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ABSTRACT  

Microvascular thrombosis is a typical symptom of COVID-19 and shows similarities to thrombosis. Using a microfluidic 

imaging flow cytometer, we measured the blood of 181 COVID-19 samples and 101 non-COVID-19 thrombosis 

samples, resulting in a total of 6.3 million bright-field images. We trained a convolutional neural network to distinguish 

single platelets, platelet aggregates, and white blood cells and performed classical image analysis for each subpopulation 

individually. Based on derived single-cell features for each population, we trained machine learning models for 

classification between COVID-19 and non-COVID-19 thrombosis, resulting in a patient testing accuracy of 75%. This 

result indicates that platelet formation differs between COVID-19 and non-COVID-19 thrombosis. All analysis steps 

were optimized for efficiency and implemented in an easy-to-use plugin for the image viewer napari, allowing the entire 

analysis to be performed within seconds on mid-range computers, which could be used for real-time diagnosis. 
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1. INTRODUCTION 

The COVID-19 pandemic has had a worldwide impact. New records in the number of global cases per day were reached 

in early 2022. Thrombotic complications are common in patients with COVID-19 and are the leading cause of severity 

(1). Studies have shown that one third of patients hospitalized for severe COVID-19 developed thrombotic 

complications, including venous thromboembolism, myocardial infarction, and stroke (1). In a study of a small group of 

COVID-19 patients in Germany, evidence of venous thromboembolism was found in 7 out of 12 COVD-19-related 

deaths, and massive pulmonary embolism due to lower extremity deep vein thrombosis was the direct cause of death in 4 

patients (2). In addition, autopsy findings indicated that microvascular thrombosis was present in multiple organs, 

including the lungs, kidneys, liver, legs, heart, and brain (3), which is usually associated with multiple organ failure in 

severe COVID-19. 

The cause of thrombosis in COVID-19 patients is not fully understood. It has been shown that venous thrombosis, 

arterial thrombosis, and microvascular thrombosis co-exist in COVID-19 (1). Additionally, coagulopathy, complement 

activation, cytokine release, platelet hyperactivity, thrombocytopathy, and vascular endothelial dysfunction are 

potentially major factors in the pathogenesis of thrombosis in COVID-19 patients (4). Although COVID-19-associated 

thrombosis appears to have similar mechanisms to non-COVID-19 thrombosis, the disease progresses much more 

rapidly, which could herald a distinction between COVID-19 and non-COVID-19 thrombosis. 

An imaging flow cytometry (IFC) technique, based on frequency-division-multiplexed (FDM) microscopy that can 

capture blur-free bright-field images of fast-flowing cells, has previously been used in studies comparing the size of 

platelet aggregation as the initiation of microthrombus formation (5). Their results have shown an increased 

concentration of platelet aggregates in COVID-19 patients. This technology has been used in the study of the effects of 

COVID-19 vaccines on platelets, showing that standard doses of the Pfizer-BioNTech (BNT162b2) vaccine have 

negligible effects on platelets (6).  This technique can be used to study the morphology of platelet aggregates and has the 

potential to reveal morphological differences between COVID-19 and non-COVID-19 thrombosis, which may be of 

significant help in the detection of COVID-19 and in the development of antithrombotic treatment strategies for COVID-

19 patients (7). 

In this paper, to better understand the difference between COVID-19 and non-COVID-19 thrombosis, we report a 

machine learning approach to discriminate between blood samples from patients with COVID-19 and non-COVID-19 

thrombosis by large-scale single-cell image-based analysis and by interpreting trained machine learning models. As 

shown in Figure 1, our analysis approach consists of (i) high-throughput bright-field imaging of platelets (including 

single platelets and platelet aggregates) and white blood cells (WBCs) in the blood of patients with COVID-19 and non-

COVID-19 thrombosis by IFC based on FDM microscopy (see Figure S1 and the Materials and Methods section for 

details), (ii) convolutional neural networks (CNNs) to distinguish between single platelets, platelet aggregates, and 

WBCs, (iii) a random forest (RF) model (8) and a cumulative distribution transform (CDT)-based classification 

algorithm (9) for classifying diseases based on the morphological features of the cells and aggregates. As a results, we 

identified blood samples from patients with COVID-19 and non-COVID-19 thrombosis using the machine learning 

approach we developed, with a test accuracy of 75%. In the morphological analysis of platelets, both the RF and CDT 

approach show that the platelet size distribution tends to widen in patients with COVID-19. This wider platelet size 

distribution indicates an alteration in platelet production or clearance (10). Finally, we implemented the CNN, RF, and 

CDT-based analysis methods in an easy-to-use napari plug-in (https://www.napari-hub.org/plugins/disease-classifier) 

which was integrated into the workflow directly after IFC measurements. Using this plugin, measurements typically 
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containing 25,000 images can be processed in less than 6 seconds, which can be applied for real-time classification after

measurement. 

FIGURE 1 
Conceptual schematic of the intelligent classification workflow, including sample preparation, high-throughput
IFC measurement, CNN-based phenotype classification, computation of morphological features (area and
solidity), and PLDA-based disease classification. 
 

2. MATERIALS AND METHODS  

2.1 Human subjects 

We enrolled data from patients who were hospitalized at the University of Tokyo Hospital between November 2020 and

August 2021 and diagnosed with COVID-19 or thrombosis. 101 samples for thrombosis and 181 samples for COVID-19

were obtained from 41 thrombosis (54% male, 46% female) and 34 COVID-19 (79% male, 21% female) patients. The

initial laboratory test values and characterization for each patient are listed in Table S1. COVID-19 was diagnosed using

reverse transcription polymerase chain reaction (RT-PCR). All the COVID-19 patients received mechanical ventilation or

extracorporeal membrane oxygenation. Thrombosis was diagnosed using ultrasonography or computed tomography and

RT-PCR was used to verify that all thrombosis patients were COVID-19 negative. After clinical laboratory tests, residual

coagulation test samples (with 3.2% citrate) were collected from the patients (in accordance with the ethical approvals

no. 11049 and no. 11344, granted by the Institutional Ethics Committee in the School of Medicine at the University of

Tokyo). Clinical data and laboratory tests were retrieved from the electronic medical patient records using a standardized

data collection protocol. Patients gave informed consent to participate in the study and had the option to opt-out via the

webpage of the University of Tokyo Hospital. Patients who opted out were excluded from our study. 500 µL of blood was
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diluted in 5 ml of saline (0.9% NaCl). After adding the sample to Lymphoprep solution (STEMCELLS, ST07851), a 

density gradient centrifugation protocol (800 g for 20 min) was performed according to a protocol provided by the 

vendor to isolate the platelets. After centrifugation, 500 µL were taken from the mononuclear layer, and platelets were 

stained using 10 µL of anti-CD61-PE (Beckman Coulter, IM3605) and 5�µL of anti-CD45-PC7 (Beckman Coulter, 

IM3548). To conserve platelet aggregates, the sample was fixed by adding 500�µL of 2% paraformaldehyde (Wako, 

163-20145). The blood cell suspension was inserted into the microchannel of the FDM-based IFC for measurement. 

 

2.2 FDM microscope  

FDM microscopy is an imaging method that was used to capture blur-free bright-field images of cells moving at a high 

speed of 1 m/s, lending itself well to IFC (11). Figure S1 shows the schematic of the IFC system that consists of a 

microfluidic chip, a syringe pump, and an FDM microscope. The cells were hydrodynamically focused to the center of a 

microfluidic channel where they were imaged by the FDM microscope. The FDM microscope consists of a continuous-

wave (CW) laser (491 nm, Cobolt Calypso, 491�nm, 100�mW), beam splitters, and acousto-optic deflectors (Brimrose 

TED-150-100-488, 100-MHz bandwidth), generating a spatially distributed frequency comb which was used as the light 

source for bright-field imaging. A single-pixel photodetector (Thorlabs APD430A/M) was employed for imaging, which 

was triggered based on the CD61-PE fluorescence signal. The captured waveforms were reconstructed into bright-field 

images using LabVIEW (LabVIEW 2016), resulting in 67 x 67 pixel images with a spatial resolution of 0.8 μm/pixel. For 

each measurement, 25,000 images were acquired at an event rate of 100 – 300 events per second (eps). An efficient 

contour detection algorithm was implemented using OpenCV (12) (see Supplementary Information for details). From the 

contour, the cross-sectional objective area (A) and solidity (S) were determined (Figure 1). 

 

2.3 CNN model for phenotype classification  

Images containing noise, platelets, platelet aggregates, and WBCs were loaded into AIDeveloper (v. 0.2.3), a software 

program for training deep neural networks (13). Random sampling was employed to balance the dataset. To prevent the 

model from overfitting, we used the following image augmentation operations: rotation, flip, horizontal or vertical shift, 

brightness change, Gaussian noise, and Gaussian blur. We selected a CNN with four convolutional layers and a total 

number of 475,362 trainable parameters. During training, AIDeveloper (13) saved models automatically when a new 

record in validation accuracy or validation loss was reached. 

 

2.4 RF model for disease classification 

RFs are a class of supervised machine learning models based on an assembly of decision trees that are trained on random 

subsets of the dataset (14). For classification, the majority vote of all trees was used. Decision trees were trained to find 

thresholds to separate the data into classes. The ability of one specific feature to split the data into classes were quantified 

by the Gini impurity index, also called feature importance. In this work, we used the Python package scikit-learn (v. 

1.0.2) to train RF models and obtain the feature importance. We employed a weighting of the loss function to equalize the 

contribution of each class of the unbalanced dataset of this study. 

 

2.5 Cumulative distribution transform (CDT) for disease classification 

We considered ���, ��, � ��
��� , ���, ��, � ��

��� , ���, ��, � ��
��� , and  �	�, 	�, � ��

���  to be the sets of the morphological 

feature measurements corresponding to the 
�� subject of the ��� disease class (thrombosis or COVID-19). Here, �, �, �, 
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and 	 denote the area of platelets, the solidity of platelets, the area of platelet aggregates, and the solidity of platelet 

aggregates, respectively. Also, we considered ��
��, �
��, �
��, �
	���
���  to be a set of univariate probability density 

functions (PDFs) obtained from the morphological feature measurements using a kernel density estimation technique. 

The goal of the classification problem was to determine the class of a test set ��
��, �
��, �
��, �
	�� corresponding to a 

subject with an unknown diagnosis. The first step was to obtain the transformed versions of the PDFs, denoted as 

��̂
��, �̂
��, �̂
��, �̂
	���
���

, using the cumulative distribution transform (CDT) (15). The CDT is a map from the space of 

smooth PDFs to the space of diffeomorphisms, which can be defined as the inverse function of the cumulation of each 

individual PDF. The CDT enhances linear separability in data by removing certain nonlinearities and simplifies the 

classification problem (15). The CDT is an invertible, one-to-one, and differentiable map, which enabled us to interpret 

the trained model by visualizing the class differences obtained by the model (Figure 1). After CDT transformation, we 

employed principal component analysis to reduce data dimensionality using scikit-learn (v. 1.0.2). For classification, we 

employed the penalized linear discriminant analysis (PLDA) classifier (16), which differentiated between the classes of a 

given dataset by obtaining the most discriminant directions computed based on Fisher’s linear discriminant in 

combination with penalized least-squares regression. We used the Python package PyTransKit (v. 0.2.3) to compute the 

CDTs and train the PLDA classifier and the Python package statsmodels (v. 0.13.2) to obtain the PDFs using the kernel 

density estimation technique. 

 

3. RESULTS  

3.1 Data acquisition  

101 samples for non-COVID-19 thrombosis and 181 samples for COVID-19 were measured using our FDM-based IFC. 

For each sample, image acquisition was triggered until 25,000 CD61+ events were captured. An efficient image 

segmentation algorithm was implemented using OpenCV to determine the projected area and solidity of each event. 

Figure 2A shows a scatter plot of the events in area vs. solidity of one representative measurement. Each captured image 

may contain noise, a single platelet, or a WBC. Representative example images for these phenotypes are shown as figure 

insets in Figure 2A. The scatter plot does not show separate populations for platelets, platelet aggregates, and WBCs 

because their area and solidity distributions are overlapping. Hence, for a meaningful analysis, it is essential to 

discriminate between these subpopulations. 

 

3.2 CNN-based phenotype classification  

Using YouLabel (v. 0.2.4), we manually labeled 37199, 66611, 12269, and 10274 images of noise, platelets, platelet 

aggregates, and WBCs, respectively. We employed AIDeveloper to load all the images and train a CNN with four 

convolutional layers to discriminate these phenotypes, resulting in a validation accuracy of 96% (see the developed 

confusion matrix in Figure 2B and Figure S2). Due to the low complexity of the CNN, it only took 2.8 s (on an Intel Core 

i5-8257U CPU at 1.40GHz, 8GB RAM) to obtain the predictions of a whole measurement with approximately 25,000 

events. The trained CNN was applied to all measurements of COVID-19 and non-COVID-19 thrombosis. The 

predictions were employed to split the dataset. We computed the mean, standard deviation (std), median absolute 

deviation (mad), the 20th, 50th, and 80th percentile (p20, p50, p80) for the area (A) and solidity (S) of platelets and platelet 

aggregates, individually. These features describe the shape of a distribution in terms of location and width. Furthermore, 

the percentage of the events of single platelets and platelet aggregates was computed, resulting in a total of 26 features 

that describe each measurement.  
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3.3 RF model for disease classification  

To identify which feature or combination of features allows COVID-19 to be distinguished from non-COVID-19 

thrombosis, we trained a supervised machine learning model. The model development process was carried out in 3 

successive steps. First, we selected 10 random measurements of COVID-19 and non-COVID-19 thrombosis to create a 

validation set and 10 further random measurements of both diseases to create a testing dataset. Second, the remaining 81 

non-COVID-19 thrombosis and 161 COVID-19 measurements were employed to train a RF model for classification. To 

optimize the number of trees (ntrees) in the model, we trained RF models having 1 ≤ ntrees ≤ 100 trees and chose the model 

with maximum validation accuracy. Third, this model was evaluated by computing the testing accuracy. Moreover, we 

obtained the feature importance values (see the Materials and Methods section). A high accuracy could occur by chance, 

depending on which measurements were used for training, validation, and testing. Therefore, we repeated steps one, two, 

and three 1000 times, resulting in a distribution of testing accuracies and feature importance values. The testing accuracy 

was found to be (mean ± std) 69.9% ± 9.3%. Figure 2C shows the normalized confusion matrix for the testing data, 

averaged over 1000 iterations.  The distribution of feature importance values of the 10 most important features is 

displayed in Figure 2D (see Figure S3A for all features), showing that the most important features describe the width of 

the distribution of platelet sizes (Astd_1, Amad_1), the 20th percentile of the area of platelet aggregates (Ap20_2), and the width 

of the distribution of solidity of platelet aggregates (Smad_2, Sstd_2). Interestingly, the width of the distribution of platelet 

sizes Astd_1 (shown in Figure 2E) is significantly larger (p = 1.8×10−15) for COVID-19 compared to thrombosis, meaning 

that the distribution of shape features can be used to discriminate the two from each other. However, the selection of 

distribution shape parameters (such as standard deviation) was arbitrary and is unlikely optimal. Therefore, below we 

discuss a method for automatic determination of distribution-shape features, based on the PDF of the distribution. 

 

3.4 CDT-based model for disease classification 

To obtain the PDF, we performed a kernel density estimation using the feature values (A, S). The distributions were 

sampled over a uniform grid of N = 5,000 points. Next, the PDF was transformed using the CDT, which returned a 

feature vector of length N. To reduce data dimensionality, we used principal component analysis and selected the 

principal components such that the sum of variance explained was 99% of the total variance. For training the PLDA 

classification model, we employed the same iterative approach as for the RF model training. The model reached an 

average testing accuracy of 75.3% ± 9.1%. The normalized confusion matrix in Figure 2F shows the average 

performance of the CDT-PLDA of 1000 iterations. To interpret the CDT-PLDA model, we used one model that was 

trained on the entire dataset and plotted the distribution profiles along the most significant direction, as shown in Figure 

2G. Blue and magenta curves indicate distribution shapes that are typical of non-COVID-19 thrombosis and COVID-19, 

respectively. 

 

3.5 napari plugin for real-time inference 

We implemented the phenotype prediction (using the CNN) and disease classification (using the RF and PLDA) into a 

plugin for napari with an intuitive and interactive user interface (Figure S4, Video S1). Napari is a Python-based image 

viewer, specialized for large datasets, which is easy to install. Our plugin allows users to load a measurement file 

(typically 25,000 images) by drag and drop and perform the analysis pipeline outlined in this paper in less than 6 s (on an 

Intel Core i5-8257U CPU at 1.40GHz, 8GB RAM). The interactive user interface of the plugin allows the selection of 
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phenotype classes and displays corresponding images. Using efficient OpenCV implementations, we achieved a

computational time of 2.82 s per measurement for performing background subtraction, cell segmentation, and phenotype

classification using the CNN. The subsequent disease classification using the RF or PLDA model only required 0.03 s, or

1.6 s, respectively. The plugin is an open-source software program, available on the napari-hub (https://www.napari

hub.org/plugins/iacs-ipac-reader), which can be installed and applied without the need for programming knowledge. 

 

 
FIGURE 2  
Machine learning methods for differentiating COVID-19 and non-COVID-19 thrombosis. (A) Scatter plot that
shows a representative measurement of non-COVID-19 thrombosis. Inset images show example phenotypes
of noise, platelets, platelet aggregates, and WBCs. Colored dots show corresponding locations of those
events in the scatter plot. Scale bar = 10 μm. (B) Normalized confusion matrix that shows the performance of
the CNN for phenotype classification. (C) Normalized confusion matrix (in %) that shows the disease
classification performance of RF models on the testing dataset (average of 1000 iterations). (D) Bar plot that
shows the mean and std of the feature importance of the 10 most important features, resulting from 1000 RF
models that were trained using different measurements for the training dataset. (A - area, S – solidity, std –
standard deviation, mad – median absolute deviation, 1 – platelet, 2 – aggregate) (E) Histogram that shows
the distribution of the feature with the highest feature importance. Stars indicate statistical significance,
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determined via a two-sided t-test (****: p < 10-4). (F) Normalized confusion matrix that shows the classification 
performance of PLDA models on the testing dataset (average of 1000 iterations). (G) Histograms that show 
reconstructed distribution profiles, corresponding to different locations along the most significant CDT-PLDA 
direction. Blue and magenta lines show distributions that resemble more thrombosis-like and more COVID-19-
like distribution shapes, respectively. 
 

4. DISCUSSION  

In this paper, we report a proof-of-concept application of an FDM-based IFC system for analyzing platelets in COVID-

19 and non-COVID-19 thrombosis. We trained a CNN to identify single platelets and platelet aggregates in 

measurements of patient blood. After deriving morphological features, we trained RF- and PLDA-based classification 

models to distinguish COVID-19 and non-COVID-19 thrombosis, reaching an average testing accuracy of 69.9% and 

75.3%, respectively. Moreover, we identified morphological features that were significantly different between COVID-

19 and non-COVID-19 thrombosis. We implemented the workflow into a plugin for napari, allowing the analysis to be 

performed in less than 6 s without the need for programming. These results indicate that the combination of IFC, 

machine and deep learning, and napari could be employed to study platelet aggregate formation and would even allow 

for real-time diagnostics. 

The accurate discrimination of subpopulations required care. Image acquisition was triggered for CD61+ events 

(platelets) and the scatter plot in Figure 2A shows a broad range of cell sizes and various phenotypes (platelets, platelet 

aggregates, WBCs, see inset images in Figure 2A). Unspecific staining, for example, due to the presence of debris from 

platelets, could cause the trigger signal for WBCs. Therefore, the discrimination of subpopulations was performed before 

subsequent analysis, which was achieved by training a CNN based on manually labelled images. The CNN for phenotype 

classification showed a high accuracy of 96%. In fact, for all wrongly classified cells (see the confusion matrix in Figure 

2B and Figure S2), even manual labeling was challenging.  

After the phenotype classification, we computed area and solidity for platelets and platelet aggregates separately. 

Based on the distribution-shape of area and solidity, we trained the RF and PLDA models for the classification of 

COVID-19 and non-COVID-19 thrombosis. The RF model received manually defined distribution features such as the 

mean and std as input. In contrast, for the CDT-PLDA, we used the CDT and PCA to compute and select distribution 

features. The confusion matrices in Figure 2C and Figure 2F show that the latter approach is superior, indicating that the 

selected distribution features for the RF missed important distribution-shape characteristics. The leftmost histogram in 

Figure 2G, where curves are non-overlapping, indicates that the area of platelets was different between COVID-19 and 

non-COVID-19 thrombosis. While the location of the peak is similar for non-COVID-19 thrombosis (blue) and COIVD-

19 (magenta), the tail of the distribution is much more pronounced for COVID-19, resulting in a wider distribution. This 

finding agrees with the result of the RF, which found high importance for Astd_1.  

Our analyses show that the distribution of platelet size is wider in COVID-19 (Figure 2E, Figure 2G), implicating 

that larger thrombocytes are more abundant. This is consistent with the previous reports that platelets in COVID-19 are 

highly reactive and have a unique transcriptome profile, and that platelet size and maturity are associated with increased 

critical illness and all-cause mortality in hospitalized COVID-19 patients (17). Larger platelets are generally at higher 

risk of forming aggregates and promoting thrombus formation (18). Although there are reports that cardiovascular 

outcomes are associated with platelet size (19), platelet size was more pronounced in COVID-19 in our analysis. 

Moreover, the rightmost histogram in Figure S3B shows that the distribution of the solidity values of platelet aggregates 

is significantly lower for COVID-19 (p = 3.5×10-10), which means that irregularly shaped platelet aggregates occur more 

often in the blood of COVID-19 patients. The irregular morphology of platelet aggregates may reflect differences in the 
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mechanisms underlying their formation. (20) 

To make the analysis methods shown in this paper easily accessible, we developed a user-friendly plugin for napari. 

It allows users to perform the disease classification between COVID-19 and non-COVID-19 thrombosis in less than 6 s 

and results can be seen in a single glance. The plugin promotes the translation of basic science to clinical application as it 

could be employed for real-time diagnostics. The plugin is not limited to the CNN, RF, and CDT-PLDA models shown in 

this work, but also allows the loading of models for different or complementary analyses.  

This paper shows a proof-of-concept demonstration that could be extended in various directions. For analysis, we 

only employed events of platelets and platelet aggregates. However, we also observed platelets attached to WBCs, which 

could correspond to platelet-monocyte aggregates whose occurrence is related to platelet activation (18). In a future 

study, additional staining would allow interpretation of these events, such that including them in the overall analysis 

could be valuable. Furthermore, we limited the morphology quantification to cell size and solidity. A more extensive 

quantification of cell shape and texture could allow improvement of classification accuracy. Moreover, the CDT-PLDA 

analysis indicated that further distribution shape features such as skew and kurtosis would be promising features for 

prospective improvement of the RF model. For phenotype classification, we employed a relatively small CNN 

architecture to promote execution speed and applicability on hardware with low or medium performance. Using a GPU, 

larger models could be run in real time which may further lift the accuracy. The current experimental setup requires an 

image reconstruction step after the measurement. Parallelizing signal acquisition and image reconstruction would not 

only improve CPU utilization but would also lead to a more seamless real-time experience. In addition, upgrading the 

current imaging system by introducing the capability of capturing more high-content information, such as quantitative 

optical phase, may further enrich our image analysis and increase testing accuracy. Finally, we included both arterial 

thrombosis (e.g., cerebral and myocardial infarction) and venous thrombosis (e.g., deep vein thrombosis and pulmonary 

embolism) in the non-COVID-19 thrombosis patient group. While similarities between them have been reported in recent 

years, they have different pathological mechanisms, which may suggest that their platelet aggregates have different 

morphological features (21). To address this point, a further study is needed to increase the number of patients with a 

variety of thrombosis and compare their images with those in patients with COVID-19 using our method. 
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Supporting Information 

S1 Image segmentation 

Since cells are hydrodynamically focused to the center of the channel, the border of the image was employed
to obtain the mean background brightness, which was subtracted from each image. Since cells can be
brighter or darker than the background, we computed the absolute of the pixel values after subtraction of the
background brightness. To identify a threshold for distinguishing cells from the background, we computed the
95th percentile of the background pixel intensities using all images of the dataset. After binarization of images
using the threshold, a contour finding algorithm was applied (22). The projected cell area was obtained from
the contour. After obtaining the convex hull of the contour, the solidity was computed as the ratio of the areas
of contour and hull. 
 

 
FIGURE S1  
Detailed sketch of the FDM-based imaging setup. CW: continuous wave; PBS: polarizing beam splitter; HWP:
half-wave plate; DM: dichroic mirror; NA: numerical aperture; Amp: Amplifier; APD: avalanche photodetector;
HPF: high-pass filter; HBS: half beam splitter; AOD: acousto-optic deflector.  
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TABLE S1 
Demographics, clinical characteristics, and laboratory findings of patients. All the patients in this study were 
hospitalized at the University of Tokyo Hospital. Data are expressed as median values (IQR), n (%), or n/N 
(%). p values were calculated by the Mann-Whitney U test or Fisher's exact test. 

 All patients Thrombosis patients COVID severe patients p value 

 n = 75 n = 41 n = 34  

Age, years 71 (60.5-77.5) 74.0 (64.0-80.0) 67.5 (59.0-72.0) 0.0095 

Sex    0.0281 

Male 49 (65%) 22 (54%) 27 (79%)  

Female 26 (35%) 19 (46%) 7 (21%)  

Comorbidity     

Hypertension 40 (53%) 22 (54%) 18 (53%) 1.0000 

Diabetes 21 (28%) 10 (24%) 11 (32%) 0.6061 

Coronary heart disease 5 (7%) 3 (7%) 2 (6%) 1.0000 

Chronic kidney disease 9 (12%) 6 (15%) 3 (9%) 0.4989 

Obesity, BMI > 25 21 (28%) 11 (27%) 10 (30%) 1.0000 

Active malignancy 13 (17%) 11 (27%) 2 (6%) 0.0293 

Diagnosis of thrombosis 45 (60%) 41 (100%) 3 (9%) <0.0001 

Thrombosis site     

Deep vein thrombosis 16 (21%) 16 (39%) 0 (0%) <0.0001 

Pulmonary embolism 6 (8%) 6 (15%) 0 (0%) 0.0290 

Cerebral infarction 11 (15%) 10 (24%) 1 (3%) 0.0096 

Myocardial infarction 7 (9%) 7 (17%) 0 (0%) 0.0140 

Others 4 (5%) 2 (5%) 2 (6%) 1.0000 

Antithrombotic therapy at 
baseline 25 (33%) 19 (46%) 6 (18%) 0.0133 

Antithrombotic therapy during 
treatment 64 (85%) 30 (73%) 34 (100%) 0.0007 

Antiplatelet therapy at 
baseline 20 (27%) 15 (37%) 5 (15%) <0.0001 

Anticoagulation therapy at 
baseline 9 (12%) 7 (17%) 2 (6%) 0.3263 

Antiplatelet therapy during 
treatment 

12 (16%) 12 (29%) 0 (0%) 0.0003 

Anticoagulation therapy 
during treatment 56 (75%) 22 (54%) 34 (100%) <0.0001 

Laboratory findings     

Leukocyte count, ×109/L 7.9 (5.7-11.8) 6.9 (5.2-8.0) 10.9 (7.7-13.3) 0.0003 

Red cell count, ×1012/L 384.0 (323.0-437.0) 357.0 (307.0-409.0) 405.5 (371.0-450.0) 0.0086 

Platelet count, ×109/L 20.7 (14.1-28.1) 21.2 (11.8-29.6) 20.6 (16.7-27.7) 0.4531 

ALT, U/L 36.5 (19.0-76.0) 22.0 (13.0-52.0) 58.0 (32.0-132.0) 0.0003 

Creatinine, µmol/L 0.8 (0.7-1.3) 0.7 (0.6-1.5) 0.9 (0.7-1.2) 0.5722 

Lactate dehydrogenase, U/L 350.5 (231.0-560.0) 245.0 (205.0-328.0) 529.5 (381.5-683.0) <0.0001 

C-reactive protein, mg/L 4.2 (1.2-8.6) 2.1 (0.4-7.1) 5.3 (2.0-14.0) 0.0156 

PT-INR 1.1 (1.0-1.2) 1.1 (1.0-1.2) 1.1 (1.0-1.2) 0.5053 

APTT, s 29.9 (26.3-25.7) 28.2 (25.2-34.9) 32.1 (27.6-40.0) 0.0566 

D-dimer, µg/mL 9.6 (2.3-23.1) 14.6 (4.4-32.6) 4.6 (2.0-13.1) 0.0280 
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FIGURE S2  
Normalized confusion matrix that shows the result of the CNN for phenotype classification being applied to the
validation set. Non-diagonal elements correspond to classification errors which are highlighted in colors, and
example images are provided for each. In each case, the decision of the CNN seems reasonable and even
manual labeling would be challenging. Hence, avoiding this type of model error would require more
differentiated ground truth information for example by previously enriching cells, or by further staining of cell
types. 
 

 
 
FIGURE S3  
Details of the RF analysis. (A) Bar plot that shows the mean and std of the feature importance of the 10 most
important features, resulting from 1000 RF models that were trained using different measurements for the
training dataset. (B) Histogram that shows the distribution of the three features with the highest feature
importance. The width of the distribution of platelet sizes (A_std_1, A_mad_1), is significantly larger (p =
1.8·10−15 and p = 1.5·10−14) for COVID-19 compared to non-COVID-19 thrombosis. Moreover, the width of the
distribution of platelet aggregate’s solidity (S_mad_2), is significantly smaller (p = 3.5·10-10) for COVID-19
compared to non-COVID-19 thrombosis. 
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FIGURE S4  
Graphical user interface of napari and the napari plugin. (A) The region indicated by the red rectangle allows
users to load measurement files by drag-and-drop. (B) The GUI element for loading the CNN for phenotype
classification and RF or CDT-PLDA model for disease classification. Besides the models shown in the present
manuscript, alternative models could also be loaded. (C) The GUI element used to start the analysis.
Subsequently, the results are displayed below. (D) The Blue rectangle indicates the region where phenotype
classification results are displayed. The interactive table allows users to display images of a class by clicking
the icon in the leftmost column. Cell images are shown in the napari viewer (center) (E) Magenta region
shows the disease classification resulting from the RF or CDT-PLDA model. The columns show the disease
types and corresponding probabilities. 
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