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ABSTRACT 25 

BACKGROUND: 26 

Drug-resistant (DR) tuberculosis treatment is challenging and frequently leads to poor outcomes. An 27 

international collaboration, the National Institute of Allergy and Infectious Diseases (NIAID) TB Portals 28 

develops, maintains, and supports a multi-national database of tuberculosis cases, with an emphasis on 29 

drug-resistant tuberculosis. Patient records include clinical, radiological, genomic, and socioeconomic 30 

features. Establishing factors associated with unsuccessful treatment may help optimize treatment for the 31 

most challenging infections. 32 

METHODS: 33 

Association analysis and machine learning algorithms were applied to identify important factors 34 

associated with treatment outcome and predict the outcome for three patient cohorts, selected by drug 35 

resistance level representing 1575 patients in total. The predicted probabilities of poor treatment outcome 36 

from models were calibrated as a risk score ranging from 0 to 100 corresponding to confidence level of 37 

the model for treatment outcome.  38 

RESULTS: 39 

The features most associated with treatment success in all cohorts were body mass index (BMI), onset age, 40 

employment, education, smear-negative microscopy, and percent of abnormal volume in X-ray images, 41 

confirming previously reported findings, and identifying novel factors such as pathogen genomic markers.  42 

CONCLUSIONS: 43 

The identified features might help in establishing high-risk patients at the time of admission for 44 

tuberculosis treatment. This study integrates clinical, radiological, and pathogen genomics into a patient 45 

risk model, a way of determining risk through the application of machine learning on real-world data. 46 

 47 

 48 
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 50 

BACKGROUND 51 

Tuberculosis (TB) is a communicable disease that is amongst the top 10 causes of death and the 52 

leading cause from a single infectious agent (1). With the Covid-19 pandemic’s ongoing global impact on 53 

healthcare systems, TB diagnostic and clinical management may experience challenges (2). The World 54 

Health Organization (WHO) released results of modeling work that if global TB case detection decreases 55 

by 25% over a period of 3 months (compared to level of detection pre-pandemic), an additional 190,000 56 

TB deaths might occur (3). Thus, it is essential to identify the most vulnerable or hard-to-treat TB patients 57 

at the time of diagnosis.  Identifying the most at-risk groups within the population may allow for better 58 

prophylactic measures and monitoring in advance, to prevent outbreaks of this highly contagious disease.  59 

While many tuberculosis databases or registries contain critical clinical information such as drug 60 

resistance status, time of diagnosis, sputum sampling, etc., it is rarer to find the integration of drug 61 

resistance with other important factors such as pathogen genomic status and social determinants of health. 62 

Drug-resistant TB continues to be especially challenging to treat and control. Multidrug resistant 63 

TB (MDR-TB) is TB that is resistant to both rifampicin and isoniazid, two of the most widely used anti-64 

TB drugs. Extensively drug-resistant TB (XDR-TB) is defined as MDR-TB plus resistance to at least one 65 

of the fluoroquinolones and one of the injectable agents used in MDR-TB treatment regimens (1). The 66 

latest global data show a treatment success rate of 85% for drug-susceptible TB, 56% for MDR-TB and 67 

39% for extensively drug-resistant TB [1].  Given the lower success rate of treatment in drug resistance 68 

TB, the dynamics and nature of the disease show differences when comparing to drug sensitive TB and it 69 

is necessary to identify what clinical, genomic, or social determinants of health risk factors might be 70 

common or distinct between these disease types to highlight patient risk. 71 

Prior studies have shown the importance of analyzing and interpreting the connections between 72 

clinical and social determinants of health.  For example, clinical factors like culture-positivity at two 73 

months of treatment, history of treatment with second-line drugs were identified as risk factors of poor 74 
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drug resistant tuberculosis treatment outcome in Eastern Europe and Central Asia (4).  In the same study, 75 

the socio-economic factor of homelessness was also identified as correlating with poor outcome.  Another 76 

study demonstrated a similar result where a combination of clinical factors such as MDR-TB patients 77 

with HIV, high smear grade, or a history of previous MDR-TB treatment were identified together with a 78 

socio-economic factor, malnutrition, as risk factors of poor treatment outcome (5). Another identified 79 

social determinants of health such as employment and education status along with clinical factors such as 80 

drug resistance status statistically associated and predictive of treatment failure (6). By analyzing a much 81 

larger dataset of clinical, radiological, and genomic features in a unique multi-national cohort of drug 82 

sensitive and drug resistant cases, our study extends earlier works that have investigated potential 83 

combinations of clinical and socio-economic factors impacting treatment outcome.  84 

The TB Portals (https://tbportals.niaid.nih.gov/) is the largest, open-access, patient-centric 85 

database connecting clinical, socio-economic, pathogen genomics and patient radiological data from 16 86 

countries (6-8). As part of the National Institute of Allergy and Infectious Diseases (NIAID) strategic plan 87 

for TB research and National Institute of Health (NIH) strategic plan for data science(9, 10), the resource 88 

is focused on how to translate real-world data collected from TB cases, primarily drug resistant, into 89 

actionable information for public health following the FAIR data principles.  As part of this effort, the 90 

program considers researchers and public health experts with various backgrounds, providing ways to 91 

visualize, interact, and analyze the data.  A request for data can be made by an investigator using the web-92 

accessible data use agreement and application process, https://tbportals.niaid.nih.gov/download-data.  The 93 

data can be accessed via API or directly downloaded to facilitate visualization, analysis, modeling, and 94 

other data science approaches. For users who prefer point and click interaction and analysis within a 95 

website, an ecosystem of tools appropriate for each type of data have been developed (8, 11, 12). The data 96 

and underlying suite of tools provides an unprecedented opportunity for public health researchers looking 97 

to understand the real-world impact of TB. For example, the program and its collaborators have 98 

demonstrated the applicability of TB Portals collection of data, publishing research on epidemiological 99 
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aspects of tuberculosis, the evolutionary processes related to drug resistance, the factors involved with 100 

tuberculosis relapse versus reinfection, detailed analysis of various strains in sputum versus surgical 101 

samples of tuberculosis, analysis of radiological data to discover distinguishing features of drug resistant 102 

tuberculosis (7, 13, 14).  103 

Here, we have analyzed real-world patients’ data (i.e. not intended as a representative 104 

epidemiological survey) as a retrospective case-control study using TB Portals data. Machine learning 105 

techniques were applied on 1575 TB cases with complete set of multi-domain data to predict the 106 

treatment outcome (either "cured" or "died"). Models were developed to each subgroup by drug resistance 107 

level in order to derive a case-level risk score to facilitate understanding of the relative contribution of 108 

clinical or social determinants of health factors towards the success of treatment.  The insights provided 109 

by these models might assist in identifying the important risk factors that could inform public health 110 

policies and programs as part of a holistic, data-informed, and evidence-based approach. Moreover, this 111 

study is intended to demonstrate the potential of TB Portals for real-world studies and some of the 112 

important considerations of public health researchers interested in leveraging the resource. 113 

METHODS 114 

Data acquisition and initial processing 115 

This analysis uses publicly shared, deidentified data from The Tuberculosis Data Exploration 116 

Portal (TB DEPOT) as of Mar 2021, which can be obtained by anyone who signs and agrees to a data use 117 

agreement (DUA). Only cases resulting in death (died, negative outcome) or recovery (cured, positive 118 

outcome) at the end of the treatment with available BMI and age measures were included. There were 119 

1575 subjects with features of interest, including 299 drug-sensitive (DS) TB patients, 883 MDR-TB 120 

patients, and 393 XDR-TB patients. The clinically reported type of resistance was used throughout the 121 

study. These patients came from multiple countries spanning the consortium (Table 1 and Table S1). 122 

Categorical feature levels with limited samples were combined: for gender, female and other were 123 
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combined as non-male; for education, basic school and no education were combined as basic school or 124 

lower, College (bachelor) and Higher (university) were combined as college or higher; for employment, 125 

Homemaker and Self-employed were combined as Homemaker or self-employed. Missing categories 126 

(“Not reported”, “NA”, blank) were combined into a single missing category for any categorical data. A 127 

case was considered as resistant if the pathogen showed resistance in any of First-line Drug Line Probe 128 

Assay, Second-line Drug Line Probe Assay, Solid medium Lowenstein, BACTEC MGIT 960, or 129 

GeneXpert MTB/RIF (Xpert) tests. Certain variables from lung images are subdivided by sextant of the 130 

lung corresponding to upper, middle, lower sextant of right or left lung. A case might have multiple lung 131 

sextants involving a feature from an available image or multiple images per case. In the following 132 

analysis, the levels are combined into "Upper sextant - Yes" or “No”, "Middle or Lower sextant - Yes" or 133 

"No" to indicate the combination of features from available image data.  134 

Association Analysis 135 

Measure of effect size in ANOVA (analysis of variance) quantifies degree of association between 136 

an effect and a continuous dependent variable. Eta squared (��) was used to measure size of observed 137 

effect with age and BMI. Cohen defined small, medium, and large effects as Eta squared values of 0.01, 138 

0.06, 0.14 respectively (15). Variables with statistically significant difference in the mean of age or BMI 139 

by drug-sensitive and drug-resistant subgroups were reported. 140 

Uncertainty coefficient (UC) was applied to measure the association between pairs of variables 141 

(e.g., gender and other non-continuous variables). UC represents a percent reduction in error when 142 

predicting dependent variable from independent variable. When UC is 0, the independent variable lacks 143 

information to predict the dependent variable (16).  The association of variables that were statistically 144 

significant with outcome by Fisher exact test were reported. The UC association analysis excluded 145 

missing values. 146 

Prediction of Treatment Outcome 147 
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 Categorical covariates with more than 2 levels were encoded into binary variables.  Features 148 

were standardized by min-max normalization. Features with highest UC with treatment outcome were 149 

selected for each drug-sensitive and drug-resistant TB subgroup respectively. Seventy percent of data 150 

were selected as a training dataset and the remainder were used as an independent testing dataset. 151 

Machine learning algorithms, Logistic Regression, Random Forest, Support Vector Machine, and 152 

XGBoost, were trained on the training set to predict treatment outcome. Repeated grid search 3-fold cross 153 

validation was used for parameter tuning. Features with more than 75% missing data or less than 1% 154 

variation were removed. Synthetic Minority Oversampling Technique (SMOTE) was used to oversample 155 

the minority class, of “died”. Area Under the Receiver Operating Characteristics Curve (AUROC) and 156 

Area Under the Precision and Recall Curve (PRAUC) were used to evaluate model performance on the 157 

testing dataset. Feature importance was generated for the model with highest AUROC and PRAUC. 158 

Model coefficients and Shapely Additive Explanations (ShAP) indicate feature importance for Logistic 159 

Regression and tree-based models respectively.  160 

Risk Score 161 

The predicted probabilities of poor treatment outcome from models for each drug-sensitive or 162 

drug-resistant TB patient subgroup were calibrated as a risk score ranging from 0 to 100 corresponding to 163 

confidence level of the model for treatment outcome. The risk scores of the training dataset were 164 

calculated by out-of-bag cross-validation while the risk scores of the testing dataset were calculated by 165 

the best model trained on the training dataset.  166 

Statistical Software 167 

The data cleaning, inferential statistics, and association analysis were done using R statistical 168 

software version 4.0.2 (RStudio version 1.2.5033) (17) with packages fastDummies, dplyr, ggplot2, 169 

finalfit. The predictive modeling was done using Python 3 (18) with packages numpy, pandas, matplotlib, 170 

sklearn, random, and xgboost.  171 

RESULTS 172 
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Demographics of identified cohort stratified by drug-resistance 173 

Given our focus on predicting the outcome within the specific drug resistance subtypes and 174 

ensuring that the identified factors are generalizable, we first assessed the resistance status of the selected 175 

cohort of patients with regards to outcome. The treatment success rate for DS-TB cases was high (88.6%), 176 

while it was lower for MDR-TB treatment (79.5%), and even lower for XDR-TB treatment (73.3%) 177 

(Table S2). While the rates of treatment success outcome correlate with the ones from the WHO report in 178 

2019 (1), the absolute rates are distinct because only the most definitive outcomes of died and cured 179 

patients were considered in this analysis while the WHO report considered died, cured, treatment failed, 180 

and lost-to-follow-up patients.  Importantly, there was a significant difference of success rates among 181 

these drug-sensitive and drug-resistant subgroups (p < 0.0001, Chi-Square Test) supporting the strategy of 182 

stratifying by resistance subgroup in the machine learning analyses. 183 

Association Analysis 184 

With the diverse demographic, clinical, radiological, microbiological, and genomic domains of 185 

data available in TB Portals, we studied the most significant inter-domain relationships using association 186 

analysis. The goal was to explore these inter-domain relationships prior to including these variables in the 187 

modeling.  This approach attempts to identify any potential biases as well as highlight significant 188 

associations between types of data (e.g., pathogen genomics and imaging) taking advantage of the patient-189 

centric, multi-domain nature of the TB portals resource.  As these domains of data have not been 190 

combined previously, there was an opportunity for discovery as well as comparing known associations 191 

from prior studies. 192 

Among the top variables associated with outcome in DS, MDR, and XDR TB were imaging 193 

related pathologies like nodule, cavity, and fibrosis as well as overall area of abnormality.  Moreover, 194 

non-imaging features including social determinants of health like employment and education status are 195 

present across resistance types.  The complete list of these factors is in Table 2. The heatmaps of the most 196 

important variables associated with treatment outcome in MDR-TB and XDR-TB groups are visualized 197 
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(Figure 1). In the XDR-TB group, UC with outcome were between 0.090 and 0.192. The top associated 198 

feature Pleural effusion percent of hemithorax was in the same cluster with outcome.  In MDR-TB group, 199 

UC with outcome were between 0.07 and 0.237. For full code and complete overview of the association 200 

analysis pipeline, please refer to our GitHub repository (https://github.com/niaid/tb-portals-association-201 

and-prediction). 202 

Modeling and Prediction 203 

We were able to obtain reasonable predictive capacity across a variety of algorithms; however, 204 

we did observe certain models performing better depending upon the specific resistance subgroup. The 205 

performance of different predictive models was compared (Table 3 and Figure 2). XGBoost outperformed 206 

other models in the DS-TB patient subgroup (AUROC = 0.8188, PRAUC = 0.5836); Logistic Regression 207 

with Lasso regularization outperformed other models in the MDR-TB patient subgroup (AUROC = 208 

0.8353, PRAUC = 0.6037); in XDR-TB patient subgroup, Random Forest outperformed other models 209 

(AUROC = 0.8665, PRAUC = 0.7260). The top features associated with treatment outcome with the 210 

highest feature importance were selected in DS-TB, MDR-TB, XDR-TB patient subgroups (Figure 3). 211 

This could explain why specific models performed better in particular resistance groups since the 212 

variables may show non-linear or linear dependencies with the outcome of interest. The boxplot of top 213 

features was generated for each drug-sensitive and drug-resistant subgroup (Figure S1). The frequency 214 

tables and univariate odds ratios between top features with treatment outcome were listed in Table S5. 215 

Risk Scores 216 

The risk scores were derived from the predictive probabilities of all-cause mortality from the best 217 

predictive model for each subgroup respectively. There is a statistically significant difference in risk 218 

scores between cured and died outcome for TB patients by Two-sample t-test (Figure S2).  For most cases, 219 

risks aligned with the expected outcome (Figure S3). In public health and clinical practice, it is important 220 

to identify and highlight situations where predicted risks do not align with expected outcome due to 221 

potential biases in data collection or other causes. We examined these on a case-by-case basis to account 222 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.14.22279738doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.14.22279738


  
 

 9 

for potential impacts of social determinants of health or other factors on predicted outcome. Our risk 223 

analysis provides new understanding of the mechanisms of risk that can inform future clinical study and 224 

healthcare policy specific to important subtypes of TB (e.g., drug-sensitive versus drug-resistant).  225 

DISCUSSION 226 

TB Portals presents the largest, publicly available real-world dataset of tuberculosis cases to 227 

understand the important clinical and socio-economic features of the case that predict treatment outcome.  228 

We analyzed the data from TB Portals and identified factors spanning the distinct domains of information 229 

including clinical and socio-economic features to discover associations and interactions between these 230 

domains that might impact the probability of a poor treatment outcome. We confirmed prior risk factors 231 

identified in earlier studies while extending the analysis to include stratification of drug resistance status, 232 

which allows for a more accurate understanding of the common or divergent factors across subgroups. Six 233 

features were associated with treatment outcome in all three subgroups: BMI, onset age, employment, 234 

education (college or higher), smear-negative microscopy, and overall percent of abnormal lung volume 235 

as determined by a radiologist in X-ray images (less than 50 percent). We confirmed in a large, stratified 236 

analysis several previously reported clinical as well as socio-economic factors like BMI, age, microscopy, 237 

and imaging as important towards the probability of successful treatment outcome. 238 

BMI was found to be the most predictive feature inversely associated with all-cause mortality, 239 

consistent with population-based cohort studies by Hsien-Ho, et al. (19). Employment is usually 240 

associated with better healthcare outcomes as it is indicative of higher income, health insurance coverage, 241 

and socio-economic status. College or higher education as well as employment status is inversely 242 

associated with all-cause mortality. Onset age is a predictor of all-cause mortality consistent with an 243 

earlier study finding that older age associated with treatment failure (20). Smear microscopy is commonly 244 

used as a part of the primary diagnostic protocol and monitoring of treatment efficacy of TB in many low- 245 

or medium-income countries. In our analysis, we found that negative smear microscopy was associated 246 

with successful treatment, which is consistent with clinical guidelines indicating treatment efficacy.  247 

Aside from critical demographic and social determinants of health factors, our analysis identified several 248 
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radiological (overall abnormal lung volume, presences of nodules, upper lobe involvement, etc.) as well 249 

as pathogen genomic features (octal spilogotype and genomic variants in select resistance genes).  These 250 

distinct domains of data have not frequently been analyzed together; and we believe it is necessary to 251 

consider them together to understand the holistic nature of the disease and treatment. 252 

There are some caveats that need to be carefully considered. The temporal dynamics in a TB case 253 

are complex and require an expanded dataset with information captured at distinct timepoints of the 254 

treatment, which is also available from TB Portals (https://analytic.tbportals.niaid.nih.gov/index.html).  255 

The aforementioned API as well as data sharing website describing the data model 256 

(https://datasharing.tbportals.niaid.nih.gov/#/about-the-data) present an opportunity to assess each case 257 

temporally through relational organization of the timing of important events (imaging, treatment, culture, 258 

and microscopy) in number of days from the earliest registration date in the record.  The presented results 259 

in this study focus on the case level summary and we plan to expand these analyses in the future to 260 

account for temporal dynamics in the case. For example, we summarized information about radiologist 261 

reported lung pathology that is captured across one or more images and involving segments within the 262 

lung into categories (e.g., "Upper sextant - Yes" or “No”, "Middle or Lower sextant - Yes" or "No" to 263 

indicate the combination of features from available image data). We focused on understanding the factors 264 

associated with cured and died outcomes to examine the predictors of the most definitive outcomes; 265 

however, we plan to follow up with additional analyses that examine other outcomes since competing 266 

risks might overlap between end points such as all-cause-mortality or treatment failure. 267 

TB portals is a real-world data resource focusing on the most challenging TB cases and the 268 

programmatic priorities of participating clinical centers and so it is enriched in highly-drug resistant cases 269 

as a natural history study. The result from any machine learning and association study should not be 270 

considered for making actionable clinical decisions until a clinical study or clinical trial demonstrates 271 

efficacy of an intervention. Understanding the importance of bias or areas of failure in model performance 272 

is also important for the application of machine learning in public health.  We explored some of these 273 

dynamics using Shapely Additive Explanations (SHAP) force plots (Figure S3) in a case-by-case basis for 274 
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outlier or unexpected predictions to highlight situations in which the predictions from our models conflict 275 

with expected observations. Given that these are real-world data, our findings need to be interpreted 276 

cautiously due to the potential of confounding from observed or unobserved variables; however, the 277 

analysis of cross-domain information can provide valuable insight for future translational medicine efforts 278 

and study.  We plan to periodically update this analysis with new information and cases as data become 279 

available from the rapid growth of the TB Portals resource. 280 

 281 

LIST OF ABBREVIATIONS 282 

Abbreviation Full Word 

DR Drug resistant 

BMI Body mass index 

NIAID National Institute of Allergy and Infectious Diseases 

NIH National Institute of Health 

TB Tuberculosis  

MDR-TB Multidrug resistant TB 

XDR-TB Extensively drug-resistant TB  

WHO World Health Organization 

TB DEPOT Tuberculosis Data Exploration Portal 

DUA Data usage agreement 

DS Drug-sensitive 

ANOVA Analysis of variance 

UC Uncertainty coefficient  

SMOTE Synthetic Minority Oversampling Technique 

AUROC Area Under the Receiver Operating Characteristics Curve  

PRAUC Area Under the Precision and Recall Curve 
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SHAP Shapely Additive Explanations 
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FIGURES AND TABLES 377 

Table 1 – Demographics of Different Drug-Sensitive and Drug-Resistant Subgroups 378 

 379 

The demographics of the patients selected for study in this analysis are shown stratified by drug-resistance subgroup.380 

Categorical variables (e.g., gender, employment, education) are displayed with the number of patient cases with 381 

percentages of total for each drug-resistance subgroup and outcome grouping.  Numerical variables (e.g., 382 

age_of_onset and bmi) are shown with the means [standard deviations] as well as medians [minimums and 383 

maximums] for each subgroup and outcome grouping. 384 

 385 

Table 2 – Top variables associated with Outcome by UC 386 

DS-TB  MDR-TB  XDR-TB  

First lung cavity size (0.167) Overall percent of abnormal volume 

(0.237) 

Pleural effusion percent of hemithorax 

involved (0.192) 

First qure nodule (0.125) Gene name (0.199) Octal spoligotype (0.188) 

First qure fibrosis (0.063) Social risk factors (0.158) Social risk factor (0.168) 

Education (0.063) First affected segments (0.141) Any multiple nodules exists (0.113) 

Infiltrate low gound glass 

density (0.063) 

Employment (0.117) First microscopy (0.100) 

p. 
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The top five features associated with outcome by drug resistance subgroup is shown in Table 2. The values next to 387 

the features are uncertainty coefficient (UC), which can vary from 0 to 1. When UC is 0, the feature is of no value in 388 

predicting the outcome. 389 

 390 

Table 3 – Comparison of model performance 391 

 DS-TB (N=299) MDR-TB (N=883) XDR-TB (N=393) 

Models AUROC PRAUC AUROC PRAUC AUROC PRAUC 

Logistic Regression 0.8688 0.3758 0.8353 0.6037 0.8438 0.7234 

Random Forest  0.8050 0.4144 0.8138 0.5562 0.8665 0.7260 

Support Vector Machine 0.8288 0.3258 0.8180 0.5572 0.8020 0.6523 

XGBoost 0.8188 0.5836 0.8198 0.5382 0.8230 0.6846 

The performance of different predictive models in Area Under the Receiver Operating Characteristics Curve 392 

(AUROC) and Area Under the Precision and Recall Curve (PRAUC) are shown stratified by drug-resistance 393 

subgroup. The models with the highest PRAUC are highlighted.  394 

 395 
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                  396 

(a) XDR-TB  397 

 398 
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                399 

(b) MDR-TB  400 

 401 
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(c) DS-TB  402 

Figure 1 – Heatmap of Top Ten Features associated with Treatment Outcome. The top ten features associated with 403 

Treatment Outcome are shown in relation to each other with a higher uncertainty coefficient (UC) indicating a 404 

stronger association between sets of features.  In A), the relationship by UC for the top 10 features for XDR-TB (N 405 

= 430) are shown while in B), the relationship is shown for MDR-TB (N = 1019) and C), the relationship for DS-TB 406 

(N = 811). In both, the sets of features are clustered by hierarchical clustering to show clusters of features showing 407 

associations. 408 

 409 

  410 

 411 

                      (a) DS-TB (N=299)                               (b) MDR-TB (N=883)                            (c) XDR-TB (N=393)     412 

Figure 2 – ROC Curves of Drug-Sensitive and Drug-Resistant Subgroups 413 

The receiver operating characteristic (ROC) Curves of different predictive models are shown stratified by drug-414 

resistance subgroup. The Area Under the Receiver Operating Characteristics Curve (AUROC) for a given curve is 415 

the area beneath it. The AUROC values are listed in the legends.  416 

 417 

h 

N 

B 

g 
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 418 

(a) XGBoost on DS-TB patients (N=299) 419 

 420 

 421 

 (b) Logistic Regression on MDR-TB patients (N=883) 422 

 423 
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 424 

(c) Random Forest on XDR-TB Patients (N=393)     425 

Figure 3 – Feature Importance of top 20 features from the Best Models  426 

For Logistic Regression, the plot shows that normalized features with positive feature effects increase the odds of 427 

outcome of death compared to cured whereas normalized features with negative feature effects show the opposite. 428 

For tree-based models, the plot shows Shapley values and features with larger absolute Shapley values are more 429 

important contributors to the prediction. 430 

 431 
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