outbreaks corresponding to K sub-populations and each outbreak is modeled
using a continuous-time Markov chain with transition rates defined in Table 1. Let the model parameter
set corresponding each sub-population be denoted as a vector θk (k = 1, 2, . . . , K). Under a hierarchical
framework, we assume that model parameters corresponding to each outbreak are drawn from a common
distribution (Gelman et al., 2013).

We construct our hierarchical framework with three levels similar to that of Alahakoon et al. (2022).
Level I represents the observed prevalence data yk = (Ik(1), Ik(2) . . . , Ik(Tk)) at Tk discrete time points for
sub-populations k = 1, 2, . . . , K. Level II represents the structural relationship between the sub-population
specific parameters θk (k = 1, 2, . . . , K) and the hyper-parameters, Ψ. The θk are independent random
variables with common distribution p(θ|Ψ). A common distribution for the conditional prior distribution is is
that the parameters are independently drawn from normal distributions with a given means and standard
deviations. Finally, Level III represents the prior distributions for the hyper-parameters, which are generally
known as hyper-prior distributions, p(Ψ) (Gelman et al., 2013).

The joint posterior distribution for a population consisting of K sub-populations is,

p(θ1, θ2, . . . , θK , Ψ|y) = p(y|θ1, θ2, ..., θK , Ψ)p(θ1, θ2, ..., θK , Ψ)
p(y) =

[∏K
k=1 p(yk|θk)p(θk|Ψ)

]
p(Ψ)

p(y)

∝

[
K∏

k=1
p(yk|θk)p(θk|Ψ)

]
p(Ψ). (1)

Within our SIRS modelling framework for sub-population k, θk = (βk, γk, µk). We define the conditional
prior distribution for the model parameters as a multivariate normal distribution with means Ψβ , Ψγ , and
Ψµ, and standard deviations σβ , σγ , and σµ, and correlations set to zero.

3 Materials and Methods

3.1 Synthetic data generation

We constructed synthetic data for 15 sub-populations each consisting of 1000 individuals. We fixed the
initial conditions of each outbreak to include one infectious person in each sub-population at the start of the
outbreak.

We generated synthetic data for all the sub-populations with the stochastic SIRS model structure that
was introduced in Section 2. We independently generated transmission, recovery, and waning immunity
rates from three truncated normal distributions. We randomly generated the transmission rates, βk, for the
sub-populations from a normal distribution with a mean of 2.5 and standard deviation of 0.25, truncated on
the interval (1, 10). We generated the recovery rates, γk, from a normal distribution with a mean of 1 and a
standard deviation of 0.05, truncated on the interval (0, 4). We generated the waning immunity rates, µk,
from a normal distribution with a mean of 0.06 and standard deviation of 0.01, truncated on the interval
(0.01, 1). See Table 2 for summary statistics of the actual values of the parameters that were generated
for each of the sub-populations. Using these parameters for the SIRS model, we generated sample paths
from the Doob-Gillespie (Doob, 1945; Gillespie, 1977) algorithm for 35 days and retained the prevalence
of infections each day. When generating sample paths, if the sample path produced an initial fade-out, we
discarded that sample-path and repeatedly generated sample paths until an initial outbreak was observed.
The criteria we used to identify an outbreak were similar to Alahakoon et al. (2022). Figure 2 shows the
time-series data of the 15 sub-populations. Sub-populations 4, 8, 10, 12, 14, and 15 displayed an epidemic
fade-out and other sub-populations displayed multiple waves.
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Table 2: Summary statistics of the parameters of the 15 outbreaks
Parameter Mean Standard deviation

β 2.5235 0.3476
γ 1.0198 0.0498
µ 0.0606 0.0073

Figure 2: Synthetic data for fifteen sub-populations over 35 days.
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3.2 Estimation framework

We considered two frameworks to estimate the model parameters related to the transmission, recovery,
and waning immunity rates: 1) estimation by considering each outbreak independently. 2) estimation by
considering a hierarchical framework. Under each estimation framework, we used two different assumptions
for prior distributions within the Bayesian framework.

Under the first assumption, we allow the waning immunity rate of an SIRS model to be zero by using a less
informative prior distribution for the waning immunity rate when the outbreaks are considered independently
as well as at the hyper-parametric level. Under the second assumption, we used a strong informative prior at
both these settings where waning immunity was constrained to be greater than 0.01. Tables 3 and 4 illustrate
our choice of priors for the model parameters under both assumptions.

Table 3: Prior distributions for parameters when the outbreaks are considered independently
Parameter Assumption 1 Assumption 2

β Uniform (0.001,10) Uniform (0.001,10)
γ Uniform (0.00001,3) Uniform(0.00001,3)
µ Uniform (0,0.2) TN (0.03, 0.1, 0.01, 0.2)

Table 4: Prior distributions for hyper-parameters under the hierarchical framework
Hyper parameter Assumption 1 Assumption 2

Ψβ Uniform (0.001, 10) Uniform (0.001, 10)
σβ Uniform (0, 2.5) Uniform (0, 2.5)
Ψγ Uniform (0.00001, 3) Uniform (0.00001, 3)
σγ Uniform (0, 1) Uniform (0, 1)
Ψµ Uniform (0, 0.2) Uniform (0.01, 0.2)
σµ Uniform (0, 0.15) Uniform (0, 0.15)

We conducted parameter estimation under both assumptions when outbreaks were considered independently
with the ABC-SMC algorithm of Toni, Welch, Strelkowa, Ipsen, and Stumpf (2009). See Supplementary
Material S1.1 for the details of our calibration of the ABC-SMC algorithm. We also used the two-step
algorithm of Alahakoon et al. (2022) to estimate the parameters under a stochastic hierarchical framework.
See Supplementary Material S2.1 and S2.2 in relation to the calibration and diagnostics of this step. When
estimating the hyper-parameters of the conditional prior distribution, the estimated correlations of the
multivariate distribution were not substantial. Therefore, we used independent conditional prior distributions.
See Supplementary Material S2 for further explanation.

4 Results

Figure 3 shows the marginal posterior distributions for the sub-population-specific waning immunity rates
when parameter estimation was carried out independently for the outbreaks. Despite the type of prior
used, the posterior distributions of sub-populations that did not fade out had similar shapes. For the
sub-populations that did fade out, the posterior distributions were positively skewed and were truncated
at the lower bound (closer to zero) of the prior distribution. As expected, this observation indicated that
when an epidemic fade-out was observed, the estimated posterior mode of waning immunity rate was closer
to zero indicating that an SIR model is suitable even though data was generated from an SIRS model with
a waning immunity rate above zero. See Supplementary Material S1.2 for a comparison of posterior median
and Highest Posterior Density (HPD) intervals (Chen, Shao, & Ibrahim, 2012) computed from HDInterval
package in R (Meredith & Kruschke, 2020) and for visual diagnostics of other parameters.
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Figure 3: Independent estimation: Posterior distributions for waning immunity rate for the sub-populations
under two assumptions. Asterisks represent sub-populations that experienced epidemic fade-out.

As we did not observe a substantial difference between the marginal posterior distributions under the
different assumptions, we chose to analyse the posterior distributions under the second assumption. Hence,
we compared these estimates with independent and hierarchical frameworks. Figure 4 illustrates the marginal
posterior distributions of the waning immunity, µ (plot (A)), and transmission, β (plot (B)), rates. Particularly
for the waning immunity rates of the sub-populations that displayed epidemic fade-outs, there is a striking
difference between the posterior distributions obtained from the two frameworks. The shapes of these
distributions changed from highly positively skewed (independent analysis) to slightly negatively skewed
(hierarchical analysis) distributions that converged around the parameter values.

The right panel of Figure 4 illustrates the extent of improvement of parameter estimates under a hierarchical
analysis in comparison to an independent analysis. For this we used the Region of Practical Equivalence
(ROPE) criterion (J. Kruschke, 2014; J. K. Kruschke, 2013, 2018) and the posterior modes of both µ and β.
We used the ROPE criterion (see Supplementary Material S2.6) to identify the percentage of the 95% Highest
Posterior Density (HPD) intervals of µ and β that were included inside the ROPE. For the waning immunity
rates of the sub-populations that displayed epidemic fade-outs (plot (C)), the median increase is 38%. The
corresponding increase for those that did not fade out (plot (D)) is 20.5%. The median of the posterior modes
for µ increased by 0.034 (plot (E)) compared to the independent analysis for sub-populations that observed
fade-outs. However, for those that did not observe fade-outs, the variability of posterior modes diminished
(plot (F)). Overall, under a hierarchical analysis, estimates of the µ improved; and the improvement is higher
for sub-populations that displayed fade-outs.

For the ROPE percentages of β, the results are similar to those of µ. The median increase is 22% (plot
(G)) and 15% (plot (H)) for sub-populations with fade-outs and non fade-outs respectively. The variability of
the posterior modes of sub-populations that displayed both fade-outs and non-fade-outs diminished (plots (I)
and (J)) and we did not observe a shift between the medians of the posterior modes. For the recovery rates,
γ, we made similar observations as for the transmission rates. See Supplementary Material S2.6.
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Figure 4: Hierarchical vs. independent estimation under Assumption 2:
Left panel : Marginal posterior distributions for waning immunity (plot (A)) and transmission rates (plot
(B)). Asterisks represent sub-populations that experienced epidemic fade-out.
Top right panel : Paired comparison of ROPE percentages (plot (C)) and posterior modes (plot (D))
with independent and hierarchical estimation frameworks for the waning immunity rate when fade-outs and
non fade-outs are observed.
Bottom right panel : Paired comparison of ROPE percentages (plot (E)) and posterior modes (plot
(F)) with independent and hierarchical estimation frameworks for transmission rate when fade-outs and non
fade-outs are observed.
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Overall, in comparison to an independent analysis, a hierarchical framework improved the estimation under
both assumptions. We did not observe a notable distinction between the corresponding posterior distributions
under the two assumptions. This can be further clarified by a comparison of posterior medians and HPD
intervals. See Supplementary Materialdix S2.5 for these details and for a visual comparison of posterior
distributions of all the parameters under both assumptions.

Figure 5 shows the posterior distributions of the hyper parameters when a hierarchical analysis was used
for the sub-populations under the second assumption (see Supplementary Material S2.7 for a comparison
with both assumptions). Table 5 shows the posterior medians and HPD intervals for the hyper-parameters
under both assumptions. The posterior distributions of the hyper-parameters for transmission rate and
recovery rate had no visual distinction when different prior distributions for the waning immunity rate were
used. Under both assumptions, the posterior medians for Ψβ , σβ Ψγ , and σγ were closer to the parameter
values. Under a strong informative prior, the estimate of Ψµ improved slightly (posterior median 0.0524) in
comparison to that under a less informative prior (posterior median 0.0493).

Figure 5: Marginal posterior distributions for the hyper-parameters for β (A), γ (B) and µ (C) under a
strong informative prior. Blue dashed line : Parameter value. Orange dashed line : Mean of the
sub-population specific parameters.

Table 5: Summary statistics for the posterior distributions of the hyper-parameters

Hyper parameter Assumption 1
(Less informative prior)

Assumption 2
(Strong informative prior)

Posterior median HPD interval Posterior median HPD interval
Ψβ 2.5144 (2.2409, 2.7656) 2.5573 (2.2777, 2.7360)
σβ 0.3956 (0.1333, 0.5983) 0.3888 (0.1483, 0.6043)
Ψγ 1.0198 (0.9280, 1.0957) 1.0302 (0.9412, 1.1088)
σγ 0.0539 (0.0003, 0.1245) 0.0506 (0.0007, 0.1240)
Ψµ 0.0493 (0.0085, 0.0662) 0.0524 (0.0249, 0.07020)
σµ 0.0143 (0.0002, 0.0509) 0.0095 (0.0000, 0.0442)
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4.1 Estimates under incomplete time-series data

We draw the reader’s attention to the disease dynamics of sub-population 6. This outbreak had not
experienced an epidemic fade-out in 35 days (as the prevalence had not reached zero), nor had it displayed a
distinct second wave. This was reflected in the posterior distribution of the waning immunity rate in that the
shape of the distribution was positively skewed and µ = 0 was allowed. That is, SIR-like dynamics were not
excluded. This observation motivated us to study whether a hierarchical framework is still able to identify
the presence of waning immunity within sub-populations when only a part of the time-series is observed and
if an independent estimation can give insights as to whether an outbreak will eventually fade-out or not.

Accordingly, we generated two additional parameter sets from the probability distributions that we used to
generate our synthetic data for 15 sub-populations. We assumed that these two parameter sets generated
outbreaks in two new sub-populations (sub-populations 16 and 17) where only a part of the time-series was
observed. The transmission rates for the two sub-populations were 2.6355 and 2.0364, the recovery rates were
1.0169 and 0.9352, and the waning immunity rates were 0.0642 and 0.0443 respectively. We generated sample
paths up to 35 days. We ensured that one of the sub-populations displayed a second wave and the other,
an epidemic fade-out. We then assumed that the observed time-series data in both sub-populations were
up to 15 days only. Plot (A) of Figure 6 display the observed time-series in black and the complete data in
two-dashed lines.

As we estimated the waning immunity rates of the 15 sub-populations to be above zero, we now have
evidence to suggest that waning of immunity for the infectious disease is possible. Therefore, we conducted
parameter estimation for the two new sub-populations under Assumption 2, that is, under a strong informative
prior. We estimated the parameters by considering the outbreaks independently as well as under a hierarchical
framework. We carried out the latter framework by considering data from all the 17 outbreaks; that is, 15
sub-populations with 35-day time-series data and 2 sub-populations with 15-day time-series data.

Plots (B) and (C) of Figure 6 illustrate the posterior distributions under the two estimation frameworks
for the two new outbreaks for µ and β respectively. The parameter estimates of both sub-populations
under the hierarchical analysis improved with a notable improvement for the waning immunity rate of
sub-population 17. The posterior distribution of µ of sub-population 17 changed from highly positively skewed
to slightly negatively skewed and converged around the parameter value when the estimation changed from
an independent to a hierarchical framework. This analysis is consistent with our study of 15 sub-populations
where epidemic fade-outs were observed.

Using the methods by Ballard et al. (2016), we calculated the epidemic fade-out probabilities, 0.3003 and
0.7199, given the true parameters for sub-populations 16 and 17 respectively. Plot (D) of Figure 6 illustrate
the estimated distributions of probability of epidemic fade-out for the two sub-populations when partial (up-to
15 days) and complete (up-to 35 days) time-series data are considered (see Supplementary Material S2.8 for
details). When we carried out independent estimation, the distributions (with incomplete and complete data)
of the epidemic fade-out probability slightly converged towards the true value. However, under a hierarchical
framework, these distributions (with incomplete and complete data) converged towards 0.5; the probability of
epidemic fade-out at the population level for all the 17 sub-populations.
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Figure 6: Plot (A): Data observed (in black line) and expected (in grey dashed) for sub-populations 16 and
17.
Plot (B): Posterior distributions for µ for the sub-populations 16 and 17 under parameter estimation
independently and under a hierarchical framework.
Plot (C): Posterior distributions for β for the sub-populations 16 and 17 under parameter estimation
independently and under a hierarchical framework.
Plot (D) : Probability of epidemic fade-out distributions from the estimated parameters. The horizontal line
represent the probability fade-out calculated with the true parameter values using the methods by Ballard et
al. (2016).

5 Discussion

We have studied a hypothetical infectious disease where waning immunity exists but biological evidence
is limited. We have shown that when multiple outbreaks take place in multiple communities, parameter
estimates generally improve when estimation is carried out within a hierarchical framework in comparison to
when the outbreaks are studied independently. Application of the parameter estimation framework introduced
by Alahakoon et al. (2022) yields improved estimates.

Epidemic fade-out is a combined result of characteristics of the sub-populations and stochastic effects at
low prevalence levels. Therefore, it is possible to observe epidemic fade-out or multiple waves in different
sub-populations. We have shown that when an epidemic fade-out is observed in a sub-population where
multiple waves are possible, the parameter(s) that indicate the possibility of re-infection/ multiple waves are
incorrectly estimated when the outbreak is studied independently.

On the other hand, when a hierarchical framework is used to study multiple outbreaks, the population
distribution (the conditional prior) creates a dependence structure across the model parameters of the
sub-populations. This dependence structure enables information sharing among all the sub-populations and

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.14.22279950doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.14.22279950
http://creativecommons.org/licenses/by-nc-nd/4.0/


aids in improving the estimates for re-infection (and other model parameters) even when an epidemic fade-out
is observed. We have shown that the waning immunity rate parameter can be correctly estimated without a
significant impact on the choice of the prior distribution within a hierarchical framework.

Furthermore, we have shown that even under incomplete data conditions of some sub-populations, the
waning immunity rate can be estimated when a hierarchical framework is used. Interestingly though, in such
data conditions, studying the outbreaks independently may still give important insights as to whether the
outbreak will eventually fade-out or not. In such situations, we suggest the use and comparison with both
estimation frameworks.

Another possible application occurs within surveillance frameworks where data accumulation is expected.
As an example, when the first few outbreaks of an emerging infectious disease are observed with epidemic
fade-outs and then it is possible to have observed non-fade-outs, a hierarchical framework can aid in identifying
the presence of waning immunity among the communities that observed fade-outs. Similarly, this framework
can also be applied to other types of data, for example malaria parasite dynamics in individuals (Cao et al.,
2019).

This study and the study of Alahakoon et al. (2022) have considered using hierarchical frameworks only
within SIRS model structures. In this study, we have extended the framework of Alahakoon et al. (2022) to
study multiple parameters. It will be helpful to study the effects of epidemic fade-out within hierarchical
frameworks with other complex model structures and actual data. This estimation framework is also applicable
to other similar compartmental-type stochastic epidemic models. Our future work includes the application of
this estimation framework to real data.
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